1
|
Branyan TE, Aleksa J, Lepe E, Kosel K, Sohrabji F. The aging ovary impairs acute stroke outcomes. J Neuroinflammation 2023; 20:159. [PMID: 37408003 DOI: 10.1186/s12974-023-02839-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
In experimental stroke, ovariectomized (OVX) adult rats have larger infarct volumes and greater sensory-motor impairment as compared to ovary-intact females and is usually interpreted to indicate that ovarian hormones are neuroprotective for stroke. Previous work from our lab shows that middle-aged, acyclic reproductively senescent (RS) females have worse stroke outcomes as compared to adult (normally cycling) females. We hypothesized that if loss of ovarian estrogen is the critical determinant of stroke outcomes, then ovary-intact middle-aged acyclic females, who have reduced levels of estradiol, should have similar stroke outcomes as age-matched OVX. Instead, the data demonstrated that OVX RS animals showed better sensory-motor function after stroke and reduced infarct volume as compared to ovary-intact females. Inflammatory cytokines were decreased in the aging ovary after stroke as compared to non-stroke shams, which led to the hypothesis that immune cells may be extravasated from the ovaries post-stroke. Flow cytometry indicated reduced overall T cell populations in the aging ovary after middle cerebral artery occlusion (MCAo), with a paradoxical increase in regulatory T cells (Tregs) and M2-like macrophages. Moreover, in the brain, OVX RS animals showed increased Tregs, increased M2-like macrophages, and increased MHC II + cells as compared to intact RS animals, which have all been shown to be correlated with better prognosis after stroke. Depletion of ovary-resident immune cells after stroke suggests that there may be an exaggerated response to ischemia and possible increased burden of the inflammatory response via extravasation of these cells into circulation. Increased anti-inflammatory cells in the brain of OVX RS animals further supports this hypothesis. These data suggest that stroke severity in aging females may be exacerbated by the aging ovary and underscore the need to assess immunological changes in this organ after stroke.
Collapse
Affiliation(s)
- Taylor E Branyan
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Jocelyn Aleksa
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Esteban Lepe
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Kelby Kosel
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA.
| |
Collapse
|
2
|
Boziki M, Theotokis P, Kesidou E, Karafoulidou E, Konstantinou C, Michailidou I, Bahar Y, Altintas A, Grigoriadis N. Sex, aging and immunity in multiple sclerosis and experimental autoimmune encephalomyelitis: An intriguing interaction. Front Neurol 2023; 13:1104552. [PMID: 36698908 PMCID: PMC9869255 DOI: 10.3389/fneur.2022.1104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) with a profound neurodegenerative component early in the disease pathogenesis. Age is a factor with a well-described effect on the primary disease phenotype, namely, the relapsing-remitting vs. the primary progressive disease. Moreover, aging is a prominent factor contributing to the transition from relapsing-remitting MS (RRMS) to secondary progressive disease. However, sex also seems to, at least in part, dictate disease phenotype and evolution, as evidenced in humans and in animal models of the disease. Sex-specific gene expression profiles have recently elucidated an association with differential immunological signatures in the context of experimental disease. This review aims to summarize current knowledge stemming from experimental autoimmune encephalomyelitis (EAE) models regarding the effects of sex, either independently or as a factor combined with aging, on disease phenotype, with relevance to the immune system and the CNS.
