1
|
Feng Z, Qin Y, Jiang G. Reversing Gray Hair: Inspiring the Development of New Therapies Through Research on Hair Pigmentation and Repigmentation Progress. Int J Biol Sci 2023; 19:4588-4607. [PMID: 37781032 PMCID: PMC10535703 DOI: 10.7150/ijbs.86911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/19/2023] [Indexed: 10/03/2023] Open
Abstract
Hair graying is a common and visible sign of aging resulting from decreased or absence of melanogenesis. Although it has been established that gray hair greatly impacts people's mental health and social life, there is no effective countermeasure other than hair dyes. It has long been thought that reversal of gray hair on a large scale is rare. However, a recent study reported that individual gray hair darkening is a common phenomenon, suggesting the possibility of large-scale reversal of gray hair. In this article, we summarize the regulation mechanism of melanogenesis and review existing cases of hair repigmentation caused by several factors, including monoclonal antibodies drugs, tyrosine kinase inhibitors (TKIs), immunomodulators, other drugs, micro-injury, and tumors, and speculate on the mechanisms behind them. This review offers some insights for further research into the modulation of melanogenesis and presents a novel perspective on the development of clinical therapies, with emphasis on topical treatments.
Collapse
Affiliation(s)
- Zhaorui Feng
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Yi Qin
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Wang P, Xiong G, Zeng D, Zhang J, Ge L, Liu L, Wang X, Hu Y. Comparative transcriptome and miRNA analysis of skin pigmentation during embryonic development of Chinese soft-shelled turtle (Pelodiscus sinensis). BMC Genomics 2022; 23:801. [PMID: 36471254 PMCID: PMC9721069 DOI: 10.1186/s12864-022-09029-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/21/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND Aquatic animals show diverse body coloration, and the formation of animal body colour is a complicated process. Increasing evidence has shown that microRNAs (miRNAs) play important regulatory roles in many life processes. The role of miRNAs in pigmentation has been investigated in some species. However, the regulatory patterns of miRNAs in reptile pigmentation remain to be elucidated. In this study, we performed an integrated analysis of miRNA and mRNA expression profiles to explore corresponding regulatory patterns in embryonic body colour formation in the soft-shelled turtle Pelodiscus sinensis. RESULTS We identified 8 866 novel genes and 9 061 mature miRNAs in the skin of Chinese soft-shelled turtles in three embryonic stages (initial period: IP, middle period: MP, final period: FP). A total of 16 563 target genes of the miRNAs were identified. Furthermore, we identified 2 867, 1 840 and 4 290 different expression genes (DEGs) and 227, 158 and 678 different expression miRNAs (DEMs) in IP vs. MP, MP vs. FP, and IP vs. FP, respectively. Among which 72 genes and 25 miRNAs may be related to turtle pigmentation in embryonic development. Further analysis of the novel miRNA families revealed that some novel miRNAs related to pigmentation belong to the miR-7386, miR-138, miR-19 and miR-129 families. Novel_miR_2622 and novel_miR_2173 belong to the miR-19 family and target Kit and Gpnmb, respectively. The quantification of novel_miR_2622 and Kit revealed negative regulation, indicating that novel_miR_2622 may participate in embryonic pigmentation in P. sinensis by negatively regulating the expression of Kit. CONCLUSIONS miRNA act as master regulators of biological processes by controlling the expression of mRNAs. Considering their importance, the identified miRNAs and their target genes in Chinese soft-shelled turtle might be useful for investigating the molecular processes involved in pigmentation. All the results of this study may aid in the improvement of P. sinensis breeding traits for aquaculture.
