1
|
Zhang Y, Gong C, Tao L, Zhai J, Huang F, Zhang S. Involvement of SIRT1-mediated aging in liver diseases. Front Cell Dev Biol 2025; 13:1548015. [PMID: 40052151 PMCID: PMC11882576 DOI: 10.3389/fcell.2025.1548015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Liver disease is a significant global health issue, responsible for millions of deaths annually. Aging, characterized by the gradual decline in cellular and physiological functions, impairs tissue regeneration, increases susceptibility to liver diseases, and leads to a decline in liver health. Silent information regulator 1 (SIRT1), a NAD⁺-dependent deacetylase, has emerged as a pivotal factor in modulating age-related changes in the liver. SIRT1 preserves liver function by regulating essential aging-related pathways, including telomere maintenance, epigenetic modifications, cellular senescence, intercellular communication, inflammation, and mitochondrial function. Notably, SIRT1 levels naturally decline with age, contributing to liver disease progression and increased vulnerability to injury. This review summarizes the regulatory role of SIRT1 in aging and its impact on liver diseases such as liver fibrosis, alcoholic associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and metabolic dysfunction-associated steatohepatitis (MASH), hepatocellular carcinoma (HCC). We also discuss emerging therapeutic approaches, including SIRT1 activators, gene therapy, and nutritional interventions, which are evaluated for their potential to restore SIRT1 function and mitigate liver disease progression. Finally, we highlight future research directions to optimize SIRT1-targeted therapies for clinical applications in age-related liver conditions.
Collapse
Affiliation(s)
- Yueming Zhang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Chang Gong
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Lina Tao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Fengwei Huang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
- College of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Sixi Zhang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
- College of Pharmacy, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Hua Y, Li X, Yin B, Lu S, Qian B, Zhou Y, Li Z, Meng Z, Ma Y. Genome-wide analysis of alternative splicing differences in hepatic ischemia reperfusion injury. Sci Rep 2024; 14:31349. [PMID: 39732885 PMCID: PMC11682299 DOI: 10.1038/s41598-024-82846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Alternative splicing (AS) contributes to transcript and protein diversity, affecting their structure and function. However, the specific transcriptional regulatory mechanisms underlying AS in the context of hepatic ischemia reperfusion (IR) injury in mice have not been extensively characterized. In this study, we investigated differentially alternatively spliced (DAS) genes and differentially expressed transcripts (DETs) in a mouse model of hepatic IR injury using the high throughput RNA sequencing (RNA-seq) analysis and replicate multivariate analysis of transcript splicing (rMATS) analysis. We further conducted Gene ontology (GO) term enrichment, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the protein-protein interaction (PPI) network. A total of 898 DAS genes (p ≤ 0.05) were screened out in the hepatic IR group compared to the sham group, while functional enrichment analysis revealed that DETs and DAS genes were significantly associated with the ATP-dependent chromain, splicesome and metabolic pathways. The expression level of the DAS genes: Gabpb2, Smg1, Tnrc6c, Mettl17, Smpd4, Kcnt2, D16Ertd472e, Rab3gap2, Echdc2 and Ssx2ip were verified by RT-PCR and qRT-PCR. Our findings provide a comprehensive genome-wide view of AS events in hepatic IR injury in mice, enhancing our understanding of AS dynamics and the molecular mechanisms governing alternative pre-mRNA splicing.
Collapse
Affiliation(s)
- Yongliang Hua
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Pediatric Surgery, Key Laboratory of Hepatosplenic Surgery, the Sixth Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Xinglong Li
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Bing Yin
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Shounan Lu
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Yongzhi Zhou
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Zhongyu Li
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Zhanzhi Meng
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.