Collapse
Affiliation(s)
- Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology and Multiple Sclerosis Center, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology and Multiple Sclerosis Center, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology and Multiple Sclerosis Center, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology and Multiple Sclerosis Center, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrystalla Konstantinou
- Laboratory of Experimental Neurology and Neuroimmunology and Multiple Sclerosis Center, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Iliana Michailidou
- Laboratory of Experimental Neurology and Neuroimmunology and Multiple Sclerosis Center, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Ayse Altintas
- School of Medicine, Koç University, Istanbul, Turkey
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and Multiple Sclerosis Center, 2nd Neurological University Department, AHEPA General Hospital of Thessaloniki, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece,*Correspondence: Nikolaos Grigoriadis ✉
| |
Collapse
|
3
|
Li X, Zhu J, Wu Y, Tan Z. Correlation Between Kidney Function and Intestinal Biological Characteristics of Adenine and Folium SennaeInduced Diarrhea Model in Mice. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:4-12. [PMID: 35946892 PMCID: PMC9984907 DOI: 10.5152/tjg.2022.211010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/02/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND This study investigated the correlation among kidney function, intestinal enzyme activities, and microbial activity of adenine and Folium sennae-induced diarrhea model in mice, which provided a basis for clinical treatment of kidney-intestinal correlation. METHODS We performed different doses of adenine combined with Folium sennae intragastric administration to establish the animal model of diarrhea. We assessed thymus and spleen indexes, serum creatinine, urea nitrogen and uric acid contents, intestinal contents and mucosal enzyme activities, and microbial activity. RESULTS After modeling, mice presented increased serum creatinine and decreased urea nitrogen. Uric acid showed different changes in the different model groups. The thymus index in the model mice was trending downward, whereas the spleen index was the opposite. Moreover, model mice induced a non-significant increase in xylanase activity of the intestinal contents and mucosa compared to the control performance. Sucrase content of the intestinal contents increased considerably in the model groups but decreased in the intestinal mucosa. Lactase and amylase induced different trends in the different modeling methods. As well, the microbial activity of intestinal contents increased significantly, while that of intestinal mucosa decreased. CONCLUSION Adenine combined with Folium sennae successfully replicated diarrhea in mice models. Using 50 mg/ (kg/day) adenine for 14 days in combination with 10 g/(kg/day) Folium sennae decoction for 7 days caused kidney function injury in diarrhea mice. In addition, kidney function injury was accompanied by changing in intestinal functional enzyme activity and microbial activity.
Collapse
Affiliation(s)
- Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jiayuan Zhu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yi Wu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhoujin Tan
- College of Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Stojić-Vukanić Z, Pilipović I, Arsenović-Ranin N, Dimitrijević M, Leposavić G. Sex-specific remodeling of T-cell compartment with aging: Implications for rat susceptibility to central nervous system autoimmune diseases. Immunol Lett 2021; 239:42-59. [PMID: 34418487 DOI: 10.1016/j.imlet.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/15/2022]
Abstract
The incidence of multiple sclerosis (MS) and susceptibility of animals to experimental autoimmune encephalomyelitis (EAE), the most commonly used experimental model of MS, decrease with aging. Generally, autoimmune diseases develop as the ultimate outcome of an imbalance between damaging immune responses against self and regulatory immune responses (keeping the former under control). Thus, in this review the age-related changes possibly underlying this balance were discussed. Specifically, considering the central role of T cells in MS/EAE, the impact of aging on overall functional capacity (reflecting both overall count and individual functional cell properties) of self-reactive conventional T cells (Tcons) and FoxP3+ regulatory T cells (Tregs), as the most potent immunoregulatory/suppressive cells, was analyzed, as well. The analysis encompasses three distinct compartments: thymus (the primary lymphoid organ responsible for the elimination of self-reactive T cells - negative selection and the generation of Tregs, compensating for imperfections of the negative selection), peripheral blood/lymphoid tissues ("afferent" compartment), and brain/spinal cord tissues ("target" compartment). Given that the incidence of MS and susceptibility of animals to EAE are greater in women/females than in age-matched men/males, sex as independent variable was also considered. In conclusion, with aging, sex-specific alterations in the balance of self-reactive Tcons/Tregs are likely to occur not only in the thymus/"afferent" compartment, but also in the "target" compartment, reflecting multifaceted changes in both T-cell types. Their in depth understanding is important not only for envisaging effects of aging, but also for designing interventions to slow-down aging without any adverse effect on incidence of autoimmune diseases.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, University of Belgrade - Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
