1
|
Manithody C, Denton C, Mehta S, Carter J, Kurashima K, Bagwe A, Swiderska-Syn M, Guzman M, Besmer S, Jain S, McHale M, Qureshi K, Nazzal M, Caliskan Y, Long J, Lin CJ, Hutchinson C, Ericsson AC, Jain AK. Intraduodenal fecal microbiota transplantation ameliorates gut atrophy and cholestasis in a novel parenteral nutrition piglet model. Am J Physiol Gastrointest Liver Physiol 2024; 327:G640-G654. [PMID: 39163019 PMCID: PMC11559648 DOI: 10.1152/ajpgi.00012.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Total parenteral nutrition (TPN) provides lifesaving nutritional support intravenously; however, it is associated with significant side effects. Given gut microbial alterations noted with TPN, we hypothesized that transferring fecal microbiota from healthy controls would restore gut-systemic signaling in TPN and mitigate injury. Using our novel ambulatory model (US Patent: US 63/136,165), 31 piglets were randomly allocated to enteral nutrition (EN), TPN only, TPN + antibiotics (TPN-A), or TPN + intraduodenal fecal microbiota transplant (TPN + FMT) for 14 days. Gut, liver, and serum were assessed through histology, biochemistry, and qPCR. Stool samples underwent 16 s rRNA sequencing. Permutational multivariate analysis of variance, Jaccard, and Bray-Curtis metrics were performed. Significant bilirubin elevation in TPN and TPN-A versus EN (P < 0.0001) was prevented with FMT. IFN-G, TNF-α, IL-β, IL-8, and lipopolysaccharide (LPS) were significantly higher in TPN (P = 0.009, P = 0.001, P = 0.043, P = 0.011, P < 0.0001), with preservation upon FMT. Significant gut atrophy by villous-to-crypt ratio in TPN (P < 0.0001) and TPN-A (P = 0.0001) versus EN was prevented by FMT (P = 0.426 vs. EN). Microbiota profiles using principal coordinate analysis demonstrated significant FMT and EN overlap, with the largest separation in TPN-A followed by TPN, driven primarily by Firmicutes and Fusobacteria. TPN-altered gut barrier was preserved upon FMT; upregulated cholesterol 7 α-hydroxylase and bile salt export pump in TPN and TPN-A and downregulated fibroblast growth factor receptor 4, EGF, farnesoid X receptor, and Takeda G Protein-coupled Receptor 5 (TGR5) versus EN was prevented by FMT. This study provides novel evidence of prevention of gut atrophy, liver injury, and microbial dysbiosis with intraduodenal FMT, challenging current paradigms into TPN injury mechanisms and underscores the importance of gut microbes as prime targets for therapeutics and drug discovery.NEW & NOTEWORTHY Intraduodenal fecal microbiota transplantation presents a novel strategy to mitigate complications associated with total parenteral nutrition (TPN), highlighting gut microbiota as a prime target for therapeutic and diagnostic approaches. These results from a highly translatable model provide hope for TPN side effect mitigation for thousands of chronically TPN-dependent patients.
