1
|
Ji S, Chen D, Ding F, Gu X, Xue Q, Zhou C, Cao M, Yu S. Salidroside exerts neuroprotective effects on retrograde neuronal death following neonatal axotomy via activation of PI3K/Akt pathway and deactivation of p38 MAPK pathway. Toxicol Appl Pharmacol 2025; 494:117178. [PMID: 39617258 DOI: 10.1016/j.taap.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/15/2024]
Abstract
Salidroside, a glucoside of tyrosol, is a powerful active ingredient extracted from the Chinese herb medicine Rhodiola rosea L.. As a neuroprotective agent, the application of salidroside in combination with neural tissue engineering has recently attracted much attention in peripheral nerve repair and reconstruction. However, the cellular and molecular mechanisms by which salidroside promotes nerve regeneration remain to be elucidated. We aim to evaluate the long-term neuroprotective potential of salidroside in an experimental rat model of neonatal sciatic nerve crush injury, with a focus on target-deprived neuronal death and the mechanisms involved. Behavioral analysis showed that salidroside dose-dependently improved voluntary hindlimb behavior and rod rotation ability following neonatal axotomy during an 8-week observation period. According to electrophysiology, Fluoro-Gold retrograde tracing, histological and immunohistochemical analyses, salidroside significantly improved nerve regeneration and reinnervation. Nissle and TUNEL staining, as well as caspase-3 activation assay indicated a beneficial effect of salidroside on retrograde loss and apoptosis of motoneurons within 2 weeks after axotomy. qPCR, ELISA and oxidative stress experiments revealed that salidroside improved the imbalance of spinal microenvironment, including oxidative stress and down-regulation of neurotrophic factors. Western blotting analysis showed that salidroside enhanced the activation of PI3K/Akt and inhibited the p38 MAPK signaling pathway following axotomy. The oxidative stress and axonal disconnection/regeneration models of primary motoneurons in vitro further confirmed the involvement of these two pathways in the neuroprotective effects of salidroside. These data provide a theoretical basis for the application of salidroside in peripheral nerve repair and reconstruction.
Collapse
Affiliation(s)
- Shengtao Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Daiyue Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China
| | - Qiu Xue
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China; Department of General Surgery, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Chun Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China.
| | - Maohong Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China.
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong University, Nantong, China.
| |
Collapse
|
2
|
Li L, Yao W. The Therapeutic Potential of Salidroside for Parkinson's Disease. PLANTA MEDICA 2023; 89:353-363. [PMID: 36130710 DOI: 10.1055/a-1948-3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD), a neurological disorder, is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. Its incidence increases with age. Salidroside, a phenolic compound extracted from Sedum roseum, reportedly has multiple biological and pharmacological activities in the nervous system. However, its effects on PD remain unclear. In this review, we summarize the effects of salidroside on PD with regard to DA metabolism, neuronal protection, and glial activation. In addition, we summarize the susceptibility genes and their underlying mechanisms related to antioxidation, inflammation, and autophagy by regulating mitochondrial function, ubiquitin, and multiple signaling pathways involving NF-κB, mTOR, and PI3K/Akt. Although recent studies were based on animal and cellular experiments, this review provides evidence for further clinical utilization of salidroside for PD.
Collapse
Affiliation(s)
- Li Li
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Wang M, Wu S, Wang J, Fan D, Li Z, Tian S, Yao S, Zhang H, Gao H. MiRNA-206 Affects the Recovery of Sciatic Function by Stimulating BDNF Activity through the Down-regulation of Notch3 Expression. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2023; 23:109-121. [PMID: 36856106 PMCID: PMC9976182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To investigate the effects and mechanisms of microRNA 206 (miRNA-206) on neurological recovery through Notch receptor 3 (Notch3). METHODS The sciatic functional index (SFI), nerve conduction velocity (NCV), tricipital muscle wet weight (TWW) and cross-sectional area of the muscular fiber, and grip strength of posterior limbs were detected by establishing a model of the sciatic nerve to evaluate the effect of sciatic nerve injury model. miRNA-206 expression in the model was detected by real-time quantitative polymerase chain reaction (qRT-PCR), to regulate the effects of miRNA-206 on the proliferation of gastrocnemius myocytes by Cell Counting Kit-8 (CCK-8). RESULTS SFI of the model established by immediate epineurium suture after sciatic nerve resection was in the range of -150% to -100% and TWW, the average area of gastrocnemius myocytes, the NCV, and the grasping power of the hind limbs in the model were all lower than those in the normal group. And in the model, TWW, the average area of gastrocnemius myocytes, NCV, and grip strength of posterior limbs were lower in the normal group, which verified the successful establishment of the model. CONCLUSION Over-expression of miRNA-206 can down-regulate Notch3 expression, and then stimulate brain-derived neurotrophic factor (BDNF) activity to promote the repair and functional recovery of sciatic nerve injury.