5
|
Cline-Smith A, Axelbaum A, Shashkova E, Chakraborty M, Sanford J, Panesar P, Peterson M, Cox L, Baldan A, Veis D, Aurora R. Ovariectomy Activates Chronic Low-Grade Inflammation Mediated by Memory T Cells, Which Promotes Osteoporosis in Mice. J Bone Miner Res 2020; 35:1174-1187. [PMID: 31995253 PMCID: PMC8061311 DOI: 10.1002/jbmr.3966] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/23/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
The loss of estrogen (E2 ) initiates a rapid phase of bone loss leading to osteoporosis in one-half of postmenopausal women, but the mechanism is not fully understood. Here, we show for the first time how loss of E2 activates low-grade inflammation to promote the acute phase of bone catabolic activity in ovariectomized (OVX) mice. E2 regulates the abundance of dendritic cells (DCs) that express IL-7 and IL-15 by inducing the Fas ligand (FasL) and apoptosis of the DC. In the absence of E2 , DCs become long-lived, leading to increased IL-7 and IL-15. We find that IL-7 and IL-15 together, but not alone, induced antigen-independent production of IL-17A and TNFα in a subset of memory T cells (TMEM ). OVX of mice with T-cell-specific ablation of IL15RA showed no IL-17A and TNFα expression, and no increase in bone resorption or bone loss, confirming the role of IL-15 in activating the TMEM and the need for inflammation. Our results provide a new mechanism by which E2 regulates the immune system, and how menopause leads to osteoporosis. The low-grade inflammation is likely to cause or contribute to other comorbidities observed postmenopause. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna Cline-Smith
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ariel Axelbaum
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Elena Shashkova
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Mousumi Chakraborty
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessie Sanford
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Prabhjyot Panesar
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Macey Peterson
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Linda Cox
- Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Angel Baldan
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Deborah Veis
- Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Rajeev Aurora
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Moulton VR. Sex Hormones in Acquired Immunity and Autoimmune Disease. Front Immunol 2018; 9:2279. [PMID: 30337927 PMCID: PMC6180207 DOI: 10.3389/fimmu.2018.02279] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Women have stronger immune responses to infections and vaccination than men. Paradoxically, the stronger immune response comes at a steep price, which is the high incidence of autoimmune diseases in women. The reasons why women have stronger immunity and higher incidence of autoimmunity are not clear. Besides gender, sex hormones contribute to the development and activity of the immune system, accounting for differences in gender-related immune responses. Both innate and adaptive immune systems bear receptors for sex hormones and respond to hormonal cues. This review focuses on the role of sex hormones particularly estrogen, in the adaptive immune response, in health, and autoimmune disease with an emphasis on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Vaishali R Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Sex and age as determinants of rat T-cell phenotypic characteristics: influence of peripubertal gonadectomy. Mol Cell Biochem 2017; 431:169-185. [PMID: 28281185 DOI: 10.1007/s11010-017-2989-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
The study examined the influence of age, sex and peripubertal gonadectomy on a set of T-cell phenotypic parameters. Rats of both sexes were gonadectomised at the age of 1 month and peripheral blood and spleen T lymphocytes from non-gonadectomised and gonadectomised 3- and 11-month-old rats were examined for the expression of differentiation/activation (CD90/CD45RC) and immunoregulatory markers. Peripheral blood T lymphocytes from non-gonadectomised rats showed age-dependent sexual dimorphisms in (1) total count (lower in female than male 11-month-old rats); (2) CD4+:CD8 + cell ratio (higher in female than male rats of both ages); (3) the proportion of recent thymic emigrants in CD8 + T cells (lower in female than male 3-month-old rats) and (4) the proportions of mature naïve and memory/activated cells (irrespective of age, the proportion of naïve cells was higher, whereas that of memory/activated cells was lower in females). Gonadectomy influenced magnitudes or direction of these sex differences. Additionally, sex differences in peripheral blood T-lymphocyte parameters did not fully correspond to those observed in T-splenocyte parameters, suggesting the compartment-specific regulation of the major T-cell subpopulations' and their subsets' composition. Furthermore, there was no sexual dimorphism in the proportion of either CD25 + Foxp3 + cells among CD4 + or CD161+ (NKT) cells within CD8 + T lymphocytes. However, there was gonadal hormone-independent age-associated sexual dimorphism in the proportion of CD161 + cells (NKT cells) in CD8 + T splenocytes. Overall, the study revealed age-dependent variations in sexual dimorphisms in T-cell parameters relevant for immune response efficacy and showed that they are T-cell compartment-specific and partly gonadal hormone-related.
Collapse
|