Collapse
Affiliation(s)
- Chandrashekhara Manithody
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Christine Denton
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Shaurya Mehta
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Jasmine Carter
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Kento Kurashima
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Ashlesha Bagwe
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Marzena Swiderska-Syn
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Miguel Guzman
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Sherri Besmer
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Sonali Jain
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Matthew McHale
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Kamran Qureshi
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Mustafa Nazzal
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Yasar Caliskan
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - John Long
- Department of Comparative Medicine, Saint Louis University, Saint Louis, Missouri, United States
| | - Chien-Jung Lin
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Chelsea Hutchinson
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States
| | - Ajay Kumar Jain
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| |
Collapse
|
2
|
Samaddar A, van Nispen J, Armstrong A, Song E, Voigt M, Murali V, Krebs J, Manithody C, Denton C, Ericsson AC, Jain AK. Lower systemic inflammation is associated with gut firmicutes dominance and reduced liver injury in a novel ambulatory model of parenteral nutrition. Ann Med 2022; 54:1701-1713. [PMID: 35706376 PMCID: PMC9225736 DOI: 10.1080/07853890.2022.2081871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Total Parenteral Nutrition (TPN) provides lifesaving nutritional support to patients unable to maintain regular enteral nutrition (EN). Unfortunately, cholestasis is a significant side effect affecting 20-40% of paediatric patients. While the aetiology of TPN-associated injury remains ill-defined, an altered enterohepatic circulation in the absence of gut luminal nutrient content during TPN results in major gut microbial clonal shifts, resulting in metabolic endotoxemia and systemic inflammation driving liver injury and cholestasis. HYPOTHESIS To interrogate the role of gut microbiota, using our novel ambulatory TPN piglet model, we hypothesized that clonal reduction of bacteria in Firmicutes phylum (predominant in EN) and an increase in pathogenic Gram-negative bacteria during TPN correlates with an increase in serum lipopolysaccharide and systemic inflammatory cytokines, driving liver injury. METHODS Upon institutional approval, 16 animals were allocated to receive either TPN (n = 7) or EN only (n = 9). The TPN group was subdivided into a low systemic inflammation (TPN-LSI) and high systemic inflammation (TPN-HSI) based on the level of serum lipopolysaccharide. Culture-independent identification of faecal bacterial populations was determined by 16S rRNA. RESULTS Piglets on TPN, in the TPN-HSI group, noted a loss of enterocyte protective Firmicutes bacteria and clonal proliferation of potent inflammatory and lipopolysaccharide containing pathogens: Fusobacterium, Bacteroidetes and Campylobacter compared to EN animals. Within the TPN group, the proportion of Firmicutes phylum correlated with lower portal lipopolysaccharide levels (r = -0.89). The TPN-LSI had a significantly lower level of serum bile acids compared to the TPN-HSI group (7.3 vs. 60.4 mg/dL; p = .018), increased day 14 weight (5.67 vs. 5.07 kg; p = .017) as well as a 13.7-fold decrease in serum conjugated bilirubin. CONCLUSION We demonstrate a novel relationship between the gut microbiota and systemic inflammation in a TPN animal model. Pertinently, the degree of gut dysbiosis correlated with the severity of systemic inflammation. This study underscores the role of gut microbiota in driving liver injury mechanisms during TPN and supports a paradigm change in therapeutic targeting of the gut microbiota to mitigate TPN-related injury. KEY MESSAGESThis study identified a differential link between gut microbiota and inflammation-the higher the dysbiosis, the worse the systemic inflammatory markers.Higher levels of Firmicutes species correlated with reduced inflammation.
Collapse
Affiliation(s)
- Ashish Samaddar
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Johan van Nispen
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Austin Armstrong
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Eric Song
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Marcus Voigt
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Vidul Murali
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Joseph Krebs
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Chandra Manithody
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Christine Denton
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ajay Kumar Jain
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
El Kasmi KC, Anderson AL, Devereaux MW, Balasubramaniyan N, Suchy FJ, Orlicky DJ, Shearn CT, Sokol RJ. Interrupting tumor necrosis factor-alpha signaling prevents parenteral nutrition-associated cholestasis in mice. JPEN J Parenter Enteral Nutr 2022; 46:1096-1106. [PMID: 34664730 DOI: 10.1002/jpen.2279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND We have recently reported a mouse model of PN-associated cholestasis (PNAC) in which combining intestinal inflammation and PN infusion results in cholestasis, hepatic macrophage activation, and transcriptional suppression of canalicular bile acid, bilirubin and sterol transporters Abcb11, Abcc2 and Abcg5/8. The aim of this study was to examine the role of TNFα in promoting PNAC in mice. METHODS First, recombinant TNFα was administered to mice as well as in hepatocyte cell culture. Second, Tnfr1/2KO or wild-type (WT) mice were exposed to dextran sulfate sodium (DSS) for 4 days followed by soy-oil lipid emulsion-based PN infusion through a central venous catheter for 14 days (DSS-PN). Finally, WT/DSS-PN mice were also infused with infliximab at 10 mg/kg on days 3 and 10 of PN. PNAC was defined by increased serum aspartate aminotransferase, alanine aminotransferase, total bile acids, and bilirubin. RESULTS Intraperitoneal injection of TNFα into WT mice or TNFα treatment of Huh7 hepatocarcinoma cells and primary mouse hepatocytes suppressed messenger RNA (mRNA) transcription of bile (Abcb11, Abcc2]) and sterol transporters (Abcg5/8) and their regulators Nr1h3 and Nr1h4. DSS-PN mice with PNAC had increased hepatic TNFα mRNA expression and significant reduction of mRNA expression of Abcb11, Abcc2, Abcg5/8, Nr1h3, and Nr1h4. In contrast, PNAC development was prevented and mRNA expression normalized in both Tnfr1/2KO /DSS-PN mice and DSS-PN mice treated with infliximab. CONCLUSIONS TNFα is a key mediator in the pathogenesis of PNAC through suppression of hepatocyte Abcb11, Abcc2, and Abcg5/8. Pharmacologic targeting of TNFα as a therapeutic strategy for PNAC thus deserves further investigation.
