1
|
Valente D, Vienola KV, Zawadzki RJ, Jonnal RS. Insight into human photoreceptor function: modeling optoretinographic responses to diverse stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.639986. [PMID: 40060425 PMCID: PMC11888417 DOI: 10.1101/2025.02.28.639986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Optoretinography is an emerging method for detecting and measuring functional responses from neurons in the living human retina. Its potential applications are significant and broad, spanning clinical assessment of retinal disease, investigation of fundamental scientific questions, and rapid evaluation of experimental therapeutics for blinding retinal diseases. Progress in all these domains hinges on the development of robust methods for quantifying observed responses in relation to visible stimuli. In this work, we describe a novel optoretinographic imaging platform-full-field swept-source optical coherence tomography with adaptive optics, measure cone responses in two healthy volunteers to a variety of stimulus patterns, and propose a simple model for predicting and quantifying responses to those stimuli.
Collapse
Affiliation(s)
- Denise Valente
- Center for Human Ophthalmic Imaging Research (CHOIR), University of California, Davis Eye Center, 95817 Sacramento CA, USA
- Fisica de Materiais, Escola Politecnica de Pernambuco, Universidade de Pernambuco, 50720-001 Recife PE, Brazil
| | - Kari V. Vienola
- Center for Human Ophthalmic Imaging Research (CHOIR), University of California, Davis Eye Center, 95817 Sacramento CA, USA
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Robert J. Zawadzki
- Center for Human Ophthalmic Imaging Research (CHOIR), University of California, Davis Eye Center, 95817 Sacramento CA, USA
- EyePod small animal ocular imaging laboratory, Department of Cell Biology and Human Anatomy, University of California, 9816 Davis CA, USA
| | - Ravi S. Jonnal
- Center for Human Ophthalmic Imaging Research (CHOIR), University of California, Davis Eye Center, 95817 Sacramento CA, USA
| |
Collapse
|
2
|
Li Z, He L, Peng L, Zhu X, Li M, Hu D. Negative hemodynamic response in the visual cortex: Evidence supporting neuronal origin via hemodynamic observation and two-photon imaging. Brain Res Bull 2025; 220:111149. [PMID: 39615859 DOI: 10.1016/j.brainresbull.2024.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
The positive hemodynamic response (PHR) during stimulation often co-occurs with a strong, sustained negative hemodynamic response (NHR). However, the characteristics and neurophysiological mechanisms of the NHR, especially in regions distal to the PHR, remain incompletely understood. Using intrinsic optical imaging (OI) and two-photon imaging, we observed that forelimb electrical stimulation evoked strong PHR signals in the forelimb region of the primary somatosensory cortex (S1FL). Meanwhile, NHR signals primarily appeared in the primary visual cortex (V1), with a delayed onset and lower amplitude relative to the PHR signals. Additionally, stimulation led to a reduction in cerebral blood flow (CBF) in the NHR region. Notably, there was an overall suppression of the calcium response in the NHR region, although a small proportion (14 %) of neurons exhibited concurrent activation. Axon tracing revealed cortico-cortical projections from S1FL to V1. These findings suggest that neuronal deactivation significantly contributes to the origin of the NHR, offering additional insights into the specific inhibitory mechanisms underlying the NHR.
Collapse
Affiliation(s)
- Zhen Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lihua He
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Xuan Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| |
Collapse
|
3
|
Parameswarappa DC, Kulkarni A, Sahoo NK, Padhy SK, Singh SR, Héon E, Chhablani J. From Cellular to Metabolic: Advances in Imaging of Inherited Retinal Diseases. Diagnostics (Basel) 2024; 15:28. [PMID: 39795556 PMCID: PMC11720060 DOI: 10.3390/diagnostics15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Inherited retinal diseases (IRDs) are a genetically complex group of disorders, usually resulting in progressive vision loss due to retinal degeneration. Traditional imaging methods help in structural assessments, but limitations exist in early functional cellular-level detection that are crucial for guiding new therapies. Methods: This review includes a systematic search of PubMed and Google Scholar for studies on advanced imaging techniques for IRDs. Results: Key modalities covered are adaptive optics, fluorescence lifetime imaging ophthalmoscopy, polarization-sensitive optical coherence tomography, optoretinography, mitochondrial imaging, flavoprotein fluorescence imaging, and retinal oximetry. Each imaging method covers its principles, acquisition techniques, data from healthy eyes, applications in IRDs with specific examples, and current challenges and future directions. Conclusions: Emerging technologies, including adaptive optics and metabolic imaging, offer promising potential for cellular-level imaging and functional correlation in IRDs, allowing for earlier intervention and improved therapeutic targeting. Their integration into clinical practice may significantly improve IRD management and patient outcomes.
