1
|
Pereira AC, Tovar N, Nayak VV, Mijares DQ, Smay JE, Torroni A, Flores RL, Witek L. Direct inkjet writing type 1 bovine collagen/β-tricalcium phosphate scaffolds for bone regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35347. [PMID: 38247237 PMCID: PMC10832301 DOI: 10.1002/jbm.b.35347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/27/2023] [Indexed: 01/23/2024]
Abstract
Bone tissue has the capacity to regenerate under healthy conditions, but complex cases like critically sized defects hinder natural bone regeneration, necessitating surgery, and use of a grafting material for rehabilitation. The field of bone tissue engineering (BTE) has pioneered ways to address such issues utilizing different biomaterials to create a platform for cell migration and tissue formation, leading to improved bone reconstruction. One such approach involves 3D-printed patient-specific scaffolds designed to aid in regeneration of boney defects. This study aimed to develop and characterize 3D printed scaffolds composed of type I collagen augmented with β-tricalcium phosphate (COL/β-TCP). A custom-built direct inkjet write (DIW) printer was used to fabricate β-TCP, COL, and COL/β-TCP scaffolds using synthesized colloidal gels. After chemical crosslinking, the scaffolds were lyophilized and subjected to several characterization techniques, including light microscopy, scanning electron microscopy, and x-ray diffraction to evaluate morphological and chemical properties. In vitro evaluation was performed using human osteoprogenitor cells to assess cytotoxicity and proliferative capacity of the different scaffold types. Characterization results confirmed the presence of β-TCP in the 3D printed COL/β-TCP scaffolds, which exhibited crystals that were attributed to β-TCP due to the presence of calcium and phosphorus, detected through energy dispersive x-ray spectroscopy. In vitro studies showed that the COL/β-TCP scaffolds yielded more favorable results in terms of cell viability and proliferation compared to β-TCP and COL scaffolds. The novel COL/β-TCP scaffold constructs hold promise for improving BTE applications and may offer a superior environment for bone regeneration compared with conventional COL and β-TCP scaffolds.
Collapse
Affiliation(s)
- Angel Cabrera Pereira
- Biomaterials Division, NYU College of Dentistry, 345 E. 24 St., Room 902A, New York, NY
| | - Nick Tovar
- Department of Oral and Maxillofacial Surgery, New York University, Langone Medical Center and Bellevue Hospital Center, 462 1 Ave, Building H5-S, New York, NY
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Rm. 305, Miami, FL
| | - Dindo Q. Mijares
- Biomaterials Division, NYU College of Dentistry, 433 1 Ave., Office 715F, New York, NY
| | - James E. Smay
- School of Materials Science and Engineering, Oklahoma State University, 700 N Greenwood Ave – HRC 202 Tulsa, OK
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, 222 E 41st St, New York, NY
| | - Roberto L. Flores
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, 222 E 41st St, New York, NY
| | - Lukasz Witek
- Biomaterials Division, NYU College of Dentistry, New York, NY; Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY; 345 E. 24th St., Room 902D New York, NY
| |
Collapse
|
2
|
Huang D, Xu K, Huang X, Lin N, Ye Y, Lin S, Zhang J, Shao J, Chen S, Shi M, Zhou X, Lin P, Xue Y, Yu C, Yu X, Ye Z, Cheng K. Remotely Temporal Scheduled Macrophage Phenotypic Transition Enables Optimized Immunomodulatory Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203680. [PMID: 36031402 DOI: 10.1002/smll.202203680] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Precise timing of macrophage polarization plays a pivotal role in immunomodulation of tissue regeneration, yet most studies mainly focus on M2 macrophages for their anti-inflammatory and regenerative effects while the essential proinflammatory role of the M1 phenotype on the early inflammation stage is largely underestimated. Herein, a superparamagnetic hydrogel capable of timely controlling macrophage polarization is constructed by grafting superparamagnetic nanoparticles on collagen nanofibers. The magnetic responsive hydrogel network enables efficient polarization of encapsulated macrophage to the M2 phenotype through the podosome/Rho/ROCK mechanical pathway in response to static magnetic field (MF) as needed. Taking advantage of remote accessibility of magnetic field together with the superparamagnetic hydrogels, a temporal engineered M1 to M2 transition course preserving the essential role of M1 at the early stage of tissue healing, as well as enhancing the prohealing effect of M2 at the middle/late stages is established via delayed MF switch. Such precise timing of macrophage polarization matching the regenerative process of injured tissue eventually leads to optimized immunomodulatory bone healing in vivo. Overall, this study offers a remotely time-scheduled approach for macrophage polarization, which enables precise manipulation of inflammation progression during tissue healing.
