1
|
Shah KA, Ali T, Hussain Y, Dormocara A, You B, Cui JH. Isolation, characterization and therapeutic potentials of exosomes in lung cancer: Opportunities and challenges. Biochem Biophys Res Commun 2025; 759:151707. [PMID: 40153996 DOI: 10.1016/j.bbrc.2025.151707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/08/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Lung cancer (LC) signifies the primary cause of cancer-related mortality, representing 24 % of all cancer fatalities. LC is intricate and necessitates innovative approaches for early detection, precise diagnosis, and tailored treatment. Exosomes (EXOs), a subclass of extracellular vesicles (EVs), are integral to LC advancement, intercellular communication, tumor spread, and resistance to anticancer therapies. EXOs represent a viable drug delivery strategy owing to their distinctive biological characteristics, such as natural origin, biocompatibility, stability in blood circulation, minimal immunogenicity, and potential for modification. They can function as vehicles for targeted pharmaceuticals and facilitate the advancement of targeted therapeutics. EXOs are pivotal in the metastatic cascade, facilitating communication between cancer cells and augmenting their invasive capacity. Nonetheless, obstacles such as enhancing cargo loading efficiency, addressing homogeneity concerns during preparation, and facilitating large-scale clinical translation persist. Interdisciplinary collaboration in research is crucial for enhancing the efficacy of EXOs drug delivery systems. This review explores the role of EXOs in LC, their potential as therapeutic agents, and challenges in their development, aiming to advance targeted treatments. Future research should concentrate on engineering optimization and developing innovative EXOs to improve flexibility and effectiveness in clinical applications.
Collapse
Affiliation(s)
- Kiramat Ali Shah
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Tariq Ali
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong, 515063, China
| | - Yaseen Hussain
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Amos Dormocara
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Bengang You
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China
| | - Jing-Hao Cui
- College of Pharmaceutical Science, Soochow University, Renai Road 199, SIP, 215213, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Zhang Y, Zhao Y, Zhang BA. Machine Learning-Based Identification of Survival-Associated CpG Biomarkers in Pancreatic Ductal Adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.29.646090. [PMID: 40236182 PMCID: PMC11996429 DOI: 10.1101/2025.03.29.646090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an exceptionally aggressive cancer with a 5-year survival rate of less than 10%, driven by late-stage diagnosis, limited treatment options, and a lack of reliable biomarkers for early detection and prognosis. In this study, we integrated DNA methylation data from TCGA and ICGC cohorts, categorizing samples based on survival time, and identified 684 differentially methylated CpG sites, along with 224 CpG biomarkers significantly associated with patient survival through statistical and machine learning-based analyses. We developed a random forest model to predict patient survival, achieving 85.2% accuracy for short-survival patients and 70.0% for long-survival patients in the validation set. External dataset validation further confirmed the model's robustness and accuracy. De novo motif analysis of genomic regions surrounding the 224 CpG biomarkers identified TWIST1 and FOXA2 as key transcriptional regulators enriched in survival-associated CpG sites, linking their activity to patient survival outcomes. Collectively, our findings highlight valuable epigenetic biomarkers and provide a predictive model to assess PDAC risk levels post-surgery, offering the potential for improved patient stratification and personalized therapeutic strategies.