Collapse
Affiliation(s)
- Karim C El Kasmi
- Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Aimee L Anderson
- Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Michael W Devereaux
- Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Natarajan Balasubramaniyan
- Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Frederick J Suchy
- Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Colin T Shearn
- Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Ronald J Sokol
- Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
4
|
Wichman BE, Nilson J, Govindan S, Chen A, Jain A, Arun V, Derdoy J, Krebs J, Jain AK. Beyond lipids: Novel mechanisms for parenteral nutrition-associated liver disease. Nutr Clin Pract 2022; 37:265-273. [PMID: 35124837 PMCID: PMC8930621 DOI: 10.1002/ncp.10830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Parenteral nutrition (PN) is a therapy that delivers essential nutrients intravenously to patients who are unable to meet their nutrition requirements via standard enteral feeding. This methodology is often referred to as PN when accompanied by minimal or no enteral nutrition (EN). Although PN is lifesaving, significant complications can arise, such as intestinal failure-associated liver disease and gut-mucosal atrophy. The exact mechanism of injury remains ill defined. This review was designed to explore the available literature related to the drivers of injury mechanisms. The Farnesoid X receptor and fibroblast growth factor 19 signaling pathway seems to play an important role in gut-systemic signaling, and its alteration during PN provides insights into mechanistic links. Central line infections also play a key role in mediating PN-associated injury. Although lipid reduction strategies, as well as the use of multicomponent lipid emulsions and vitamin E, have shown promise, the cornerstone of preventing injury is the early establishment of EN.
Collapse
Affiliation(s)
- Brittany E Wichman
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jamie Nilson
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Srinivas Govindan
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Alan Chen
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Aditya Jain
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Varsha Arun
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Juana Derdoy
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Joseph Krebs
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ajay K Jain
- Department of Pediatrics, SSM Cardinal Glennon Hospital, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Guzman M, Manithody C, Krebs J, Denton C, Besmer S, Rajalakshmi P, Jain S, Villalona GA, Jain AK. Impaired Gut-Systemic Signaling Drives Total Parenteral Nutrition-Associated Injury. Nutrients 2020; 12:E1493. [PMID: 32443928 PMCID: PMC7284746 DOI: 10.3390/nu12051493] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Total parenteral nutrition (TPN) provides all nutritional needs intravenously. Although lifesaving, enthusiasm is significantly tempered due to side effects of liver and gut injury, as well as lack of mechanistic understanding into drivers of TPN injury. We hypothesized that the state of luminal nutritional deprivation with TPN drives alterations in gut-systemic signaling, contributing to injury, and tested this hypothesis using our ambulatory TPN model. METHODS A total of 16 one-week-old piglets were allocated randomly to TPN (n = 8) or