| |
Collapse
|
3
|
Yahya MA, Alshammari GM, Osman MA, Al-Harbi LN, Yagoub AEA, AlSedairy SA. Liquorice root extract and isoliquiritigenin attenuate high-fat diet-induced hepatic steatosis and damage in rats by regulating AMPK. Arch Physiol Biochem 2024; 130:385-400. [PMID: 36121371 DOI: 10.1080/13813455.2022.2102654] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Objective: This study compared the ability of Liquorice roots aqueous extract (LRE) and its ingredient, isoliquiritigenin (ISL), in alleviating high-fat diet (HFD)-induced hepatic steatosis and examined if this effect involves activation of AMPK.Materials and methods: Control or HFD-fed rats were treated with the vehicle, LRE (200 mg/kg), or ISL (30 mg/kg) for 8 weeks orally.Results: ISL and LRE reduced HFD-induced hyperglycaemia, improved liver structure, lowered serum and hepatic lipids, and attenuated hepatic oxidative stress and inflammation. In the control and HFD-fed rats, ISL and LRE significantly stimulated the muscular and hepatic mRNA and protein levels of AMPK, improved oral glucose tolerance, reduced hepatic mRNA levels of SREBP1/2, and upregulated hepatic levels of PPARα and Bcl2. These effects were comparable for ISL and LRE and were prevented by co-administration of compound C, an AMPK inhibitor.Discussion and conclusion: ISL and LRE provide an effective theory to alleviate hepatic steatosis through activating AMPK.
Collapse
Affiliation(s)
- Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Magdi A Osman
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sahar Abdulaziz AlSedairy
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Wang Y, Fan Z, Yang M, Wang Y, Cao J, Khan A, Liu Y, Cheng G. Protective effects of E Se tea extracts against alcoholic fatty liver disease induced by high fat/alcohol diet: In vivo biological evaluation and molecular docking study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154113. [PMID: 35490493 DOI: 10.1016/j.phymed.2022.154113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND With the development of economy and increased workload, chronic a high-fat/alcohol diet intake may lead to alcoholic fatty liver disease (AFLD), which is considered as a crucial health problem worldwide. E Se tea is produced of the leaves and leaf buds of Malus toringoides (Rehd.) Hughes in Tibet and has human health benefits with anti-hyperglycemia, hypertension, and hyperlipidemia effects. PURPOSE The objective of this work was to investigate the protective effect of aqueous-ethanol and hot-water extracts of E Se tea against chronic high-fat/alcohol diet induced AFLD rats. METHODS Firstly, to determine the chemical profiling of E Se tea extracts, UHPLC-ESI-HRMS analysis was conducted. Secondly, Sprague-Dawley male rats were used to establish the AFLD animal model by feeding with high-fat/alcohol diet. The animals were treated with E Se tea extracts for 12 weeks. Serum parameters were determined, histologic sections were prepared, and activities of enzymes related to inflammatory response and lipid metabolism imbalance were analyzed. The underlying mechanisms of E Se tea extracts alleviating AFLD were analyzed by immunofluorescence staining and Western blotting analysis. Lastly, key targets of 11-MT against AFLD were verified through molecular docking. RESULTS In this study, seven main compounds were confirmed or tentatively identified in E Se tea extracts by UHPLC-ESI-HRMS. The results revealed that both the extracts could reverse histopathological steatotic alternation of the liver and reduced the activity of liver damage markers (ALT, AST). E Se tea extracts mitigated oxidative stress by inhibiting CYP2E1 protein and lipid peroxidation parameters (MDA), but enhancing the endogenous antioxidants (CAT, GSH, SOD). Moreover, E Se tea extracts ameliorated inflammation by restraining the activation of NF-κB, consequently releasing the expression of proinflammatory cytokines (TNF-α, IL-6, IL-1β, COX-2 and iNOS). Subsequently, E Se tea extracts reduced hepatocyte apoptosis by increasing capase-9, caspase-3 and Bax protein expression but decreasing Bcl-2 protein expression. Furthermore, E Se tea extracts improved metabolism imbalance by stimulating AMPK/SREBP1/FAS and PPAR-α/CPT1 signaling pathway by regulating lipid metabolism parameters (TC, TG, HDL-C, LHD-C). Furthermore, molecular docking results indicated that 7 chemical constituents of E Se tea extracts had strong docking affinity with 4 key target proteins (AMPK, PPAR-α, NF-кB and Caspase-9). CONCLUSION E Se tea ameliorated AFLD through ameliorating inflammatory response, apoptosis, and lipid metabolism imbalance.
