1
|
Ma S, Wang C, Liu J, Duan H, Tian X, Xu S, Zhang Y. To establish and validate autophagy related biomarkers for the diagnosis of IgA nephropathy. Sci Rep 2025; 15:13944. [PMID: 40263537 DOI: 10.1038/s41598-025-98591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
IgA nephropathy (IgAN) is one of the most common immune-related primary glomerular diseases. The pathological mechanism of this disease is complex, and the specific pathogenesis is still unclear. To obtain a comprehensive understanding of its molecular mechanism and to provide new perspectives regarding the detection and treatment of the disease, this study investigated the role of immune cells in IgAN, as well as the role of autophagy-related biomarkers in IgAN development. The original datasets GSE93798, GSE35487, GSE58539, GSE116626 and GSE115857 were downloaded from Gene Expression Omnibus (GEO) and were further integrated and analyzed. The differentially expressed genes (DEGs) between IgAN and healthy control (HC) group were identified by the "limma" R package. The gene ontology (GO) function, Kyoto Encyclopedia of Genes and Genome (KEGG) pathway, GeneSet Enrichment Analysis (GSEA) and DisGeNet enrichment were adopted to analyze the genes from the intersection of DEGs. The hub genes were screened by the square least absolute shrinkage and selection operator (LASSO) and cross validation. Immune cell infiltration was analyzed using CIBERSORT. The correlation between hub genes and infiltrating immune cells was calculated by R software. For the purpose of exploring the value of hub genes for diagnosing IgAN, a receiver operating characteristic (ROC) curve was constructed. Finally, Real-time quantitative polymerase chain reaction (qRT-PCR) was used to verify the relative mRNA level of the AT-DEGs. 12 DEGs were screened out. Enrichment analysis revealed that autophagy-related DEGs (AT-DEGs) were mainly related to intrinsic apoptotic signaling pathway, cellular response to external stimulus, transcription repressor complex and other cellular functions, KEGG pathways enriched by AT-DEGs mainly included biological metabolic pathways related to autophagy, while DisGeNET analysis showed that these AT-DEGs were mainly related to immunological diseases. The optimal six hub genes were obtained by lasso analysis as potential biomarkers for IgAN. ROC curve analysis showed that 4 of the 6 HUB genes had great diagnostic value. Immune infiltration results showed B cells memory, macrophages M2, NK cells activated, T cells CD4+ memory resting, and monocytes are the predominant immune cells with the development of IgAN. The qRT-PCR results showed that, compared to the NC group, SIRT1 mRNA expression in PBMCs from IgAN patients was significantly reduced, while BAG3, CDKN1A, and FOS mRNA levels were markedly elevated. SIRT1, BAG3, COKN1A and FOS can be considered as effective biomarkers related to autophagy for the diagnosis of IgAN. These findings suggest some potential new serum biomarkers for IgAN diagnosis.