Collapse
Affiliation(s)
- Donghua Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Kaicheng Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xin Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Nong Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Yuxiao Ye
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Suya Lin
- School of Material Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Jiamin Zhang
- School of Material Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Jiaqi Shao
- The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Mingmin Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xingzhi Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Peng Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Chengcheng Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xiaohua Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Kui Cheng
- School of Material Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
3
|
Besleaga C, Nan B, Popa AC, Balescu LM, Nedelcu L, Neto AS, Pasuk I, Leonat L, Popescu-Pelin G, Ferreira JMF, Stan GE. Sr and Mg Doped Bi-Phasic Calcium Phosphate Macroporous Bone Graft Substitutes Fabricated by Robocasting: A Structural and Cytocompatibility Assessment. J Funct Biomater 2022; 13:jfb13030123. [PMID: 36135559 PMCID: PMC9502687 DOI: 10.3390/jfb13030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022] Open
Abstract
Bi-phasic calcium phosphates (BCPs) are considered prominent candidate materials for the fabrication of bone graft substitutes. Currently, supplemental cation-doping is suggested as a powerful path to boost biofunctionality, however, there is still a lack of knowledge on the structural role of such substituents in BCPs, which in turn, could influence the intensity and extent of the biological effects. In this work, pure and Mg- and Sr-doped BCP scaffolds were fabricated by robocasting from hydrothermally synthesized powders, and then preliminarily tested in vitro and thoroughly investigated physically and chemically. Collectively, the osteoblast cell culture assays indicated that all types of BCP scaffolds (pure, Sr- or Sr–Mg-doped) delivered in vitro performances similar to the biological control, with emphasis on the Sr–Mg-doped ones. An important result was that double Mg–Sr doping obtained the ceramic with the highest β-tricalcium phosphate (β-TCP)/hydroxyapatite mass concentration ratio of ~1.8. Remarkably, Mg and Sr were found to be predominantly incorporated in the β-TCP lattice. These findings could be important for the future development of BCP-based bone graft substitutes since the higher dissolution rate of β-TCP enables an easier release of the therapeutic ions. This may pave the road toward medical devices with more predictable in vivo performance.
Collapse
Affiliation(s)
- Cristina Besleaga
- National Institute of Materials Physics, RO-077125 Magurele, Romania
| | - Bo Nan
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | - Liviu Nedelcu
- National Institute of Materials Physics, RO-077125 Magurele, Romania
| | - Ana Sofia Neto
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Iuliana Pasuk
- National Institute of Materials Physics, RO-077125 Magurele, Romania
| | - Lucia Leonat
- National Institute of Materials Physics, RO-077125 Magurele, Romania
| | - Gianina Popescu-Pelin
- National Institute for Lasers, Plasma and Radiation Physics, RO-077125 Magurele, Romania
| | - José M. F. Ferreira
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.M.F.F.); (G.E.S.)
| | - George E. Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania
- Correspondence: (J.M.F.F.); (G.E.S.)
| |
Collapse
|
4
|
Yüceer-Çetiner E, Özkan N, Önger ME, Gülbahar MY, Keskin M. Is induced membrane technique effective in reconstruction of mandibular segmental bone defects? An experimental study. J Craniomaxillofac Surg 2021; 49:1130-1140. [PMID: 34561120 DOI: 10.1016/j.jcms.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/30/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022] Open
Abstract
This study aimed to compare the effectiveness of different graft materials using induced membrane technique for reconstruction of mandibular segmental bone defects. New Zealand rabbits were used as the experimental animal. As first-stage surgical procedure, segmental bone defects were created at the lower border of the mandibula in all groups. Polymethylmethacrylate (PMMA) cement was inserted into the defects. After 6 weeks, PMMA cement was removed in all groups. In the Control group, defect areas were left empty. Defects were filled with autogenous graft in the Autograft group, xenograft in the Xenograft group, and a mixture of autogenous graft and xenograft in the Autograft + Xenograft group. Histopathological, stereological, and immunohistochemical analyses were performed. A total of 40 New Zealand rabbits were used. Rabbits were randomly divided into four subgroups as Control, Autograft, Xenograft and Autograft + Xenograft groups (n = 10). When the groups were compared in terms of newly formed bone tissue volumes, significant difference was found between the Control group and Autograft group, Xenograft group and Autograft + Xenograft group (p < 0.001, p < 0.001, p = 0.003). The results of immunohistochemical examination were consistent with this finding. Stereological and immunohistochemical results can be used as a justification to adopt the induced membrane technique on an experimental basis in humans when it comes to the reconstruction of small segmental mandibular defects.