Collapse
Affiliation(s)
- Deepika C. Parameswarappa
- Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1E8, Canada
| | - Ashwini Kulkarni
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vijayawada 521134, India
| | - Niroj Kumar Sahoo
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vijayawada 521134, India
| | - Srikanta Kumar Padhy
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Bhubaneswar 751024, India
| | | | - Elise Héon
- Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1E8, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON M5G 1E8, Canada
| | - Jay Chhablani
- UPMC Eye Centre and Choroidal Analysis and Research (CAR) Lab, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Wongchaisuwat N, Amato A, Yang P, Everett L, Pennesi ME, Huang D, Chen S. Optical Coherence Tomography Split-Spectrum Amplitude-Decorrelation Optoretinography Detects Early Central Cone Photoreceptor Dysfunction in Retinal Dystrophies. Transl Vis Sci Technol 2024; 13:5. [PMID: 39361318 PMCID: PMC11451826 DOI: 10.1167/tvst.13.10.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/01/2024] [Indexed: 10/05/2024] Open
Abstract
Purpose To investigate if split-spectrum amplitude-decorrelation optoretinography (SSADOR) can detect and measure macular cone dysfunction in inherited retinal dystrophies (IRDs). Methods This study was a case series of participants presenting with various IRD pathologies. Participants were recruited from the Ophthalmic Genetics clinic at the Casey Eye Institute from February to August 2023. Multimodal and SSADOR imaging was obtained in all cases. Results We recruited nine participants, including four with macular dystrophy, one with fundus flavimaculatus, one with cone dystrophy, and three with retinitis pigmentosa. SSADOR decorrelation maps identified areas of cone functional impairment consistent with disease phenotypes. A correlation between the SSADOR signal and retinal sensitivity measured by microperimetry within the central 20° diameter area was observed. Additionally, SSADOR was able to demonstrate a decreased signal in mild cases when microperimetry measurements were still normal but subtle changes were also apparent on structural OCT. Conclusions SSADOR is sensitive at detecting functional changes in macular cones, even prior to abnormalities in perimetry testing. We highlight the potential benefits of this innovative technology for the early detection of cone dysfunction and their potential contributions to earlier diagnosis and more accurate monitoring of progression. Translational Relevance SSADOR is an innovative technology that detects early macular cone function changes, allowing for early diagnosis and precise monitoring of cone dysfunction progression. By serving as a potential clinical trial endpoint, SSADOR facilitates the translation of scientific findings into practical applications, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Nida Wongchaisuwat
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Ophthalmology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Alessia Amato
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Paul Yang
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Lesley Everett
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Mark E. Pennesi
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Retina Foundation of the Southwest, Dallas, TX, USA
| | - David Huang
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Siyu Chen
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
5
|
Gong Z, Shi Y, Liu J, Sabesan R, Wang RK. Light-adapted flicker-optoretinography based on raster-scan optical coherence tomography towards clinical translation. BIOMEDICAL OPTICS EXPRESS 2024; 15:6036-6051. [PMID: 39421778 PMCID: PMC11482172 DOI: 10.1364/boe.538481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Optoretinography (ORG) is a promising non-invasive and objective technique for assessing retinal function by measuring its response to light stimulation. Optical coherence tomography (OCT) has emerged as a promising tool for implementing ORG due to its three-dimensional imaging capabilities, high sensitivity to nanometer-scale changes induced by light stimulation, and clinical availability. Although ORG has proven feasible in laboratory settings, research-grade OCT systems lack satisfactory usability and cost-effectiveness to be clinically viable. Standard clinical raster-scan OCT systems, with their limited imaging speed, fall short of the requirements for measuring rapid ORG responses. To bridge this gap, we introduce a flicker-ORG modality based on a raster-scan OCT system that resembles standard clinical OCT. This system overcomes speed limitations through an innovative two-stage scanning protocol coupled with a 600 kHz swept source, enabling repeated volume imaging and precise retinal activity measurements over a finite area. Additionally, the light-adapted ORG strategy eliminates the need for dark adaptation, allowing examinations under photopic conditions and thus improving patient compliance. We tested this new ORG method by measuring flicker-induced photoreceptor responses in five healthy subjects. The results demonstrated high repeatability and revealed dependencies of the ORG response on flicker frequency and retinal eccentricity. These findings, combined with the system's utility, cost-effectiveness, and ease of integration into existing technologies, underscore its substantial potential for clinical application.