Collapse
Affiliation(s)
- Meng Wang
- Post-graduation Education Office, College of General Practice and Continuing Education, Qiqihar Medical University, Qiqihar, China
| | - Shuang Wu
- Ward 5, Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Dandan Fan
- Ward 2, Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Zhiyong Li
- Ward 2, Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shaohua Tian
- Ward 2, Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Sining Yao
- Ward 2, Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Hongyu Zhang
- Ward 2, Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Hongwei Gao
- Ward 2, Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
4
|
Liu S, Li Y, Li Z. Salidroside suppresses the activation of nasopharyngeal carcinoma cells via targeting miR-4262/GRP78 axis. Cell Cycle 2022; 21:720-729. [PMID: 35220889 PMCID: PMC8973335 DOI: 10.1080/15384101.2021.2019976] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To study the effect of Salidroside on nasopharyngeal carcinoma (NPC) cells and its mechanism. NPC cells were cultured, MTT was used to detect the effect of Salidroside on cell proliferation, apoptosis detected by flow cytometry assay, Western blot was used to detect the related protein expression. MiR-4262 and GRP78 used qRT-PCR for evaluation. Mimics/mimic NC and miR-4262 inhibitor/inhibitor NC were transfected into CNE2 and HONE1 cell lines, and cell viability was detected by MTT. Caspase-3, −8 and −9 activities were detected by caspase colorimetric assay kit. Targetscan predicted that downstream target of miR-4262. Relative luciferase activity was detected by luciferase assay. The effect of Salidroside on the growth of transplanted tumor in nude mice was observed. After Salidroside treatment, cell proliferation decreased and apoptosis increased, Bax protein expression increased and Bcl-2 decreased; miR-4262 expression level in nasopharyngeal carcinoma tissues was lower than that in adjacent tissues. GRP78 was the target of miR-4262 and downregulate the expression of miR-4262 in NPC cells can increase the expression of GRP78, and the expression of GRP78 decreased after upregulating the expression of miR-4262. Salidroside could inhibit the growth of NPC xenografts in nude mice. The level of Bax was increased and Bcl-2 was decreased in Salidroside group. Salidroside can significantly inhibit the proliferation and promote the apoptosis of NPC cells via regulating miR-4262/GRP78 signal axis.