Collapse
Affiliation(s)
- Ezgi Yüceer-Çetiner
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Bahçeşehir University, Istanbul, Turkey.
| | - Nilüfer Özkan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Mehmet Emin Önger
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Mustafa Yavuz Gülbahar
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Metehan Keskin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
5
|
Kang SH, Park JB, Kim I, Lee W, Kim H. Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold. J Periodontal Implant Sci 2019; 49:258-267. [PMID: 31485376 PMCID: PMC6713805 DOI: 10.5051/jpis.2019.49.4.258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose Increased bone regeneration has been achieved through the use of stem cells in combination with graft material. However, the survival of transplanted stem cells remains a major concern. The purpose of this study was to evaluate the viability of transplanted mesenchymal stem cells (MSCs) at an early time point (24 hours) based on the type and form of the scaffold used, including type I collagen membrane and synthetic bone. Methods The stem cells were obtained from the periosteum of the otherwise healthy dental patients. Four symmetrical circular defects measuring 6 mm in diameter were made in New Zealand white rabbits using a trephine drill. The defects were grafted with 1) synthetic bone (β-tricalcium phosphate/hydroxyapatite [β-TCP/HA]) and 1×105 MSCs, 2) collagen membrane and 1×105 MSCs, 3) β-TCP/HA+collagen membrane and 1×105 MSCs, or 4) β-TCP/HA, a chipped collagen membrane and 1×105 MSCs. Cellular viability and the cell migration rate were analyzed. Results Cells were easily separated from the collagen membrane, but not from synthetic bone. The number of stem cells attached to synthetic bone in groups 1, 3, and 4 seemed to be similar. Cellular viability in group 2 was significantly higher than in the other groups (P<0.05). The cell migration rate was highest in group 2, but this difference was not statistically significant (P>0.05). Conclusions This study showed that stem cells can be applied when a membrane is used as a scaffold under no or minimal pressure. When space maintenance is needed, stem cells can be loaded onto synthetic bone with a chipped membrane to enhance the survival rate.
Collapse
Affiliation(s)
- Seung-Hwan Kang
- Department of Dental Implantology, The Catholic University of Korea Graduate School of Clinical Dental Science, Seoul, Korea
| | - Jun-Beom Park
- Department of Dental Implantology, The Catholic University of Korea Graduate School of Clinical Dental Science, Seoul, Korea.,Department of Periodontics, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - InSoo Kim
- Department of Dental Implantology, The Catholic University of Korea Graduate School of Clinical Dental Science, Seoul, Korea.,Department of Oral and Maxillofacial Surgery, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Won Lee
- Department of Oral and Maxillofacial Surgery, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Heesung Kim
- Department of Oral and Maxillofacial Surgery, The Catholic University of Korea College of Medicine, Seoul, Korea.,Institute of Foreign Language Studies, Korea University, Seoul, Korea.,The Faculty of Liberal Arts, Eulji University, Seongnam, Korea
| |
Collapse
|
6
|
Baptista LS, Kronemberger GS, Côrtes I, Charelli LE, Matsui RAM, Palhares TN, Sohier J, Rossi AM, Granjeiro JM. Adult Stem Cells Spheroids to Optimize Cell Colonization in Scaffolds for Cartilage and Bone Tissue Engineering. Int J Mol Sci 2018; 19:E1285. [PMID: 29693604 PMCID: PMC5983745 DOI: 10.3390/ijms19051285] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023] Open
Abstract
Top-down tissue engineering aims to produce functional tissues using biomaterials as scaffolds, thus providing cues for cell proliferation and differentiation. Conversely, the bottom-up approach aims to precondition cells to form modular tissues units (building-blocks) represented by spheroids. In spheroid culture, adult stem cells are responsible for their extracellular matrix synthesis, re-creating structures at the tissue level. Spheroids from adult stem cells can be considered as organoids, since stem cells recapitulate differentiation pathways and also represent a promising approach for identifying new molecular targets (biomarkers) for diagnosis and therapy. Currently, spheroids can be used for scaffold-free (developmental engineering) or scaffold-based approaches. The scaffold promotes better spatial organization of individual spheroids and provides a defined geometry for their 3D assembly in larger and complex tissues. Furthermore, spheroids exhibit potent angiogenic and vasculogenic capacity and serve as efficient vascularization units in porous scaffolds for bone tissue engineering. An automated combinatorial approach that integrates spheroids into scaffolds is starting to be investigated for macro-scale tissue biofabrication.
Collapse
Affiliation(s)
- Leandra Santos Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, 25071-202 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Gabriela Soares Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, 25071-202 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Isis Côrtes
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Letícia Emiliano Charelli
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Renata Akemi Morais Matsui
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Xerém, 25245-390 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
| | - Thiago Nunes Palhares
- Brazilian Center for Physics Research, Xavier Sigaud 150, 22290-180 Urca, Rio de Janeiro, Brazil.
| | - Jerome Sohier
- Laboratory of tissue biology and therapeutic engineering-UMR 5305, CNRS, 69007 Lyon, France.
| | - Alexandre Malta Rossi
- Brazilian Center for Physics Research, Xavier Sigaud 150, 22290-180 Urca, Rio de Janeiro, Brazil.