Collapse
Affiliation(s)
- Sijia Ma
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100010, China
| | - Chao Wang
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100010, China
| | - Jing Liu
- Department of Nephrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Hangyu Duan
- Department of Nephrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiaoxin Tian
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100010, China
- School of Basic Medicine, LuoYang Polytechnic, Luoyang City, 471000, Henan, China
| | - Shijie Xu
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
2
|
Chen Y, Huang C, Duan ZB, Chen YX, Xu CY. LncRNA NEAT1 accelerates renal fibrosis progression via targeting miR-31 and modulating RhoA/ROCK signal pathway. Am J Physiol Cell Physiol 2023; 324:C292-C306. [PMID: 36440854 DOI: 10.1152/ajpcell.00382.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Renal fibrosis is the final pathway for chronic kidney disease to end-stage renal failure. Noncoding RNAs have been reported to play a crucial role in renal fibrosis. Here, the effects of long noncoding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) and miR-31 on renal fibrosis and their regulatory mechanism were evaluated. RT-qPCR was used to assess NEAT1, miR-31, and RhoA levels. Western blot was performed to analyze the expression of fibrosis markers, RhoA, rho-related kinase (ROCK1), and connective tissue growth factor (CTGF). RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH), and luciferase reporter assays verified the interaction between miR-31 and NEAT1 or RhoA. Renal fibrosis and injury were observed by Masson and hematoxylin and eosin (H&E) staining. The expression level of inflammatory cytokines was detected by ELISA. Immunohistochemistry (IHC) was performed to examine the expression levels of α-smooth muscle actin (α-SMA) and RhoA in renal tissues. We showed that NEAT1 was highly expressed, whereas miR-31 was decreased in renal fibrosis. NEAT1 was found to directly bind miR-31 to positively regulate RhoA expression. Furthermore, NEAT1 silencing inhibited renal fibrosis and inflammation and suppressed the RhoA/ROCK1 signaling pathway. However, knockdown of miR-31 could reverse these effects. NEAT1 silencing or overexpression of miR-31 alleviated renal fibrosis in vivo. In conclusion, NEAT1 accelerates renal fibrosis progression via negative regulation of miR-31 and the activation of RhoA/ROCK1 pathway, thereby upregulating the expression level of CTGF, providing a theoretical basis for treatment and prognostic evaluation of renal fibrosis.
Collapse
Affiliation(s)
- Yan Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chong Huang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhi-Bin Duan
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan-Xia Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cheng-Yun Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Sugiura H, Tsunezumi J, Yanagisawa H, Futaya M, Nitta K, Tsuchiya K. Fibulin7 aggravates calcium oxalate-induced acute kidney injury by binding to calcium oxalate crystals. J Cell Physiol 2023; 238:165-178. [PMID: 36370444 DOI: 10.1002/jcp.30914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
Fibulin7 (Fbln7) is a matricellular protein that is structurally similar to short fibulins but does not possess elastogenic abilities. Fbln7 is localized on the cell surface of the renal tubular epithelium in the adult kidney. We previously reported that Fbln7 binds artificial calcium phosphate particles in vitro, and that heparin counteracts this binding by releasing Fbln7 from the cell surface. Fbln7 gene (Fbln7) deletion in vivo decreased interstitial fibrosis and improved renal function in a high phosphate diet-induced chronic kidney disease mouse model. However, the contribution of Fbln7 during acute injury response remains largely unknown. We hypothesized that Fbln7 serves as an exacerbating factor in acute kidney injury (AKI). We employed three AKI models in vivo and in vitro, including unilateral ureteral obstruction (UUO), cisplatin-induced AKI, and calcium oxalate (CaOx)-induced AKI. Here, we report that Fbln7KO mice were protected from kidney damage in a CaOx-induced AKI model. Using HEK293T cells, we found that Fbln7 overexpression enhanced the CaOx-induced upregulation of EGR1 and LAMB3, and that heparin treatment canceled this effect. Interestingly, the protective function observed in Fbln7KO kidneys was limited to the CaOx-induced AKI model, while Fbln7KO mice were not protected against UUO-induced renal fibrosis or cisplatin-induced renal tubular damage. Taken together, our study indicates that Fbln7 mediates the local deposition of CaOx and damages the renal tubular epithelium. Releasing Fbln7 from the cell surface via heparin/heparin derivatives or Fbln7 inhibitory antibodies may provide a general strategy to mitigate calcium crystal-induced kidney injuries.