Collapse
|
3
|
Mivehchi H, Eskandari-Yaghbastlo A, Emrahoglu S, Saeidpour Masouleh S, Faghihinia F, Ayoubi S, Nabi Afjadi M. Tiny messengers, big Impact: Exosomes driving EMT in oral cancer. Pathol Res Pract 2025; 268:155873. [PMID: 40022766 DOI: 10.1016/j.prp.2025.155873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Exosomes are indispensable extracellular vesicles that facilitate intercellular communication and are crucial for both healthy and pathological conditions, including cancer. The capacity of exosomes to echo the molecular characteristics of their cells of origin, including malignant cells, makes them indispensable tools for diagnosing and tracking disease progression in the field of oncology. Oral squamous cell carcinoma (OSCC), which has been identified as the sixth most prevalent cancer worldwide, has been linked to numerous risk factors, including tobacco use, alcohol consumption, human papillomavirus (HPV) infection, and inadequate oral hygiene. Exosomes pointedly influence the advancement of oral cancer via promoting tumor cell growth, invasion, angiogenesis, and immune evasion through the alteration of the tumor microenvironment. A critical apparatus in cancer metastasis is the epithelial-to-mesenchymal transition (EMT), during which cancer cells acquire improved migratory and invasive properties. EMT plays a role in metastasis, resistance to treatment, and evasion of the immune response. Exosomes facilitate EMT in oral cancer by delivering bioactive molecules that influence EMT signaling pathways. These exosomes inspire EMT in recipient cells, by this means enhancing tumor invasion and metastasis. This study aims to identify the specific exosomal components and signaling pathways that are tangled in EMT, in that way providing new avenues for targeted therapies designed to hinder the metastasis of oral cancer.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | - Sahand Emrahoglu
- School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Saminalsadat Ayoubi
- School of Dental Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Dehghani S, Ocakcı O, Hatipoglu PT, Özalp VC, Tevlek A. Exosomes as Biomarkers and Therapeutic Agents in Neurodegenerative Diseases: Current Insights and Future Directions. Mol Neurobiol 2025:10.1007/s12035-025-04825-5. [PMID: 40095345 DOI: 10.1007/s12035-025-04825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Neurodegenerative diseases (NDs) like Alzheimer's, Parkinson's, and ALS rank among the most challenging global health issues, marked by substantial obstacles in early diagnosis and effective treatment. Current diagnostic techniques frequently demonstrate inadequate sensitivity and specificity, whilst conventional treatment strategies encounter challenges related to restricted bioavailability and insufficient blood-brain barrier (BBB) permeability. Recently, exosomes-nanoscale vesicles packed with proteins, RNAs, and lipids-have emerged as promising agents with the potential to reshape diagnostic and therapeutic approaches to these diseases. Unlike conventional drug carriers, they naturally traverse the BBB and can deliver bioactive molecules to affected neural cells. Their molecular cargo can influence cell signaling, reduce neuroinflammation, and potentially slow neurodegenerative progression. Moreover, exosomes serve as non-invasive biomarkers, enabling early and precise diagnosis while allowing real-time disease monitoring. Additionally, engineered exosomes, loaded with therapeutic molecules, enhance this capability by targeting diseased neurons and overcoming conventional treatment barriers. By offering enhanced specificity, reduced immunogenicity, and an ability to bypass physiological limitations, exosome-based strategies present a transformative advantage over existing diagnostic and therapeutic approaches. This review examines the multifaceted role of exosomes in NDDs, emphasizing their diagnostic capabilities, intrinsic therapeutic functions, and transformative potential as advanced treatment vehicles.
Collapse
Affiliation(s)
- Sam Dehghani
- Faculty of Medicine, Undergraduate Program, Atılım University, 06830, Ankara, Turkey
| | - Ozgecan Ocakcı
- Department of Medical Biology, Faculty of Medicine, AtıLıM University, 06830, Ankara, Turkey
| | - Pars Tan Hatipoglu
- Faculty of Medicine, Undergraduate Program, Atılım University, 06830, Ankara, Turkey
| | - Veli Cengiz Özalp
- Department of Medical Biology, Faculty of Medicine, AtıLıM University, 06830, Ankara, Turkey
| | - Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, AtıLıM University, 06830, Ankara, Turkey.