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), 25250-020 Duque de Caxias, Rio de Janeiro, Brazil.
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, 25071-202 Duque de Caxias, Rio de Janeiro, Brazil.
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), 24020-140 Niterói, Brazil.
| |
Collapse
|
7
|
The Role of Fibroblast Growth Factors in Tooth Development and Incisor Renewal. Stem Cells Int 2018; 2018:7549160. [PMID: 29713351 PMCID: PMC5866892 DOI: 10.1155/2018/7549160] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 02/04/2018] [Indexed: 02/08/2023] Open
Abstract
The mineralized tissue of the tooth is composed of enamel, dentin, cementum, and alveolar bone; enamel is a calcified tissue with no living cells that originates from oral ectoderm, while the three other tissues derive from the cranial neural crest. The fibroblast growth factors (FGFs) are critical during the tooth development. Accumulating evidence has shown that the formation of dental tissues, that is, enamel, dentin, and supporting alveolar bone, as well as the development and homeostasis of the stem cells in the continuously growing mouse incisor is mediated by multiple FGF family members. This review discusses the role of FGF signaling in these mineralized tissues, trying to separate its different functions and highlighting the crosstalk between FGFs and other signaling pathways.
Collapse
|
8
|
Kuss MA, Wu S, Wang Y, Untrauer JB, Li W, Lim JY, Duan B. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture. J Biomed Mater Res B Appl Biomater 2017; 106:1788-1798. [PMID: 28901689 DOI: 10.1002/jbm.b.33994] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/25/2017] [Accepted: 08/28/2017] [Indexed: 01/11/2023]
Abstract
Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated that 3D co-cultured ADMSC-HUVEC generated capillary-like networks within the porous 3D printed scaffold. The co-culture systems promoted in vitro vascularization, but had no significant effects on osteogenesis. The prevascularized constructs were subcutaneously implanted into nude mice to evaluate the in vivo vascularization capacity and the functionality of engineered vessels. The hydrogel systems facilitated microvessel and lumen formation and promoted anastomosis of vascular networks of human origin with host murine vasculature. These findings demonstrate the potential of prevascularized 3D printed scaffolds with anatomical shape for the healing of larger bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1788-1798, 2018.
Collapse
Affiliation(s)
- Mitchell A Kuss
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shaohua Wu
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ying Wang
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jason B Untrauer
- Division of Oral and Maxillofacial Surgery, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wenlong Li
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Jung Yul Lim
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
9
|
de Misquita MRDOF, Bentini R, Goncalves F. The performance of bone tissue engineering scaffolds in in vivo animal models: A systematic review. J Biomater Appl 2016; 31:625-636. [DOI: 10.1177/0885328216656476] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bone tissue engineering is an excellent alternative for the regeneration of large bone defects caused by trauma or bone pathologies. Scaffolds, stem cells, and bioactive molecules are the three key components of bone regeneration. Although a wide range of biomaterials of various compositions and structures has been proposed in the literature, these materials are rarely used in clinical applications. Therefore, more standardized studies are required to design scaffolds that enable better bone regeneration and are suitable for clinical use. The aim of this systematic review was to compare the performance of scaffolds used in preclinical animal studies to determine which class of materials has achieved a higher rate of bone neoformation (osteoinduction and osteoconduction). The selected studies were divided into three groups according to the following experimental models: studies that used subcutaneous models, bone defects in calvaria, and bone defects in long bones. Despite the large number of parameters in the included studies, we generally concluded that biomaterials containing calcium phosphates had important osteoinductive effects and were essential for better performance of the materials. Furthermore, natural polymers generally had better performance than synthetic polymers did, especially when the materials were associated with stem cells. The combination of materials from different classes was the most promising strategy for bone tissue regeneration.
Collapse
Affiliation(s)
| | | | - Flavia Goncalves
- Universidade Ibirapuera – Unidade Chacara Flora, Sao Paulo, Brazil
| |
Collapse
|
10
|
Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev 2015; 94:126-40. [PMID: 25777059 DOI: 10.1016/j.addr.2015.03.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/27/2015] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli.