Collapse
Affiliation(s)
- Yongpeng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhifeng Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; College of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Meilian Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; College of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, China
| | - Jianxin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
5
|
Li H, Liang J, Han M, Wang X, Ren Y, Wang Y, Huang J, Li S, Liu C, Wang Z, Yue T, Gao Z. Sequentially fermented dealcoholized apple juice intervenes fatty liver induced by high-fat diets via modulation of intestinal flora and gene pathways. Food Res Int 2022; 156:111180. [DOI: 10.1016/j.foodres.2022.111180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/04/2022]
|
6
|
Aronia melanocarpa Prevents Alcohol-Induced Chronic Liver Injury via Regulation of Nrf2 Signaling in C57BL/6 Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4054520. [PMID: 31998436 PMCID: PMC6970495 DOI: 10.1155/2020/4054520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/28/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023]
Abstract
Aronia melanocarpa (AM), which is rich in anthocyanins and procyanidins, has been reported to exert antioxidative and anti-inflammatory effects. This study aimed to systematically analyze the components of AM and explore its effects on alcohol-induced chronic liver injury in mice. A component analysis of AM revealed 17 types of fatty acids, 17 types of amino acids, 8 types of minerals, and 3 types of nucleotides. Chronic alcohol-induced liver injury was established in mice via gradient alcohol feeding over a period of 6 months, with test groups orally receiving AM in the last 6 weeks. AM administration yielded potential hepatoprotective effects by alleviating weight gain and changes in organ indexes, decreasing the ratio of alanine aminotransferase/aspartate aminotransferase, reducing lipid peroxidation, enhancing antioxidant activities, decreasing oxidation-related factor levels, and regulating inflammatory cytokine levels. Histological analyses suggest that AM treatment markedly prevented organ damage in alcohol-exposed mice. Furthermore, AM activated nuclear factor erythroid 2-like 2 (Nrf2) by downregulating the expression of Kelch-like ECH-associated protein 1, resulting in elevated downstream antioxidative enzyme levels. AM activated Nrf2 via modulation of the phosphatidylinositol-3-hydroxykinase/protein kinase B signaling pathway. Altogether, AM prevented alcohol-induced liver injury, potentially by suppressing oxidative stress via the Nrf2 signaling pathway.
Collapse
|
7
|
Sun J, Li B, Sun A, Zhao K, Ma Y, Zhao J, Pan H, Song Q, Wang Y, Yu C, Wang C, Zhang H, Zhang W, Kong C. Comprehensive analysis of aberrantly expressed profiles of messenger RNA in alcoholic liver disease. J Cell Biochem 2018; 120:4248-4254. [PMID: 30294942 DOI: 10.1002/jcb.27710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is one of the major cause of morbidity and mortality of clinical liver disease worldwide. Until today, although many general therapies are carried out and several molecular targets have been proposed to act as the potential therapeutic targets, more accurate molecular targets and more effective therapeutic methods remain needed. MATERIAL AND METHODS In the study, we analyze the differential expression genes (DEGs) between the patients with ALD and healthy controls. Gene Ontology enrichment and KEGG signaling pathway analysis are performed to identify the function of DEGs. Some significant molecules are proposed to act as the potential therapeutic targets for ALD. RNA data of 15 ALD tissues and 7 normal tissues for RNA expression analysis were obtained. DEGs in ALD samples compared with normal tissues identified through the limma R package and subjected to network analysis. RESULTS As a result, we obtained a total of 274 DEGs that mainly involved in biological processes related to the angiogenesis, stress reaction, synthesis, and metabolism of organic acids. Network analysis obtained several genes with high network degree and fold change. Some significant molecules are proposed to act as the potential therapeutic targets for ALD. CONCLUSIONS Our research identified some new progression-related genes of alcohol liver diseases, which could be regarded as the new targets for the early diagnosis and therapeutic management in ALD.
Collapse
Affiliation(s)
- Jinhui Sun
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baolong Li
- Center for Safety Evaluation of Drugs, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Antao Sun
- Department of Hematology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kunpeng Zhao
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Yanchun Ma
- Department of Academic Theory and Research, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiuli Zhao
- Key Laboratory of Chinese Internal Medicine (Beijing University of Chinese Medicine), Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Pan
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingrui Song
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Wang
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chunyu Yu
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cui Wang
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huan Zhang
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Zhang
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chenfan Kong
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|