| |
Collapse
|
5
|
Kirti, Sharma AK, Yashavarddhan MH, Kumar R, Shaw P, Kalonia A, Shukla SK. Exosomes: A new perspective for radiation combined injury as biomarker and therapeutics. Tissue Cell 2024; 91:102563. [PMID: 39270512 DOI: 10.1016/j.tice.2024.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Radiation Combined Injuries (RCI) pose formidable public health risks, particularly in the context of nuclear incidents, necessitating specialized treatments and development of biomarkers. RCI encompasses instances where ionizing radiation exposure coincides with burns, wounds, or trauma. However, the limited understanding of cellular responses hinders progress in developing effective therapies. This article underscores the pivotal role of exosomes, nano-sized particles (30-120 nm) actively secreted by cells, in addressing the intricate challenges posed by RCI. Exosomes serve as vehicles for the transportation of bioactive molecules, including proteins, lipids, and miRNA, thereby facilitating processes critical to radiotherapy, burn injury, and wound healing. Exosomes hold significant promise for the transformation of RCI management by reducing inflammation, promoting wound healing, managing sepsis, altering immunological responses, and modulating signal transduction pathways. Moreover, exosomes are also being explored as biomarker for various diseases and stress conditions including radiation exposure and associated injuries. This comprehensive review highlights the burgeoning potential of exosomes in advancing the management of RCI, thereby enhancing public health preparedness and response.
Collapse
Affiliation(s)
- Kirti
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Ajay Kumar Sharma
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India.
| | - M H Yashavarddhan
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Rishav Kumar
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Priyanka Shaw
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Aman Kalonia
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Sandeep Kumar Shukla
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India.
| |
Collapse
|
6
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
7
|
Wan H, Zhong L, Xia T, Zhang D. Silencing Exosomal circ102927 Inhibits Foot Melanoma Metastasis via Regulating Invasiveness, Epithelial-Mesenchymal Transition and Apoptosis. Cancer Manag Res 2024; 16:825-839. [PMID: 39044746 PMCID: PMC11263183 DOI: 10.2147/cmar.s460315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Background Exosomes contain abundant circular RNAs (circRNAs), playing an important role in intercellular communication. However, the function and underlying molecular mechanism of exosomal circRNAs in foot metastatic melanoma remain unclear. Methods Twelve differentially expressed exosomal circRNAs between patients with metastatic and primary foot melanoma were screened through high-throughput sequencing, and their expression levels were detected by the real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). CircRNA102927 silencing and overexpression A2058 cell line was constructed, and the effects of circRNA102927 on cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT) were assessed using cell counting kit-8 (CCK-8), flow cytometry, wound healing, Transwell, and Western blot assays, respectively. Results Twelve differentially expressed exosomal circRNAs were screened and ROC curve showed that six circRNAs could be used as the diagnostic biomarkers for metastatic melanoma. Melanoma-secreted exosomes induced the differentiation of CD4+ T cells into Treg cells. CircRNA102927 was highly expressed in metastatic melanomas. Functionally, circRNA102927 silencing inhibited proliferation, EMT, migration, and invasion in metastatic melanoma cells, while promoting apoptosis. Meanwhile, overexpression of circRNA102927 had the opposite effects. Conclusion Our investigation suggests that silencing exosomal circRNA102927 may suppress foot melanoma metastasis by inhibiting invasiveness, EMT and promoting apoptosis.
Collapse
Affiliation(s)
- Huiying Wan
- Department of Dermatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ling Zhong
- Department of Dermatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Tian Xia
- Department of Pathology, Air Force Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
8
|
Zhang Q, Liu Q, Fu G, Huang F, Tang Y, Qiu Y, Ge A, Hu J, Wang W, Li B, Wang H. Dual-driven AND molecular logic gates for label-free and sensitive ratiometric fluorescence sensing and inhibitors screening. J Colloid Interface Sci 2024; 674:841-851. [PMID: 38955015 DOI: 10.1016/j.jcis.2024.06.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Due to the complexity of regulatory networks of disease-related biomarkers, developing simple, sensitive, and accurate methods has remained challenging for precise diagnosis. Herein, an "AND" logic gates DNA molecular machine (LGDM) was constructed, which was powered by the catalytic hairpin assembly (CHA). It was coupled with dual-emission CdTe quantum dots (QDs)-based cation exchange reaction (CER) for label-free, sensitive, and ratiometric fluorescence detection of APE1 and miRNA biomarkers. Benefiting from synergistic signal amplification strategies and a ratiometric fluorometric output mode, this LGDM enables accurate logic computing with robust and significant output signals from weak inputs. It offers improved sensitivity and selectivity even in cell extracts. Using dual-emission spectra CdTe QDs, with a ratiometric signal output mode, ensured good stability and effectively prevented false-positive signals from intrinsic biological interferences compared to the approach relying on a single signal output mode, which enabled the LGDM to achieve rapid, efficient, and accurate natural drug screening against APE1 inhibitors in vitro and cells. The developed method provides impetus to streamline research related to miRNA and APE1, offering significant promise for widespread application in drug development and clinical analysis.