Collapse
Affiliation(s)
- Sonia Font Tellado
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Elizabeth R Balmayor
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Martijn Van Griensven
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| |
Collapse
|
11
|
Wang DJ, Li MY, Huang WT, Lu MH, Hu C, Li K, Qiu JG, Gao X. Repair of urethral defects with polylactid acid fibrous membrane seeded with adipose-derived stem cells in a rabbit model. Connect Tissue Res 2015; 56:434-9. [PMID: 25943462 DOI: 10.3109/03008207.2015.1035376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM The aim of this study is to evaluate the capacity of polylactid acid (PLA) fibrous membrane seeded with allogeneic rabbit adipose tissue-derived stem cells (ADSCs) to repair urethral defects in a rabbit model. MATERIALS AND METHODS Rabbit ADSCs were harvested and phenotypically characterized. Twenty-four New Zealand male rabbits with 5-mm urethral mucosal defects were randomly divided into two groups. They underwent urethroplasty either with PLA fibrous membrane seeded with ADSCs (group A) or blank PLA fibrous membrane (group B). At 4 and 6 weeks after urethroplasty, the urethral grafts were collected and analyzed grossly and histologically. The incidence rate of urethrostenosis was measured. RESULTS The adipose tissue-derived cells in monolayer culture showed a typical morphology of mesenchymal stem cells (MSCs). They were positive for the MSC marker CD44 but negative for lineage markers CD45 and CD105. Six weeks after surgery, the incidence rate of urethrostenosis in group A was significantly lower than that in group B (p < 0.05). In group A, the ADSC-seeded grafts showed a normal urethral architecture with a thickened muscle layer. In contrast, the newly developed urethra in group B demonstrated a fewer number of urothelial layers and scarce or no smooth muscle cells. CONCLUSION The PLA scaffold seeded with ADSCs is effective in urethral regeneration in a rabbit model. ADSCs may represent a promising source of seed cells for urethral tissue engineering.
Collapse
Affiliation(s)
- De-juan Wang
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Mao-yin Li
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Wen-tao Huang
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Min-hua Lu
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Cheng Hu
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Ke Li
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Jian-guang Qiu
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Xin Gao
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
12
|
Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds. Tissue Eng Part A 2015; 20:3142-53. [PMID: 24851936 DOI: 10.1089/ten.tea.2014.0026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developing a viable and functional bone scaffold in vitro that is capable of surviving and bearing mechanical load in vivo requires an understanding of the cell biology of osteoprogenitor cells, particularly how they are influenced by mechanical stimulation during cell differentiation and maturation. In this study, mechanical load was applied using a modified FlexCell plate to impart confined compression to collagen-I scaffolds seeded with undifferentiated murine embryonic stem cells. The activity, presence, and expression of osteoblast-cadherin (OB-Cad) and connexin-43, as well as various pluripotent and osteogenic markers were examined at 5-30 days of differentiation as cells were stimulated to differentiate to osteoblasts with and without applied mechanical load. Fluorescence recovery after photobleaching, immunofluorescence, viability, von Kossa, and real-time polymerase chain reaction assessments revealed that mechanical prestimulation of this cell-seeded scaffold altered the expression of OB-Cad and connexin-43 and resulted in significant differences in the structure and organization of mineralization present in the collagen matrix. Specifically, cells in gels that were loaded for 40 h after 5 days of differentiation and then left to fully differentiate for 30 days produced a highly structured honeycomb-shaped mineralization in the matrix; an outcome that was previously shown to be indicative of late osteoblast/early osteocyte activity. This study highlights the potential of mechanical load to accelerate differentiation and enhance osteoblast communication and function during the differentiation process, and highlights a time point of cell differentiation within this scaffold to apply load in order to most effectively transduce a mechanical signal.
Collapse
Affiliation(s)
- Swathi Damaraju
- 1 Biomedical Engineering Program, McCaig Institute for Bone and Joint Health, University of Calgary , Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
13
|
Sheykhhasan M, Qomi RT, Kalhor N, Mehdizadeh M, Ghiasi M. Evaluation of the ability of natural and synthetic scaffolds in providing an appropriate environment for growth and chondrogenic differentiation of adipose-derived mesenchymal stem cells. Indian J Orthop 2015; 49:561-568. [PMID: 26538764 PMCID: PMC4598549 DOI: 10.4103/0019-5413.164043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although progenitor cells have been observed in articular cartilage, this part has a limited ability to repair due to a lack of blood supply. Formerly, tissue engineering was mainly based on collecting chondrocytes from the joint surface, culturing them on resorbable scaffolds such as poly D, L-lactic glycolic acid (PLGA) and then autologous transplantation. In recent times, due to difficulties in collecting chondrocytes, most of the researchers are focused on stem cells for producing these cells. Among the important factors in this approach, is using appropriate scaffolds with good mechanical and biological properties to provide optimal environment for growth and development of stem cells. In this study, we evaluated the potential of fibrin glue, PLGA and alginate scaffolds in providing a suitable environment for growth and chondrogenic differentiation of mesenchymal stem cells (MSCs) in the presence of transforming growth factor-β3. MATERIALS AND METHODS Fibrin glue, PLGA and alginate scaffolds were prepared and MSCs were isolated from human adipose tissue. Cells were cultured separately on the scaffolds and 2 weeks after differentiation, chondrogenic genes, cell proliferation ability and morphology in each scaffold were evaluated using real time-polymerase chain reaction, MTT chondrogenic assay and histological examination, respectively. RESULTS Proliferation of differentiated adipose tissue derived mesenchymal stem cells (AD-MSCs) to chondrogenic cells in Fibrin glue were significantly higher than in other scaffolds. Also, Fibrin glue caused the highest expression of chondrogenic genes compared to the other scaffolds. Histological examination revealed that the pores of the Fibrin glue scaffolds were filled with cells uniformly distributed. CONCLUSION According to the results of the study, it can be concluded that natural scaffolds such as fibrin can be used as an appropriate environment for cartilage differentiation.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Department of Stem Cell, The Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Reza Tabatabaei Qomi