Collapse
Affiliation(s)
- Pei Wang
- grid.257160.70000 0004 1761 0331College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Gang Xiong
- Hunan Biological and Electromechanical Polytechnic, Changsha, 410127 Hunan China
| | - Dan Zeng
- grid.440778.80000 0004 1759 9670College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000 Hunan China
| | - Jianguo Zhang
- Hunan Biological and Electromechanical Polytechnic, Changsha, 410127 Hunan China
| | - Lingrui Ge
- grid.257160.70000 0004 1761 0331College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China ,Hunan Biological and Electromechanical Polytechnic, Changsha, 410127 Hunan China
| | - Li Liu
- grid.449642.90000 0004 1761 026XSchool of Medical Technology, Shaoyang University, Shaoyang, 422000 Hunan China
| | - Xiaoqing Wang
- grid.257160.70000 0004 1761 0331College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Yazhou Hu
- grid.257160.70000 0004 1761 0331College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
3
|
Luo M, Liu Z, Hu Z, He Q. Quercetin improves contrast-induced acute kidney injury through the HIF-1α/lncRNA NEAT1/HMGB1 pathway. PHARMACEUTICAL BIOLOGY 2022; 60:889-898. [PMID: 35587223 PMCID: PMC9122359 DOI: 10.1080/13880209.2022.2058558] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 05/27/2023]
Abstract
CONTEXT The risk of contrast-induced acute kidney injury (CI-AKI) is increasing and the harm is great. Quercetin is the main active component in Abelmoschus manihot (L.) Medik (Malvaceae) and was reported to reduce the expression of HIF-1α. OBJECTIVE We investigate whether quercetin improves the CI-AKI through the HIF-1α/lncRNA NEAT1/HMGB1 pathway. MATERIALS AND METHODS HK-2 cells were treated with iohexol (200 mg/mL) for 6 h to establish a CI-AKI model. Quercetin (20 μM) was administered to CI-AKI cells cultured in dishes for 24 h. Cell morphology was observed by a fluorescence microscope. MTT and TUNEL assays were used to detect cell survival rate and apoptosis. Relative mRNA levels were measured by qRT-PCR. Protein levels were detected using western blotting. IL-6 and TNF-α protein levels were tested by Elisa assay. Targeting binding sites of HIF-1α and lncRNA NEAT1 were detected by luciferase assay. RESULTS The IC50 value of quercetin was 163.25 μM. The expression levels of HIF-1α, lncRNA NEAT1 and HMGB1 were upregulated in the CI-AKI cell model. Quercetin diminished cell injury and apoptosis via inhibiting HIF-1α. Silencing of HIF-1α targeting lncRNA MEAT1 diminished cell injury and apoptosis. Silencing lncRNA NEAT1 has the same effect via suppressing HMGB1 expression. Collectively, quercetin diminished cell injury and apoptosis in CI-AKI cell model via the inhibition of HIF-1α on lncRNA NEAT1/HMGB1 signalling pathway. DISCUSSION AND CONCLUSIONS Quercetin diminished cell injury and apoptosis in CI-AKI cell mode via the inhibition of HIF-1α on the lncRNA NEAT1/HMGB1 signalling pathway, offering a potential novel therapeutic target for CI-AKI therapy.
Collapse
Affiliation(s)
- Min Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua, Hunan Province, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Ziyu Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Zongren Hu
- Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua, Hunan Province, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Qinghu He
- Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua, Hunan Province, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
4
|
Chen YY, Liu LP, Zhou H, Zheng YW, Li YM. Recognition of Melanocytes in Immuno-Neuroendocrinology and Circadian Rhythms: Beyond the Conventional Melanin Synthesis. Cells 2022; 11:2082. [PMID: 35805166 PMCID: PMC9266247 DOI: 10.3390/cells11132082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Melanocytes produce melanin to protect the skin from UV-B radiation. Notwithstanding, the spectrum of their functions extends far beyond their well-known role as melanin production factories. Melanocytes have been considered as sensory and computational cells. The neurotransmitters, neuropeptides, and other hormones produced by melanocytes make them part of the skin's well-orchestrated and complex neuroendocrine network, counteracting environmental stressors. Melanocytes can also actively mediate the epidermal immune response. Melanocytes are equipped with ectopic sensory systems similar to the eye and nose and can sense light and odor. The ubiquitous inner circadian rhythm controls the body's basic physiological processes. Light not only affects skin photoaging, but also regulates inner circadian rhythms and communicates with the local neuroendocrine system. Do melanocytes "see" light and play a unique role in photoentrainment of the local circadian clock system? Why, then, are melanocytes responsible for so many mysterious functions? Do these complex functional devices work to maintain homeostasis locally and throughout the body? In addition, melanocytes have also been shown to be localized in internal sites such as the inner ear, brain, and heart, locations not stimulated by sunlight. Thus, what can the observation of extracutaneous melanocytes tell us about the "secret identity" of melanocytes? While the answers to some of these intriguing questions remain to be discovered, here we summarize and weave a thread around available data to explore the established and potential roles of melanocytes in the biological communication of skin and systemic homeostasis, and elaborate on important open issues and propose ways forward.