Collapse
Affiliation(s)
- Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Gang Fu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Feibing Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Yanfu Tang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jinhui Hu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China.
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China.
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan·University of Chinese Medicine, Changsha, China.
| |
Collapse
|
9
|
Amiri M, Kaviari MA, Rostaminasab G, Barimani A, Rezakhani L. A novel cell-free therapy using exosomes in the inner ear regeneration. Tissue Cell 2024; 88:102373. [PMID: 38640600 DOI: 10.1016/j.tice.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024]
Abstract
Cellular and molecular alterations associated with hearing loss are now better understood with advances in molecular biology. These changes indicate the participation of distinct damage and stress pathways that are unlikely to be fully addressed by conventional pharmaceutical treatment. Sensorineural hearing loss is a common and debilitating condition for which comprehensive pharmacologic intervention is not available. The complex and diverse molecular pathology that underlies hearing loss currently limits our ability to intervene with small molecules. The present review focuses on the potential for the use of extracellular vesicles in otology. It examines a variety of inner ear diseases and hearing loss that may be treatable using exosomes (EXOs). The role of EXOs as carriers for the treatment of diseases related to the inner ear as well as EXOs as biomarkers for the recognition of diseases related to the ear is discussed.
Collapse
Affiliation(s)
- Masoumeh Amiri
- Faculty of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mohammad Amin Kaviari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Barimani
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
10
|
Abbasi R, Nejati V, Rezaie J. Exosomes biogenesis was increased in metformin-treated human ovary cancer cells; possibly to mediate resistance. Cancer Cell Int 2024; 24:137. [PMID: 38627767 PMCID: PMC11022479 DOI: 10.1186/s12935-024-03312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Exosomes derived from tumor cells contribute to the pathogenesis of cancers. Metformin, the most usually used drug for type 2 diabetes, has been frequently investigated for anticancer effects. Here, we examined whether metformin affects exosomes signaling in human ovary cancer cells in vitro. METHODS Human ovary cancer cells, including A2780 and Skov3 cells, were treated with metformin for either 24-48 h. Cell viability and caspase-3 activity were determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and colorimetric assays respectively. Oil-Red-O staining and in vitro, scratch assays were used to examine cellular toxicity and wound healing rate. After treatment with metformin, exosomes were isolated from cells and quantified by acetylcholinesterase (AChE) assay, Dynamic Light Scattering (DLS), and their markers. Genes related to exosomes signaling were analyzed by real-time PCR or western blotting. RESULTS Our results showed that metformin decreased the viability of both cells dose/time-dependently (P < 0.05). Metformin increased the activity of caspase-3 (P < 0.05) as well as the number of Oil-Red-O positive cells in both cell lines. In vitro scratch assay showed that the cell migration rate of metformin-treated cells was decreased (P < 0.05), whereas AChE activity of exosomes from metformin-treated cells was increased (P < 0.05). Concurrent with an increase in CD63 protein levels, expression of Alix, CD63, CD81, Lamp-2, and Rab27b up-regulated in treated cells (P < 0.05). CONCLUSION Results indicated that metformin had a cytotoxic effect on ovary cancer cells and enhanced exosome biogenesis and secretion.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | - Vahid Nejati
- Department of Biology, Urmia University, Urmia, Iran.