- Department of Stem Cell, The Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Naser Kalhor
- Department of Stem Cell, The Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Mohammad Mehdizadeh
- Department of Oral and Maxillofacial Surgery, Dental Faculty, Babol Medical Science University, Babol, Iran
| | - Mahdieh Ghiasi
- Department of Stem Cell, The Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| |
Collapse
|
14
|
Gamie Z, MacFarlane RJ, Tomkinson A, Moniakis A, Tran GT, Gamie Y, Mantalaris A, Tsiridis E. Skeletal tissue engineering using mesenchymal or embryonic stem cells: clinical and experimental data. Expert Opin Biol Ther 2015; 14:1611-39. [PMID: 25303322 DOI: 10.1517/14712598.2014.945414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) can be obtained from a wide variety of tissues for bone tissue engineering such as bone marrow, adipose, birth-associated, peripheral blood, periosteum, dental and muscle. MSCs from human fetal bone marrow and embryonic stem cells (ESCs) are also promising cell sources. AREAS COVERED In vitro, in vivo and clinical evidence was collected using MEDLINE® (1950 to January 2014), EMBASE (1980 to January 2014) and Google Scholar (1980 to January 2014) databases. EXPERT OPINION Enhanced results have been found when combining bone marrow-derived mesenchymal stem cells (BMMSCs) with recently developed scaffolds such as glass ceramics and starch-based polymeric scaffolds. Preclinical studies investigating adipose tissue-derived stem cells and umbilical cord tissue-derived stem cells suggest that they are likely to become promising alternatives. Stem cells derived from periosteum and dental tissues such as the periodontal ligament have an osteogenic potential similar to BMMSCs. Stem cells from human fetal bone marrow have demonstrated superior proliferation and osteogenic differentiation than perinatal and postnatal tissues. Despite ethical concerns and potential for teratoma formation, developments have also been made for the use of ESCs in terms of culture and ideal scaffold.
Collapse
Affiliation(s)
- Zakareya Gamie
- Aristotle University Medical School, 'PapaGeorgiou' Hospital, Academic Orthopaedic Unit , Thessaloniki , Greece
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gładysz D, Hozyasz KK. Stem cell regenerative therapy in alveolar cleft reconstruction. Arch Oral Biol 2015; 60:1517-32. [PMID: 26263541 DOI: 10.1016/j.archoralbio.2015.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/23/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Abstract
Achieving a successful and well-functioning reconstruction of craniofacial deformities still remains a challenge. As for now, autologous bone grafting remains the gold standard for alveolar cleft reconstruction. However, its aesthetic and functional results often remain unsatisfactory, which carries a long-term psychosocial and medical sequelae. Therefore, searching for novel therapeutic approaches is strongly indicated. With the recent advances in stem cell research, cell-based tissue engineering strategies move from the bench to the patients' bedside. Successful stem cell engineering employs a carefully selected stem cell source, a biodegradable scaffold with osteoconductive and osteoinductive properties, as well as an addition of growth factors or cytokines to enhance osteogenesis. This review highlights recent advances in mesenchymal stem cell tissue engineering, discusses animal models and case reports of stem cell enhanced bone regeneration, as well as ongoing clinical trials.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
16
|
De Francesco F, Ricci G, D'Andrea F, Nicoletti GF, Ferraro GA. Human Adipose Stem Cells: From Bench to Bedside. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:572-84. [PMID: 25953464 DOI: 10.1089/ten.teb.2014.0608] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stem cell-based therapies for repair and regeneration of different tissues are becoming more important in the treatment of several diseases. Adult stem cells currently symbolize the most available source of cell progenitors for tissue engineering and repair and can be harvested using minimally invasive procedures. Moreover, mesenchymal stem cells (MSCs), the most widely used stem cells in stem cell-based therapies, are multipotent progenitors, with capability to differentiate into cartilage, bone, connective, muscle, and adipose tissue. So far, bone marrow has been regarded as the main source of MSCs. To date, human adult adipose tissue may be the best suitable alternative source of MSCs. Adipose stem cells (ASCs) can be largely extracted from subcutaneous human adult adipose tissue. A large number of studies show that adipose tissue contains a biologically and clinically interesting heterogeneous cell population called stromal vascular fraction (SVF). The SVF may be employed directly or cultured for selection and expansion of an adherent population, so called adipose-derived stem cells (ASCs). In recent years, literature based on data related to SVF cells and ASCs has augmented considerably: These studies have demonstrated the efficacy and safety of SVF cells and ASCs in vivo in animal models. On the basis of these observations, in several countries, various clinical trials involving SVF cells and ASCs have been permitted. This review aims at summarizing data regarding either ASCs cellular biology or ASCs-based clinical trials and at discussing the possible future clinical translation of ASCs and their potentiality in cell-based tissue engineering.