Collapse
Affiliation(s)
- Hidekazu Sugiura
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.,Department of Nephrology, Division of Medicine, Saiseikai Kazo Hospital, Kazo, Saitama, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jun Tsunezumi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Miyazaki, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mayuko Futaya
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Ken Tsuchiya
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.,Department of Blood Purification, Kidney Center, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| |
Collapse
|
4
|
Luo Y, Deng D, Lin L, Zhou Y, Wang L, Zou X, Wang X. FGF2 isoforms play distinct roles in tubular epithelial-to-mesenchymal transition in diabetic nephropathy. Exp Cell Res 2022; 420:113355. [PMID: 36115414 DOI: 10.1016/j.yexcr.2022.113355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The role of different isoforms of Fibroblast growth factor-2 (FGF2) in tubular epithelial-to-mesenchymal transition (EMT) in diabetic nephropathy remains unknown. We aimed to evaluate the role of FGF2 isoforms in the pathogenesis of EMT. MATERIALS AND METHODS Western blot and immunofluorescence were used to assess the expression of FGF2 isoforms in db/db mice and high glucose-stimulated HK2 cells. The effects of specific FGF2 isoforms on EMT were explored via overexpression or knockdown of the corresponding isoform in HK2 cells cultivated in high glucose. RESULTS Expression of low molecular weight (LMW) FGF2 was up-regulated while high molecular weight (HMW) FGF2 was down-regulated in the kidney of db/db mice and HK2 cells cultured in high glucose that underwent EMT. Overexpression of the LMW FGF2 enhanced EMT changes, while overexpression of the HMW FGF2 attenuated EMT. Knockdown of HMW FGF2 in HK2 cells promoted the EMT process. CONCLUSIONS The expression and function of LMW and HMW FGF2 differed in the process of EMT in tubular cells. LMW FGF2 contributed to EMT, while HMW FGF2 played a protective role in the EMT process.
Collapse
Affiliation(s)
- Yingying Luo
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, 430060, China
| | - Danfang Deng
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China
| | - Lamei Lin
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China
| | - Yikun Zhou
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, 430060, China
| | - Lan Wang
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China
| | - Xinrong Zou
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China
| | - Xiaoqin Wang
- Department of Nephrology, Hubei Provincial Hospital of Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China; Department of Nephrology, Hubei Provincial Traditional Chinese Medicine Research Institute, Wuhan, 430074, China; Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Wuhan, 430074, China.
| |
Collapse
|
5
|
Li X, Zhang F, Qu L, Xie Y, Ruan Y, Guo Z, Mao Y, Zou Q, Shi M, Xiao Y, Wang Y, Zhou Y, Guo B. Identification of YAP1 as a novel downstream effector of the FGF2/STAT3 pathway in the pathogenesis of renal tubulointerstitial fibrosis. J Cell Physiol 2021; 236:7655-7671. [PMID: 33993470 DOI: 10.1002/jcp.30415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 11/06/2022]
Abstract
Chronic kidney disease is a global health problem and eventually develops into an end-stage renal disease (ESRD). It is now widely believed that renal tubulointerstitial fibrosis (TIF) plays an important role in the progression of ESRD. Renal tubular epithelial-mesenchymal transition (EMT) is an important cause of TIF. Studies have shown that FGF2 is highly expressed in fibrotic renal tissue, although the mechanism remains unclear. We found that FGF2 can activate STAT3 and induce EMT in renal tubular epithelial cells. STAT3, an important transcription factor, was predicted by the JASPAR biological database to bind to the promoter region of YAP1. In this study, STAT3 was shown to promote the expression of the downstream target gene YAP1 through transcription, promote EMT of renal tubular epithelial cells, and mediate the occurrence of renal TIF. This study provides a theoretical basis for the involvement of the FGF2/STAT3/YAP1 signaling pathway in the process of renal interstitial fibrosis and provides a potential target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
- Department of Nephrology, Guiyang First People's Hospital, Guiyang, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Lingling Qu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Ying Xie
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Yuanyuan Ruan