enteral nutrition (EN, n = 8) for 3 weeks. Liver, gut, and serum were analyzed. All tests were two-sided, with a significance level of 0.05. RESULTS TPN resulted in significant hyperbilirubinemia and cholestatic liver injury, p = 0.034. Hepatic inflammation (cluster of differentiation 3 (CD3) immunohistochemistry) was higher with TPN (p = 0.021). No significant differences in alanine aminotransferase (ALT) or bile ductular proliferation were noted. TPN resulted in reduction of muscularis mucosa thickness and marked gut atrophy. Median and interquartile range for gut mass was 0.46 (0.30-0.58) g/cm in EN, and 0.19 (0.11-0.29) g/cm in TPN (p = 0.024). Key gut-systemic signaling regulators, liver farnesoid X receptor (FXR; p = 0.021), liver constitutive androstane receptor (CAR; p = 0.014), gut FXR (p = 0.028), G-coupled bile acid receptor (TGR5) (p = 0.003), epidermal growth factor (EGF; p = 0.016), organic anion transporter (OAT; p = 0.028), Mitogen-activated protein kinases-1 (MAPK1) (p = 0.037), and sodium uptake transporter sodium glucose-linked transporter (SGLT-1; p = 0.010) were significantly downregulated in TPN animals, whereas liver cholesterol 7 alpha-hydroxylase (CyP7A1) was substantially higher with TPN (p = 0.011). CONCLUSION We report significant alterations in key hepatobiliary receptors driving gut-systemic signaling in a TPN piglet model. This presents a major advancement to our understanding of TPN-associated injury and suggests opportunities for strategic targeting of the gut-systemic axis, specifically, FXR, TGR5, and EGF in developing ameliorative strategies.
Collapse
Affiliation(s)
- Miguel Guzman
- Department of Pathology at Saint Louis University School of Medicine, SSM Cardinal Glennon Hospital, 1465 South Grand Blvd., St. Louis, MO 63104, USA; (M.G.); (S.B.)
| | - Chandrashekhara Manithody
- Department of Pediatrics at Saint Louis University School of Medicine, SSM Cardinal Glennon Hospital, 1465 South Grand Blvd., St. Louis, MO 63104, USA; (C.M.); (J.K.); (C.D.); (P.R.); (S.J.)
| | - Joseph Krebs
- Department of Pediatrics at Saint Louis University School of Medicine, SSM Cardinal Glennon Hospital, 1465 South Grand Blvd., St. Louis, MO 63104, USA; (C.M.); (J.K.); (C.D.); (P.R.); (S.J.)
| | - Christine Denton
- Department of Pediatrics at Saint Louis University School of Medicine, SSM Cardinal Glennon Hospital, 1465 South Grand Blvd., St. Louis, MO 63104, USA; (C.M.); (J.K.); (C.D.); (P.R.); (S.J.)
| | - Sherri Besmer
- Department of Pathology at Saint Louis University School of Medicine, SSM Cardinal Glennon Hospital, 1465 South Grand Blvd., St. Louis, MO 63104, USA; (M.G.); (S.B.)
| | - Pranjali Rajalakshmi
- Department of Pediatrics at Saint Louis University School of Medicine, SSM Cardinal Glennon Hospital, 1465 South Grand Blvd., St. Louis, MO 63104, USA; (C.M.); (J.K.); (C.D.); (P.R.); (S.J.)
| | - Sonali Jain
- Department of Pediatrics at Saint Louis University School of Medicine, SSM Cardinal Glennon Hospital, 1465 South Grand Blvd., St. Louis, MO 63104, USA; (C.M.); (J.K.); (C.D.); (P.R.); (S.J.)
| | - Gustavo Adolfo Villalona
- Department of Surgery, Saint Louis University School of Medicine, 1402 South Grand Blvd. St. Louis, MO 63104, USA;
| | - Ajay Kumar Jain
- Department of Pediatrics at Saint Louis University School of Medicine, SSM Cardinal Glennon Hospital, 1465 South Grand Blvd., St. Louis, MO 63104, USA; (C.M.); (J.K.); (C.D.); (P.R.); (S.J.)
| |
Collapse
|