Collapse
Affiliation(s)
- Zhaoyu Gong
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Yaping Shi
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Jian Liu
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA 98105, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Ophthalmology, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
6
|
Pfäffle C, Puyo L, Spahr H, Hillmann D, Miura Y, Hüttmann G. Unraveling the functional signals of rods and cones in the human retina: separation and analysis. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1340692. [PMID: 38984116 PMCID: PMC11182095 DOI: 10.3389/fopht.2024.1340692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/20/2024] [Indexed: 07/11/2024]
Abstract
In recent years, optoretinography has become an important functional imaging method for the retina, as light-evoked changes in the photoreceptors have been demonstrated for a large number of different OCT systems. Full-field swept-source optical coherence tomography (FF-SS-OCT) is particularly phase-stable, and it is currently the only technique sensitive enough to detect the smaller functional changes in the inner plexiform layer (IPL). However, the resolution of state-of-the art FF-SS-OCT systems is not high enough to distinguish individual photoreceptors. This makes it difficult to separate rods from cones. In this work, we circumvent this problem by separating the functional changes in rods and cones by their different temporal dynamics to the same light stimulus. For this purpose, a mathematical model was developed that represents the measured signals as a superposition of two impulse responses. The developed model describes the measured data under different imaging conditions very well and is able to analyze the sensitivity and temporal dynamics of the two photoreceptor types separately.
Collapse
Affiliation(s)
- Clara Pfäffle
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Medical Laser Center Lübeck GmbH, Lübeck, Germany
| | - Léo Puyo
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Medical Laser Center Lübeck GmbH, Lübeck, Germany
| | - Hendrik Spahr
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Medical Laser Center Lübeck GmbH, Lübeck, Germany
| | - Dierck Hillmann
- Department of Physics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yoko Miura
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Medical Laser Center Lübeck GmbH, Lübeck, Germany
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Medical Laser Center Lübeck GmbH, Lübeck, Germany
- Airway Research Center North (ARCN), University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
7
|
Ma G, Kim TH, Son T, Ding J, Ahmed S, Adejumo T, Yao X. Intrinsic signal optoretinography revealing AD-induced retinal photoreceptor hyperexcitability before a detectable morphological abnormality. OPTICS LETTERS 2023; 48:5129-5132. [PMID: 37773402 PMCID: PMC10963897 DOI: 10.1364/ol.501851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
Abstract
Neuronal hyperexcitability promises an early biomarker of Alzheimer's disease (AD). However, in vivo detection of neuronal hyperexcitability in the brain is technically challenging. The retina, one part of the central nervous system, presents a unique window for noninvasive monitoring of the brain function. This study aims to test the feasibility of using intrinsic signal optoretinography (ORG) for mapping retinal hyperexcitability associated with early-stage AD. Custom-designed optical coherence tomography (OCT) was employed for both morphological measurement and functional ORG of wild-type mice and 3xTg-AD mice. Comparative analysis revealed AD-induced retinal photoreceptor hyperexcitability prior to detectable structural degeneration.