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Ziwei Guo
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yanwen Mao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Qin Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Ding X, Ren Y, He X. IFN-I Mediates Lupus Nephritis From the Beginning to Renal Fibrosis. Front Immunol 2021; 12:676082. [PMID: 33959133 PMCID: PMC8093624 DOI: 10.3389/fimmu.2021.676082] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE) and a major risk factor for morbidity and mortality. The abundant cell-free nucleic (DNA/RNA) in SLE patients, especially dsDNA, is a key substance in the pathogenesis of SLE and LN. The deposition of DNA/RNA-immune complexes (DNA/RNA-ICs) in the glomerulus causes a series of inflammatory reactions that lead to resident renal cell disturbance and eventually renal fibrosis. Cell-free DNA/RNA is the most effective inducer of type I interferons (IFN-I). Resident renal cells (rather than infiltrating immune cells) are the main source of IFN-I in the kidney. IFN-I in turn damages resident renal cells. Not only are resident renal cells victims, but also participants in this immunity war. However, the mechanism for generation of IFN-I in resident renal cells and the pathological mechanism of IFN-I promoting renal fibrosis have not been fully elucidated. This paper reviews the latest epidemiology of LN and its development process, discusses the mechanism for generation of IFN-I in resident renal cells and the role of IFN-I in the pathogenesis of LN, and may open a new perspective for the treatment of LN.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Ren
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Pediatric Internal Medicine Department, Haikou Maternal and Child Health Hospital, Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Kiełbasiński K, Peszek W, Grabarek BO, Boroń D, Wierzbik-Strońska M, Oplawski M. Effect of Salinomycin on Expression Pattern of Genes Associated with Apoptosis in Endometrial Cancer Cell Line. Curr Pharm Biotechnol 2020; 21:1269-1277. [PMID: 32400328 PMCID: PMC7604770 DOI: 10.2174/1389201021666200513074022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/08/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022]
Abstract
Background Salinomycin is part of a group of ionophore antibiotics characterized by an activity towards tumor cells. To this day, the mechanism through which salinomycin induces their apoptosis is not fully known yet. The goal of this study was to assess the expression pattern of genes and the proteins coded by them connected with the process of programmed cell death in an endometrial cancer cell Ishikawa culture exposed to salinomycin and compared to the control. Materials and Methods Analysis of the effect of salinomycin on Ishikawa endometrial cancer cells (ECACC 99040201) included a cytotoxicity MTT test (with a concentration range of 0.1-100 µM), assessment of the induction of apoptosis and necrosis by salinomycin at a concentration of 1 µM as well the assessment of the expression of the genes chosen in the microarray experiment (microarray HG-U 133A_2) and the proteins coded by them connected with apoptosis (RTqPCR, ELISA assay). The statistical significance level for all analyses carried out as part of this study was p<0.05. Results It was observed that salinomycin causes the death of about 50% of cells treated by it (50.74±0.80% of all cells) at a concentration of 1µM. The decrease in the number of living cells was determined directly after treatment of the cells with the drug (time 0). The average percent of late apoptotic cells was 1.65±0.24% and 0.57±0.01% for necrotic cells throughout the entire observation period. Discussion Microarray analysis indicated the following number of mRNA differentiating the culture depending on the time of incubation with the drug: H_12 vs C = 114 mRNA, H_8 vs C = 84 mRNA, H_48 vs. C = 27 mRNA, whereas 5 mRNAs were expressed differently at all times. During the whole incubation period of the cells with the drug, the following dependence of the expression profile of the analyzed transcripts was observed: Bax>p53>FASL>BIRC5>BCL2L. Conclusion The analysis carried out indicated that salinomycin, at a concentration of 1 µM, stopped the proliferation of 50% of endometrial cancer cells, mainly by inducing the apoptotic process of the cells. The molecular exponent of the induction of programmed cell death was an observed increase in the transcriptional activity of pro-apoptotic genes: Bax;p53;FASL and a decrease in the expression of anti-apoptotic genes: BCL2L2; BIRC5.