Collapse
Affiliation(s)
- Francesco De Francesco
- 1 Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples , Naples, Italy
| | - Giulia Ricci
- 2 Department of Experimental Medicine, Second University of Naples , Naples, Italy
| | - Francesco D'Andrea
- 1 Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples , Naples, Italy
| | - Giovanni Francesco Nicoletti
- 1 Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples , Naples, Italy
| | - Giuseppe Andrea Ferraro
- 1 Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples , Naples, Italy
| |
Collapse
|
17
|
Advances in biology and mechanics of rotator cuff repair. Knee Surg Sports Traumatol Arthrosc 2015; 23:530-41. [PMID: 25573661 DOI: 10.1007/s00167-014-3487-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/11/2014] [Indexed: 12/26/2022]
Abstract
UNLABELLED High initial fixation strength, mechanical stability and biological healing of the tendon-to-bone interface are the main goals after rotator cuff repair surgery. Advances in the understanding of rotator cuff biology and biomechanics as well as improvements in surgical techniques have led to the development of new strategies that may allow a tendon-to-bone interface healing process, rather than the formation of a fibrovascular scar tissue. Although single-row repair remains the most cost-effective technique to address a rotator cuff tear, some biological intervention has been recently introduced to improve tissue healing and clinical outcome of rotator cuff repair. Animal models are critical to ensure safety and efficacy of new treatment strategies; however, although rat shoulders as well as sheep and goats are considered the most appropriate models for studying rotator cuff pathology, no one of them can fully reproduce the human condition. Emerging therapies involve growth factors, stem cells and tissue engineering. Experimental application of growth factors and platelet-rich plasma demonstrated promising results, but has not yet been transferred into standardized clinical practice. Although preclinical animal studies showed promising results on the efficacy of enhanced biological approaches, application of these techniques in human rotator cuff repairs is still very limited. Randomized controlled clinical trials and post-marketing surveillance are needed to clearly prove the clinical efficacy and define proper indications for the use of combined biological approaches. The following review article outlines the state of the art of rotator cuff repair and the use of growth factors, scaffolds and stem cells therapy, providing future directions to improve tendon healing after rotator cuff repair. LEVEL OF EVIDENCE Expert opinion, Level V.
Collapse
|
18
|
Fishero BA, Kohli N, Das A, Christophel JJ, Cui Q. Current concepts of bone tissue engineering for craniofacial bone defect repair. Craniomaxillofac Trauma Reconstr 2014; 8:23-30. [PMID: 25709750 DOI: 10.1055/s-0034-1393724] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022] Open
Abstract
Craniofacial fractures and bony defects are common causes of morbidity and contribute to increasing health care costs. Successful regeneration of bone requires the concomitant processes of osteogenesis and neovascularization. Current methods of repair and reconstruction include rigid fixation, grafting, and free tissue transfer. However, these methods carry innate complications, including plate extrusion, nonunion, graft/flap failure, and donor site morbidity. Recent research efforts have focused on using stem cells and synthetic scaffolds to heal critical-sized bone defects similar to those sustained from traumatic injury or ablative oncologic surgery. Growth factors can be used to augment both osteogenesis and neovascularization across these defects. Many different growth factor delivery techniques and scaffold compositions have been explored yet none have emerged as the universally accepted standard. In this review, we will discuss the recent literature regarding the use of stem cells, growth factors, and synthetic scaffolds as alternative methods of craniofacial fracture repair.