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Hang Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- School of Medicine, Yokohama City University, Yokohama 234-0006, Japan
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (Y.-Y.C.); (L.-P.L.); (H.Z.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| |
Collapse
|
5
|
Ke J, Chen M, Ma S, Zhang L, Zhang L. Circular RNA VMA21 ameliorates lung injury in septic rat via targeting microRNA-497-5p/CD2-associated protein axis. Bioengineered 2022; 13:5453-5466. [PMID: 35172672 PMCID: PMC8973665 DOI: 10.1080/21655979.2022.2031406] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Sepsis was characterized via an acute inflammatory response to infection, often accompanying by multiple organ failure, particularly lung damage. Circular RNA (circRNA) played an important role in the pathology of a variety of diseases. However, the role of circRNA in sepsis-induced lung injury (LI) remained unknown. This study was to explore the expression and role of circVMA21 in sepsis LI and the possible molecular mechanism. The results manifested circVMA21 and CD2-associated protein (CD2AP) were down-regulated in lung tissue and lipopolysaccharide (LPS)-treated BEAS-2B, while microRNA (miR)-497-5p was up-regulated. A large number of deaths in rats after surgery of 72 h were caused via cecal ligation-perforation surgery, W/D value and Bax positive cells were increased, LI was caused, cell apoptosis, tumor necrosis factor-α, Interleukin (IL)-1β and IL-6 expression were promoted and Bcl-2 positive cells were decreased. Overexpression of circVMA21 ameliorated these phenomena. In addition, LPS-induced apoptosis and inflammation of BEAS-2B cells was improved via overexpression of circVMA21, while overexpression of miR-497-5P was opposite. Apoptosis, inflammation, and oxidative damage of BEAS-2B cells were aggravated via knockdown of circVMA21, but it was reversed by knockdown of miR-497-5p or overexpression of CD2AP. Mechanistically, CircVMA21 mediated CD2AP expression through competitive adsorption of miR-497-5p. In conclusion, this work showed circVMA21 improved LI in sepsis rats by targeting miR-497-5p/CD2AP axis, suggesting that circVMA21 may be a novel therapeutic target for sepsis-induced LI.
Collapse
Affiliation(s)
- JinFang Ke
- Department of Emergency, People's Hospital of Ningxia Hui Autonomous Region, YinChuan City, NingXia Hui Autonomous Region, China
| | - MengFei Chen
- Department of Emergency, People's Hospital of Ningxia Hui Autonomous Region, YinChuan City, NingXia Hui Autonomous Region, China
| | - ShiLan Ma
- Department of Emergency, People's Hospital of Ningxia Hui Autonomous Region, YinChuan City, NingXia Hui Autonomous Region, China
| | - Liang Zhang
- Department of Emergency, People's Hospital of Ningxia Hui Autonomous Region, YinChuan City, NingXia Hui Autonomous Region, China
| | - Ling Zhang
- Department of Emergency, People's Hospital of Ningxia Hui Autonomous Region, YinChuan City, NingXia Hui Autonomous Region, China
| |
Collapse
|
6
|
Bourhim T, Villareal MO, Gadhi C, Isoda H. Elucidation of Melanogenesis-Associated Signaling Pathways Regulated by Argan Press Cake in B16 Melanoma Cells. Nutrients 2021; 13:nu13082697. [PMID: 34444857 PMCID: PMC8398289 DOI: 10.3390/nu13082697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022] Open
Abstract
The beneficial effect on health of argan oil is recognized worldwide. We have previously reported that the cake that remains after argan oil extraction (argan press-cake or APC) inhibits melanogenesis in B16 melanoma cells in a time-dependent manner without cytotoxicity. In this study, the global gene expression profile of B16 melanoma cells treated with APC extract was determined in order to gain an understanding of the possible mechanisms of action of APC. The results suggest that APC extract inhibits melanin biosynthesis by down-regulating microphthalmia-associated transcription factor (Mitf) and its downstream signaling pathway through JNK signaling activation, and the inhibition of Wnt/β-catenin and cAMP/PKA signaling pathways. APC extract also prevented the transport of melanosomes by down-regulating Rab27a expression. These results suggest that APC may be an important natural skin whitening product and pharmacological agent used for clinical treatment of pigmentary disorders.