Collapse
Affiliation(s)
- Kamil Kiełbasiński
- Department of Obsterics and Gynaecology in Ruda Slaska, Medical University of Silesia, Ruda Slaska, Poland
| | - Wojciech Peszek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Beniamin O Grabarek
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Kraków, Poland,Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland,Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Kraków, Poland,Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland
| | | | - Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| |
Collapse
|
8
|
Shi Z, Wang Q, Zhang Y, Jiang D. Extracellular vesicles produced by bone marrow mesenchymal stem cells attenuate renal fibrosis, in part by inhibiting the RhoA/ROCK pathway, in a UUO rat model. Stem Cell Res Ther 2020; 11:253. [PMID: 32586368 PMCID: PMC7318505 DOI: 10.1186/s13287-020-01767-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023] Open
Abstract
Background Extracellular vesicles produced by bone marrow mesenchymal stem cells (BMSC-EVs) can play important roles in the repair of injured tissues. Though numerous studies have reported the effect of EVs on renal fibrosis, the underlying mechanisms remain unclear. We hypothesized that BMSC-EVs containing milk fat globule–epidermal growth factor–factor 8 (MFG-E8) could attenuate renal fibrosis by inhibiting the RhoA/ROCK pathway. Methods We investigated whether BMSC-EVs have anti-fibrotic effects in a rat model of renal fibrosis, in which rats were subjected to unilateral ureteral obstruction (UUO), as well as in cultured HK2 cells. Extracellular vesicles from BMSCs were collected and co-cultured with HK2 cells during transforming growth factor-β1 (TGF-β1) treatment. HK2 cells co-cultured with TGF-β1 were also treated with the ROCK inhibitor, Y-27632. Results Compared with the Sham group, UUO rats displayed fibrotic abnormalities, accompanied by an increased expression of α-smooth muscle actin and Fibronectin and reduced expression of E-cadherin. These molecular and pathological changes suggested increased inflammation in damaged kidneys. Oxidative stress, as evidenced by an increased level of MDA and decreased levels of SOD1 and Catalase, was also observed in UUO kidneys. Additionally, activation of cleaved caspase-3 and PARP1 and increased apoptosis in the proximal tubules confirmed tubular cell apoptosis in the UUO group. All of these phenotypes exhibited by UUO rats were suppressed by treatment with BMSC-EVs. However, the protective effect of BMSC-EVs was completely abolished by the inhibition of MFG-E8. Consistent with the in vivo results, treatment with BMSC-EVs reduced inflammation, oxidative stress, apoptosis, and fibrosis in HK-2 cells stimulated with TGF-β1 in vitro. Interestingly, treatment with Y-27632 protected HK-2 cells against inflammation and fibrosis, although oxidative stress and apoptosis were unchanged. Conclusions Our results show that BMSC-EVs containing MFG-E8 attenuate renal fibrosis in a rat model of renal fibrosis, partly through RhoA/ROCK pathway inhibition.