Collapse
Affiliation(s)
- Shaosheng Liu
- Department of Otorhinolaryngology, People’s Hospital of Beilun (Beilun Branch, the First Hospital of Zhejiang University), Ningbo, China
| | - Yuanyuan Li
- Department of Medicine and Equipment, The 988 Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army Kaifeng, Hena, P.R. China
| | - Zhaoxia Li
- Department of Otolaryngology, Jinan Central Hospital. Jinan City, Shangdong, P.R. China
| |
Collapse
|
5
|
Anwar H, Rasul A, Iqbal J, Ahmad N, Imran A, Malik SA, Ijaz F, Akram R, Maqbool J, Sajid F, Sun T, Hussain G, Manzoor MF. Dietary biomolecules as promising regenerative agents for peripheral nerve injury: An emerging nutraceutical-based therapeutic approach. J Food Biochem 2021; 45:e13989. [PMID: 34719796 DOI: 10.1111/jfbc.13989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
Peripheral nerve damage is a debilitating condition that can result in partial or complete functional loss as a result of axonal degeneration, as well as lifelong dependence. Many therapies have been imbued with a plethora of positive features while posing little risks. It is worth noting that these biomolecules work by activating several intrinsic pathways that are known to be important in peripheral nerve regeneration. Although the underlying mechanism is used for accurate and speedy functional recovery, none of them are without side effects. As a result, it is believed that effective therapy is currently lacking. The dietary biomolecules-based intervention, among other ways, is appealing, safe, and effective. Upregulation of transcription factors, neurotrophic factors, and growth factors such as NGF, GDNF, BDNF, and CTNF may occur as a result of these substances' dietary intake. Upregulation of the signaling pathways ERK, JNK, p38, and PKA has also been seen, which aids in axonal regeneration. Although several mechanistic approaches to understanding their involvement have been suggested, more work is needed to reveal the amazing properties of these biomolecules. We have discussed in this article that how different dietary biomolecules can help with functional recovery and regeneration after an injury. PRACTICAL APPLICATIONS: Based on the information known to date, we may conclude that treatment techniques for peripheral nerve injury have downsides, such as complications, donor shortages, adverse effects, unaffordability, and a lack of precision in efficacy. These difficulties cast doubt on their efficacy and raise severe concerns about the prescription. In this situation, the need for safe and effective therapeutic techniques is unavoidable, and dietary biomolecules appear to be a safe, cost-efficient, and effective way to promote nerve regeneration following an injury. The information on these biomolecules has been summarized here. Upregulation of transcription factors, neurotrophic factors, and growth factors, such as NGF, GDNF, BDNF, and CTNF, as well as the ERK, JNK, p38, and PKA, signaling pathways, may stimulate axonal regeneration.
Collapse
Affiliation(s)
- Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Nazir Ahmad
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Shoaib Ahmad Malik
- Department of Biochemistry, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Fazeela Ijaz
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
6
|
Ye M, Zhao F, Ma K, Zhou K, Ma J, Fu H, Xu Z, Huang W, Wang W, Zhao J, Lv B. Enhanced effects of salidroside on erectile function and corpora cavernosa autophagy in a cavernous nerve injury rat model. Andrologia 2021; 53:e14044. [PMID: 33709426 DOI: 10.1111/and.14044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022] Open
Abstract
We explored the efficacy and mechanisms of salidroside treatment for erectile dysfunction induced by bilateral cavernous nerve injury (BCNI). Forty male rats were divided into four groups as follows: sham (cavernous nerves exposed only) (S); BCNI (M); BCNI + rapamycin (M + rapamycin); and BCNI + salidroside (M + salidroside). Erectile function in the rats was measured by intracavernosal pressure. Penile tissue was harvested for transmission electron microscopy, immunohistochemistry, immunofluorescence, Masson's trichrome staining, haematoxylin-eosin staining, TdT-mediated dUTP Nick End Labeling and western blotting. The M group exhibited a decrease in erectile responses and increased apoptosis and fibrosis compared to these in the S group. Meanwhile, nerve content and the penile atrophy index were also decreased in the M group. Treatment with salidroside and rapamycin for 3 weeks partially restored erectile function and significantly attenuated corporal apoptosis, fibrosis, nerve content and penile atrophy in the M group. Moreover, the autophagy level was further enhanced in the M + salidroside group, which was the same as that in the positive observation group (M + rapamycin). Salidroside treatment not only improved erectile function in rats with BCNI, but also inhibited apoptosis and fibrosis and ameliorated the loss of nerve content and endothelial and corpus cavernosum smooth muscle cells by promoting protective autophagy.
Collapse
Affiliation(s)
- Miaoyong Ye
- Department of Urology, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China.,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fan Zhao
- Department of Urology and Andrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ke Ma
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kang Zhou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianxiong Ma
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiying Fu
- Research Institute of Urology and Andrology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zengbao Xu
- Department of Urology, Huzhou Hospital of Traditional Chinese Medicine, Huzhou, China
| | - Wenjie Huang
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenzhi Wang
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianfeng Zhao
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bodong Lv
- Research Institute of Urology and Andrology, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for Prevention and Treatment of Sexual Dysfunction of Zhejiang Province, Hangzhou, China
| |
Collapse
|