Collapse
Affiliation(s)
- Brian Alan Fishero
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Nikita Kohli
- Department of Otolaryngology-Head and Neck Surgery, SUNY Downstate Medical Center, Brooklyn, New York
| | - Anusuya Das
- Orthopaedic Surgery Research Center, University of Virginia, Charlottesville, Virginia
| | - John Jared Christophel
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Quanjun Cui
- Department of Orthopaedic Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
19
|
Deng D, Wang W, Wang B, Zhang P, Zhou G, Zhang WJ, Cao Y, Liu W. Repair of Achilles tendon defect with autologous ASCs engineered tendon in a rabbit model. Biomaterials 2014; 35:8801-8809. [PMID: 25069604 DOI: 10.1016/j.biomaterials.2014.06.058] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/29/2014] [Indexed: 11/30/2022]
Abstract
Adipose derived stem cells (ASCs) are an important cell source for tissue regeneration and have been demonstrated the potential of tenogenic differentiation in vitro. This study explored the feasibility of using ASCs for engineered tendon repair in vivo in a rabbit Achilles tendon model. Total 30 rabbits were involved in this study. A composite tendon scaffold composed of an inner part of polyglycolic acid (PGA) unwoven fibers and an outer part of a net knitted with PGA/PLA (polylactic acid) fibers was used to provide mechanical strength. Autologous ASCs were harvested from nuchal subcutaneous adipose tissues and in vitro expanded. The expanded ASCs were harvested and resuspended in culture medium and evenly seeded onto the scaffold in the experimental group, whereas cell-free scaffolds served as the control group. The constructs of both groups were cultured inside a bioreactor under dynamic stretch for 5 weeks. In each of 30 rabbits, a 2 cm defect was created on right side of Achilles tendon followed by the transplantation of a 3 cm cell-seeded scaffold in the experimental group of 15 rabbits, or by the transplantation of a 3 cm cell-free scaffold in the control group of 15 rabbits. Animals were sacrificed at 12, 21 and 45 weeks post-surgery for gross view, histology, and mechanical analysis. The results showed that short term in vitro culture enabled ASCs to produce matrix on the PGA fibers and the constructs showed tensile strength around 50 MPa in both groups (p > 0.05). With the increase of implantation time, cell-seeded constructs gradually form neo-tendon and became more mature at 45 weeks with histological structure similar to that of native tendon and with the presence of bipolar pattern and D-periodic structure of formed collagen fibrils. Additionally, both collagen fibril diameters and tensile strength increased continuously with significant difference among different time points (p < 0.05). In contrast, cell-free constructs failed to form good quality tendon tissue with fibril structure observable only at 45 weeks. There were significant differences in both collagen fibril diameter and tensile strength between two groups at all examined time points (p < 0.05). The results of this study support that ASCs are likely to be a potential cell source for in vivo tendon engineering and regeneration.
Collapse
Affiliation(s)
- Dan Deng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of China, Shanghai, PR China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of China, Shanghai, PR China
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of China, Shanghai, PR China
| | - Peihua Zhang
- College of Textiles, Donghua University, Shanghai, PR China.
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of China, Shanghai, PR China
| | - Wen Jie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of China, Shanghai, PR China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of China, Shanghai, PR China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering Research, National Tissue Engineering Center of China, Shanghai, PR China.
| |
Collapse
|
20
|
Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 2014; 9:18. [PMID: 24628910 PMCID: PMC3995444 DOI: 10.1186/1749-799x-9-18] [Citation(s) in RCA: 659] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/20/2014] [Indexed: 12/14/2022] Open
Abstract
This review analyzes the literature of bone grafts and introduces tissue engineering as a strategy in this field of orthopedic surgery. We evaluated articles concerning bone grafts; analyzed characteristics, advantages, and limitations of the grafts; and provided explanations about bone-tissue engineering technologies. Many bone grafting materials are available to enhance bone healing and regeneration, from bone autografts to graft substitutes; they can be used alone or in combination. Autografts are the gold standard for this purpose, since they provide osteogenic cells, osteoinductive growth factors, and an osteoconductive scaffold, all essential for new bone growth. Autografts carry the limitations of morbidity at the harvesting site and limited availability. Allografts and xenografts carry the risk of disease transmission and rejection. Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects. The combined use of scaffolds, healing promoting factors, together with gene therapy, and, more recently, three-dimensional printing of tissue-engineered constructs may open new insights in the near future.
Collapse
Affiliation(s)
| | | | - Ali Moshiri
- Division of Surgery and Radiology, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz 71345, Iran.
| | | |
Collapse
|
21
|
Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 2014. [PMID: 24628910 DOI: 10.1186/1749-799x9-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review analyzes the literature of bone grafts and introduces tissue engineering as a strategy in this field of orthopedic surgery. We evaluated articles concerning bone grafts; analyzed characteristics, advantages, and limitations of the grafts; and provided explanations about bone-tissue engineering technologies. Many bone grafting materials are available to enhance bone healing and regeneration, from bone autografts to graft substitutes; they can be used alone or in combination. Autografts are the gold standard for this purpose, since they provide osteogenic cells, osteoinductive growth factors, and an osteoconductive scaffold, all essential for new bone growth. Autografts carry the limitations of morbidity at the harvesting site and limited availability. Allografts and xenografts carry the risk of disease transmission and rejection. Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects. The combined use of scaffolds, healing promoting factors, together with gene therapy, and, more recently, three-dimensional printing of tissue-engineered constructs may open new insights in the near future.
Collapse
Affiliation(s)
| | | | - Ali Moshiri
- Division of Surgery and Radiology, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz 71345, Iran.
| | | |
Collapse
|