Collapse
Affiliation(s)
- Zhengzhou Shi
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Qi Wang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China
| | - Youbo Zhang
- Department of Pediatric Surgery, Nantong Maternal and Child Health Hospital, Nantong, Jiangsu, China
| | - Dapeng Jiang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
9
|
O-GlcNAcylation of RAF1 increases its stabilization and induces the renal fibrosis. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165556. [DOI: 10.1016/j.bbadis.2019.165556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 01/11/2023]
|
10
|
Yu S, Chen Y, Chen S, Ye N, Li Y, Sun Y. Regulation of angiotensin II-induced B-cell lymphoma-2-associated athanogene 3 expression in vascular smooth muscle cells. Mol Med Rep 2018; 17:6156-6162. [PMID: 29484407 DOI: 10.3892/mmr.2018.8630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/27/2017] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that angiotensin II (Ang II) is involved in the process of atherosclerosis and vascular restenosis through its proinflammatory effect. Bcl‑2‑associated athanogene 3 (BAG3) had been suggested to be associated with proliferation, migration and invasion in many types of tumor. However, the role of BAG3 among the proliferative process of vascular smooth muscle cells (VSMCs) induced by Ang II, to the best of our knowledge, remains to be investigated. The present study demonstrated that in growth‑arrested VSMCs, Ang II‑induced VSMC proliferation, accompanied by increased BAG3 mRNA and protein expression levels in a dose‑ and time‑dependent manner. BAG3 expression levels were measured in VSMCs treated in the presence or absence of Ang II. The proliferation of VSMCs was assessed using manual cell counting and Cell Counting kit‑8 assays. mRNA and protein expression levels of BAG3, Toll‑like receptor 4 (TLR4), proliferating cell nuclear antigen, nuclear factor (NF)‑κB p65, smooth muscle protein 22α and phosphorylated NF‑κB p65 were assessed by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. In non‑transfected or scramble short hairpin RNA (shRNA)‑transfected VSMCs cells, Ang II significantly induced VSMC proliferation. However, this Ang II‑induce proliferation was attenuated when BAG3 was silenced, suggesting that inhibition of BAG3 may somehow reduce proliferation in Ang II‑induced VSMCs. Furthermore, the TLR4/NF‑κB p65 signaling pathway was involved in BAG3 gene upregulation. In conclusion, to the best of our knowledge, the present study demonstrated for the first time that inhibition of BAG3 attenuates cell proliferation. Furthermore, Ang II induced VSMCs proliferation through regulation of BAG3 expression via the TLR4/NF‑κB p65 signaling pathway.
Collapse
Affiliation(s)
- Shasha Yu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yintao Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuang Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ning Ye
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yan Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
11
|
Li X, Li X, Zhang Q, Zhao T. Low molecular weight fucoidan and its fractions inhibit renal epithelial mesenchymal transition induced by TGF-β1 or FGF-2. Int J Biol Macromol 2017. [DOI: 10.1016/j.ijbiomac.2017.06.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Itano S, Satoh M, Kadoya H, Sogawa Y, Uchida A, Sasaki T, Kashihara N. Colchicine attenuates renal fibrosis in a murine unilateral ureteral obstruction model. Mol Med Rep 2017; 15:4169-4175. [DOI: 10.3892/mmr.2017.6539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 02/23/2017] [Indexed: 11/05/2022] Open
|
13
|
Wang C, Zhang W, Zhang L, Chen X, Liu F, Zhang J, Guan S, Sun Y, Chen P, Wang D, Un Nesa E, Cheng Y, Yousef GM. miR-146a-5p mediates epithelial-mesenchymal transition of oesophageal squamous cell carcinoma via targeting Notch2. Br J Cancer 2016; 115:1548-1554. [PMID: 27832663 PMCID: PMC5155362 DOI: 10.1038/bjc.2016.367] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/27/2016] [Accepted: 10/08/2016] [Indexed: 02/08/2023] Open
Abstract
Background: Our previous study found that dysregulated microRNA-146a-5p (miR-146a-5p) is involved in oesophageal squamous cell cancer (ESCC) proliferation. This article aimed to evaluate its detailed mechanisms in ESCC epithelial–mesenchymal transition (EMT) progression. Methods: Invasion assay, qRT-PCR and western blotting were used to validate the roles of miR-146a-5p and Notch2 in EMT progression. miRNA target gene prediction databases and dual-luciferase reporter assay were used to validate the target gene. Results: miR-146a-5p inhibitor led to increase of invaded ESCC cells, while miR-146a-5p mimics inhibited invasion ability of ESCC cells. Protein level of E-cadherin decreased, whereas those of Snail and Vimentin increased in the anti-miR-146a-5p group, which demonstrated that miR-146a-5p inhibits EMT progression of ESCC cells. miRNA target gene prediction databases indicated the potential of Notch2 as a direct target gene of miR-146a-5p and dual-luciferase reporter assay validated it. Importantly, shRNA-Notch2 restrained EMT and partially abrogated the inhibiting effects of miR-146a-5p on EMT progression of ESCC cells. Conclusions: miR-146a-5p functions as a tumour-suppressive miRNA targeting Notch2 and inhibits the EMT progression of ESCC.