Collapse
Affiliation(s)
- Thouria Bourhim
- Faculty of Sciences Semlalia, Cadi Ayyad University, Avenue Prince Moulay Abdellah, B.P. 2390, Marrakesh 40000, Morocco;
| | - Myra O. Villareal
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan;
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan
| | - Chemseddoha Gadhi
- Faculty of Sciences Semlalia, Cadi Ayyad University, Avenue Prince Moulay Abdellah, B.P. 2390, Marrakesh 40000, Morocco;
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan;
- Correspondence: (C.G.); (H.I.)
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan;
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan
- Correspondence: (C.G.); (H.I.)
| |
Collapse
|
7
|
Kumar V. Going, Toll-like receptors in skin inflammation and inflammatory diseases. EXCLI JOURNAL 2021; 20:52-79. [PMID: 33510592 PMCID: PMC7838829 DOI: 10.17179/excli2020-3114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The Indian Ayurvedic physicians knew the concept of inflammation dating back to 1500 BC. The continuous progress in the immunology of inflammation has explained its undiscovered mechanisms. For example, the discovery of Toll-like receptor 4 (TLR4) in humans (1997) has revolutionized the field of infection biology and innate immunity. The laboratory mice have shown twelve TLRs and express TLR10 (CD290) as a disrupted pseudogene, and humans have ten functional TLRs. Now, it is well established that TLRs play a significant role in different infectious and inflammatory diseases. Skin inflammation and other associated inflammatory diseases, including atopic dermatitis (AD), acne vulgaris, and psoriasis, along with many skin cancers are major health problems all over the world. The continuous development in the immunopathogenesis of inflammatory skin diseases has opened the window of opportunity for TLRs in studying their role. Hence, the manuscript explores the role of different TLRs in the pathogenesis of skin inflammation and associated inflammatory diseases. The article starts with the concept of inflammation, its origin, and the impact of TLRs discovery on infection and inflammation biology. The subsequent section describes the burden of skin-associated inflammatory diseases worldwide and the effect of the geographical habitat of people affecting it. The third section explains skin as an immune organ and explains the expression of different TLRs on different skin cells, including keratinocytes, Langerhans cells (LCs), skin fibroblasts, and melanocytes. The fourth section describes the impact of TLRs on these cells in different skin-inflammatory conditions, including acne vulgaris, AD, psoriasis, and skin cancers. The article also discusses the use of different TLR-based therapeutic approaches as specific to these inflammatory skin diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children Health Clinical Unit, Faculty of Medicine and Biomedical Sciences, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia
| |
Collapse
|
8
|
Koike S, Yamasaki K. Melanogenesis Connection with Innate Immunity and Toll-Like Receptors. Int J Mol Sci 2020; 21:ijms21249769. [PMID: 33371432 PMCID: PMC7767451 DOI: 10.3390/ijms21249769] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
The epidermis is located in the outermost layer of the living body and is the place where external stimuli such as ultraviolet rays and microorganisms first come into contact. Melanocytes and melanin play a wide range of roles such as adsorption of metals, thermoregulation, and protection from foreign enemies by camouflage. Pigmentary disorders are observed in diseases associated with immunodeficiency such as Griscelli syndrome, indicating molecular sharing between immune systems and the machineries of pigment formation. Melanocytes express functional toll-like receptors (TLRs), and innate immune stimulation via TLRs affects melanin synthesis and melanosome transport to modulate skin pigmentation. TLR2 enhances melanogenetic gene expression to augment melanogenesis. In contrast, TLR3 increases melanosome transport to transfer to keratinocytes through Rab27A, the responsible molecule of Griscelli syndrome. TLR4 and TLR9 enhance tyrosinase expression and melanogenesis through p38 MAPK (mitogen-activated protein kinase) and NFκB signaling pathway, respectively. TLR7 suppresses microphthalmia-associated transcription factor (MITF), and MITF reduction leads to melanocyte apoptosis. Accumulating knowledge of the TLRs function of melanocytes has enlightened the link between melanogenesis and innate immune system.