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Ditonno F, Franco A, Manfredi C, Fasanella D, Abate M, La Rocca R, Crocerossa F, Iossa V, Falagario UG, Cirillo L, Altieri VM, Di Mauro E, Crocetto F, Barone B, Cilio S, Pandolfo SD, Aveta A, Mirone V, Franzese CA, Arcaniolo D, Napolitano L. The Role of miRNA in Testicular Cancer: Current Insights and Future Perspectives. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2033. [PMID: 38004082 PMCID: PMC10672751 DOI: 10.3390/medicina59112033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Despite advancements in the diagnosis and treatment of testicular germ cell tumours (TGTCs), challenges persist in identifying reliable biomarkers for early detection and precise disease management. This narrative review addresses the role of microRNAs (miRNAs) as potential diagnostic tools and therapeutic targets in the treatment of TGCTs. Materials and Methods: Three databases (PubMed®, Web of Science™, and Scopus®) were queried for studies investigating the utility of miRNA as diagnostic tools, assessing their prognostic significance, and evaluating their potential to guide TGCT treatment. Different combinations of the following keywords were used, according to a free-text protocol: "miRNA", "non-coding RNA", "small RNA", "Testicular Cancer", "seminomatous testicular germ cell", "non-seminomatous testicular germ cell". Results: The potential of miRNAs as possible biomarkers for a non-invasive diagnosis of TGCT is appealing. Their integration into the diagnostic pathway for TGCT patients holds the potential to enhance the discriminative power of conventional serum tumour markers (STMs) and could expedite early diagnosis, given that miRNA overexpression was observed in 50% of GCNIS cases. Among miRNAs, miR-371a-3p stands out with the most promising evidence, suggesting its relevance in the primary diagnosis of TGCT, particularly when conventional STMs offer limited value. Indeed, it demonstrated high specificity (90-99%) and sensitivity (84-89%), with good positive predictive value (97.2%) and negative predictive value (82.7%). Furthermore, a direct relationship between miRNA concentration, disease burden, and treatment response exists, regardless of disease stages. The initial evidence of miRNA decrease in response to surgical treatment and systemic chemotherapy has been further supported by more recent results suggesting the potential utility of this tool not only in evaluating treatment response but also in monitoring residual disease and predicting disease relapse. Conclusions: MiRNAs could represent a reliable tool for accurate diagnosis and disease monitoring in the treatment of TGCT, providing more precise tools for early detection and treatment stratification. Nevertheless, well-designed clinical trials and comprehensive long-term data are needed to ensure their translation into effective clinical tools.
Collapse
Affiliation(s)
- Francesco Ditonno
- Department of Urology, Rush University Medical Center, Chicago, IL 60612-3833, USA
- Department of Urology, University of Verona, 37126 Verona, Italy
| | - Antonio Franco
- Department of Urology, Rush University Medical Center, Chicago, IL 60612-3833, USA
- Department of Urology, Sant'Andrea Hospital, La Sapienza University, 00189 Rome, Italy
| | - Celeste Manfredi
- Department of Urology, Rush University Medical Center, Chicago, IL 60612-3833, USA
- Urology Unit, Department of Woman, Child and General and Specialized Surgery, "Luigi Vanvitelli" University, 81100 Naples, Italy
| | - Daniela Fasanella
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marco Abate
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Roberto La Rocca
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Fabio Crocerossa
- Department of Urology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Iossa
- Department of Andrology, "Antonio Cardarelli" Hospital, 80131 Naples, Italy
| | - Ugo Giovanni Falagario
- Department of Urology and Organ Transplantation, University of Foggia, 71122 Foggia, Italy
| | - Luigi Cirillo
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Vincenzo Maria Altieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
- Department of Urology, Humanitas Gavazzeni, 24125 Bergamo, Italy
| | - Ernesto Di Mauro
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Felice Crocetto
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Biagio Barone
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Simone Cilio
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Savio Domenico Pandolfo
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Achille Aveta
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | - Vincenzo Mirone
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| | | | - Davide Arcaniolo
- Urology Unit, Department of Woman, Child and General and Specialized Surgery, "Luigi Vanvitelli" University, 81100 Naples, Italy
| | - Luigi Napolitano
- Urology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80138 Naples, Italy
| |
Collapse
|