Collapse
Affiliation(s)
- Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenxue Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fang Liu
- Department of Imaging, Shandong Medical College, Jinan, Shandong, China
| | - Jing Zhang
- Department of Medical Genetics, National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences-School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Shanghui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yi Sun
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ding Wang
- Department of Laboratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Effat Un Nesa
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - George M Yousef
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
| |
Collapse
|
14
|
Effect of astragalus injection on renal tubular epithelial transdifferentiation in type 2 diabetic mice. Altern Ther Health Med 2016; 16:222. [PMID: 27422712 PMCID: PMC4947258 DOI: 10.1186/s12906-016-1208-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 06/15/2016] [Indexed: 12/02/2022]
Abstract
Background Astragalus injection is used by practitioners of traditional Chinese medicine to treat diabetic nephropathy (DN). The current study was conducted to determine the effect of astragalus on tubular epithelial transdifferentiation during the progression of DN in KKAy mice, as well as to investigate the molecular mechanism underlying this effect. Methods Diabetic, 14-week-old, male KKAy mice were randomly divided into a model group and an astragalus treatment group, while age-matched male C57BL/6 J mice were selected as controls. The treatment group received daily intraperitoneal injections of astragalus (0.03 mL/10 g per day), while the model group received injections of an equal volume of saline. Mice were euthanized after 24 weeks. Serum samples were obtained from the animals in each group for blood glucose measurement. Kidney tissue samples were used for morphometric studies. The mRNA and protein expression levels of transforming growth factor beta 1 (TGF-β1), transforming growth factor beta receptor 1 (TGFβ-R1), alpha smooth muscle actin (α-SMA), and E-cadherin were evaluated using real-time polymerase chain reaction (PCR) and western blotting. Results Astragalus significantly reduced blood glucose levels; inhibited morphological changes in the kidneys of KKAy mice; reduced mRNA and protein expression levels of TGF-β1, TGFβ-R1, and α-SMA; and increased E-cadherin expression. Conclusions Tubular epithelial transdifferentiation plays an important role in the development of DN in diabetic mice. Administration of astragalus likely prevents or mitigates DN by suppressing tubular epithelial transdifferentiation, protecting KKAy mice from renal damage.
Collapse
|
15
|
Du F, Li S, Wang T, Zhang HY, Li DT, Du ZX, Wang HQ, Wang YQ. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1. Am J Transl Res 2015; 7:2805-2814. [PMID: 26885277 PMCID: PMC4731677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.
Collapse
Affiliation(s)
- Feng Du
- Department of Nephrology, Shengjing Hospital, China Medical UniversityShenyang 110004, China
| | - Si Li
- Department of Endocrinology & Metabolism, The 1 Affiliated Hospital, China Medical UniversityShenyang 110001, China
| | - Tian Wang
- Department of Endocrinology & Metabolism, The 1 Affiliated Hospital, China Medical UniversityShenyang 110001, China
| | - Hai-Yan Zhang
- Department of Geriatrics, The 1 Affiliated Hospital, China Medical UniversityShenyang 110001, China
| | - De-Tian Li
- Department of Nephrology, Shengjing Hospital, China Medical UniversityShenyang 110004, China
| | - Zhen-Xian Du
- Department of Endocrinology & Metabolism, The 1 Affiliated Hospital, China Medical UniversityShenyang 110001, China
| | - Hua-Qin Wang
- Department of Biochemistry & Molecular Biology, China Medical UniversityShenyang 110001, China
| | - Yan-Qiu Wang
- Department of Nephrology, Shengjing Hospital, China Medical UniversityShenyang 110004, China
| |
Collapse
|