Collapse
Affiliation(s)
- Saaya Koike
- Shiseido Global Innovation Center, Kanagawa 220-0011, Japan;
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Miyagi 980-8574, Japan
- Correspondence: ; Tel.: +81-(22)-717-7271
| |
Collapse
|
9
|
Depression of lncRNA NEAT1 Antagonizes LPS-Evoked Acute Injury and Inflammatory Response in Alveolar Epithelial Cells via HMGB1-RAGE Signaling. Mediators Inflamm 2020; 2020:8019467. [PMID: 32089649 PMCID: PMC7025070 DOI: 10.1155/2020/8019467] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
Sepsis-evoked acute lung injury (ALI) and its extreme manifestation, acute respiratory distress syndrome (ARDS), constitute a major cause of mortality in intensive care units. High levels of the long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) have been positively correlated with increased severity and unfavorable prognoses in patients with sepsis. Nevertheless, the function and molecular mechanism of NEAT1 in ALI remain elusive. In the current study, high levels of NEAT1 were confirmed in lipopolysaccharide- (LPS-) induced ALI mice models and in LPS-stimulated cells from the alveolar epithelial A549 cell line. Intriguingly, cessation of NEAT1 led to increased cell viability and decreased lactate dehydrogenase release, apoptosis, and caspase-3/9 activity, which conferred protection against LPS-induced injury in these cells. NEAT1 inhibition also restrained LPS-evoked transcripts and production of inflammatory cytokines IL-6, IL-1β, and TNF-α. A mechanism analysis corroborated the activation of high-mobility group box1 (HMGB1)/receptors for advanced glycation end products (RAGE) and NF-κB signaling in LPS-treated A549 cells. NEAT1 suppression reversed the activation of this pathway. Notably, reactivating HMGB1/RAGE signaling via HMGB1 overexpression blunted the anti-injury and anti-inflammation effects of NEAT1 knockdown. These findings suggest that NEAT1 may aggravate the progression of ALI and ARDS by inducing alveolar epithelial cell injury and inflammation via HMGB1/RAGE signaling, implying a promising treatment target for these conditions.
Collapse
|
10
|
Fu C, Chen J, Lu J, Pei S, Hu S, Jiang L, Ding Y, Huang L, Xiang H, Huang J, Zeng Q. Downregulation of
TUG
1 promotes melanogenesis and
UVB
‐induced melanogenesis. Exp Dermatol 2019; 28:730-733. [PMID: 30924963 DOI: 10.1111/exd.13929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 03/18/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Chuhan Fu
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Jing Chen
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Jianyun Lu
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Shiyao Pei
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Shuanghai Hu
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Ling Jiang
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Yufang Ding
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Lihua Huang
- Central Laboratory Third Xiangya Hospital of Central South University Changsha China
| | - Hong Xiang
- Central Laboratory Third Xiangya Hospital of Central South University Changsha China
| | - Jinhua Huang
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| | - Qinghai Zeng
- Department of Dermatology Third Xiangya Hospital of Central South University Changsha China
| |
Collapse
|
11
|
Tam I, Dzierżęga-Lęcznar A, Stępień K. Differential expression of inflammatory cytokines and chemokines in lipopolysaccharide-stimulated melanocytes from lightly and darkly pigmented skin. Exp Dermatol 2019; 28:551-560. [PMID: 30801846 DOI: 10.1111/exd.13908] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 01/02/2023]
Abstract
Increasing evidence suggests that human epidermal melanocytes play an important role in the skin immune system; however, a role of their pigmentation in immune and inflammatory responses is poorly examined. In the study, the expression of Toll-like receptor 4 (TLR4) and inflammatory cytokines and chemokines by cultured normal melanocytes derived from lightly and darkly pigmented skin was investigated after cell stimulation with lipopolysaccharide (LPS). The basal TLR4 mRNA level in heavily pigmented cells was higher as compared to their lightly pigmented counterparts. Melanocyte exposure to LPS upregulated the expression of TLR4 mRNA and enhanced the DNA-binding activity of NF-κB p50 and p65. We found substantial differences in the LPS-stimulated expression of numerous genes encoding inflammatory cytokines and chemokines between the cells with various melanin contents. In lightly pigmented melanocytes, the most significantly upregulated genes were nicotinamide phosphoribosyltransferase (NAMPT/visfatin), the chemokines CCL2 and CCL20, and IL6, while the genes for CXCL12, IL-16 and the chemokine receptor CCR4 were the most significantly upregulated in heavily pigmented cells. Moreover, the lightly pigmented melanocytes secreted much more NAMPT, CCL2 and IL-6. The results of our study suggest modulatory effect of melanogenesis on the immune properties of normal epidermal melanocytes.
Collapse
Affiliation(s)
- Irena Tam
- Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Anna Dzierżęga-Lęcznar
- Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Krystyna Stępień
- Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
12
|
Beauvericin inhibits melanogenesis by regulating cAMP/PKA/CREB and LXR-α/p38 MAPK-mediated pathways. Sci Rep 2018; 8:14958. [PMID: 30297846 PMCID: PMC6175938 DOI: 10.1038/s41598-018-33352-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Melanogenesis is the process of production of melanin pigments that are responsible for the colors of skin, eye, and hair and provide protection from ultraviolet radiation. However, excessive levels of melanin formation cause hyperpigmentation disorders such as freckles, melasma, and age spots. Liver X receptors (LXR) are nuclear oxysterol receptors belonging to the family of ligand-activated transcription factors and physiological regulators of lipid and cholesterol metabolism. In the skin, activation of LXRs stimulates differentiation of keratinocytes and augments lipid synthesis in sebocytes. However, the function of LXRs in melanogenesis has not been clearly elucidated. In addition, although beauvericin, a well-known mycotoxin primarily isolated from several fungi, has various biological properties, its involvement in melanogenesis has not been reported. Therefore, in this study, we examined the effects of beauvericin on melanogenesis and its molecular mechanisms. Beauvericin decreased melanin content and tyrosinase activity without any cytotoxicity. Beauvericin also reduced protein levels of MITF, tyrosinase, TRP1, and TRP2. In addition, beauvericin suppressed cAMP-PKA-CREB signaling and upregulated expression of LXR-α, resulting in the suppression of p38 MAPK. Our results indicate that beauvericin attenuates melanogenesis by regulating both cAMP/PKA/CREB and LXR-α/p38 MAPK pathways, consequently leading to a reduction of melanin levels.
Collapse
|
13
|
Kim KH, Choi H, Kim HJ, Lee TR. TNFSF14 inhibits melanogenesis via NF-kB signaling in melanocytes. Cytokine 2018; 110:126-130. [PMID: 29730385 DOI: 10.1016/j.cyto.2018.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 01/07/2023]
Abstract
Melanin synthesis in melanocytes is affected by various cytokines. Here, we reported for the first time that tumor necrosis factor superfamily member 14 (TNFSF14) inhibits melanogenesis in the primary culture of human epidermal melanocytes. TNFSF14 is known to bind to its receptors herpes virus entry mediator (HVEM) and lymphotoxin β receptor (LTβR) for signal transduction, but TNFSF14-induced hypopigmentation was independent of HVEM and LTβR in melanocytes. To explore signaling in melanocytes treated with TNFSF14, we performed RNA-seq and found that nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling is activated by TNFSF14. Further, we observed that inhibition of NF-kB effectively blocks the hypopigmentation induced by TNFSF14. We conclude that TNFSF14 inhibits melanogenesis in melanocytes via NF-κB signaling and could be applied in the treatment of cutaneous pigment disorders.
Collapse
Affiliation(s)
- Kyu-Han Kim
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 446-729, Republic of Korea.
| | - Hyunjung Choi
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Hyoung-June Kim
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Tae Ryong Lee
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do 446-729, Republic of Korea.
| |
Collapse
|
14
|
Pillaiyar T, Manickam M, Jung SH. Recent development of signaling pathways inhibitors of melanogenesis. Cell Signal 2017; 40:99-115. [PMID: 28911859 DOI: 10.1016/j.cellsig.2017.09.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/10/2017] [Accepted: 09/10/2017] [Indexed: 02/08/2023]
Abstract
Human skin, eye and hair color rely on the production of melanin, depending on its quantity, quality, and distribution, Melanin plays a monumental role in protecting the skin against the harmful effect of ultraviolet radiation and oxidative stress from various environmental pollutants. However, an excessive production of melanin causes serious dermatological problems such as freckles, solar lentigo (age spots), melasma, as well as cancer. Hence, the regulation of melanin production is important for controlling the hyper-pigmentation. Melanogenesis, a biosynthetic pathway to produce melanin pigment in melanocyte, involves a series of intricate enzymatic and chemical catalyzed reactions. Several extrinsic factors include ultraviolet radiation and chemical drugs, and intrinsic factors include molecules secreted by surrounding keratinocytes or melanocytes, and fibroblasts, all of which regulate melanogenesis. This article reviews recent advances in the development of melanogenesis inhibitors that directly/indirectly target melanogenesis-related signaling pathways. Efforts have been made to provide a description of the mechanism of action of inhibitors on various melanogenesis signaling pathways.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National, University, Daejeon 34134, Republic of Korea
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National, University, Daejeon 34134, Republic of Korea
| |
Collapse
|