Collapse
Affiliation(s)
- Guangying Ma
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Tae-Hoon Kim
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Taeyoon Son
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Jie Ding
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Shaiban Ahmed
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Tobiloba Adejumo
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|
8
|
Ma G, Son T, Adejumo T, Yao X. Rotational Distortion and Compensation in Optical Coherence Tomography with Anisotropic Pixel Resolution. Bioengineering (Basel) 2023; 10:313. [PMID: 36978706 PMCID: PMC10045376 DOI: 10.3390/bioengineering10030313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Accurate image registration is essential for eye movement compensation in optical coherence tomography (OCT) and OCT angiography (OCTA). The spatial resolution of an OCT instrument is typically anisotropic, i.e., has different resolutions in the lateral and axial dimensions. When OCT images have anisotropic pixel resolution, residual distortion (RD) and false translation (FT) are always observed after image registration for rotational movement. In this study, RD and FT were quantitively analyzed over different degrees of rotational movement and various lateral and axial pixel resolution ratio (RL/RA) values. The RD and FT provide the evaluation criteria for image registration. The theoretical analysis confirmed that the RD and FT increase significantly with the rotation degree and RL/RA. An image resizing assisting registration (RAR) strategy was proposed for accurate image registration. The performance of direct registration (DR) and RAR for retinal OCT and OCTA images were quantitatively compared. Experimental results confirmed that unnormalized RL/RA causes RD and FT; RAR can effectively improve the performance of OCT and OCTA image registration and distortion compensation.
Collapse
Affiliation(s)
- Guangying Ma
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Taeyoon Son
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Tobiloba Adejumo
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Vienola KV, Valente D, Zawadzki RJ, Jonnal RS. Velocity-based optoretinography for clinical applications. OPTICA 2022; 9:1100-1108. [PMID: 40161254 PMCID: PMC11951274 DOI: 10.1364/optica.460835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/26/2022] [Indexed: 04/02/2025]
Abstract
Optoretinography (ORG) is an emerging tool for testing neural function in the retina. Unlike existing methods, it is noninvasive and objective, and provides information about retinal structure and function at once. As such, it has great potential to transform ophthalmic care and clinical trials of novel therapeutics designed to restore or preserve visual function. Recent efforts have demonstrated the feasibility of ORG using state-of-the-art optical coherence tomography systems. These methods measure the stimulus-evoked movement of subcellular features in the retina, using the phase of reflected light to monitor their positions. Here we present an alternative approach that monitors the velocity of these features instead. This conceptual shift has significant implications for the nascent field of ORG. By avoiding the need to track specific cells over time, it obviates costly and laborious aspects of position-based approaches, such as adaptive optics, digital aberration correction, real-time tracking, and three-dimensional segmentation and registration. We used this velocity-based approach to measure the photoreceptor ORG responses in three healthy subjects. The resulting responses were reproducible and exhibited dependence on dose and retinal eccentricity. The possibility of reconstructing the position signal through numerical integration of velocity was explored.
Collapse
Affiliation(s)
- Kari V. Vienola
- Vision Science and Advanced Retinal Imaging Laboratory, Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, California 95817, USA
| | - Denise Valente
- Vision Science and Advanced Retinal Imaging Laboratory, Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, California 95817, USA
| | - Robert J. Zawadzki
- Vision Science and Advanced Retinal Imaging Laboratory, Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, California 95817, USA
- EyePod: Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95816, USA
| | - Ravi S. Jonnal
- Vision Science and Advanced Retinal Imaging Laboratory, Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, California 95817, USA
| |
Collapse
|
10
|
Gao S, Zeng Y, Li Y, Cohen ED, Berkowitz BA, Qian H. Fast and slow light-induced changes in murine outer retina optical coherence tomography: complementary high spatial resolution functional biomarkers. PNAS NEXUS 2022; 1:pgac208. [PMID: 36338188 PMCID: PMC9615127 DOI: 10.1093/pnasnexus/pgac208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Fast (seconds) and slow (minutes to hours) optical coherence tomography (OCT) responses to light stimulation have been developed to probe outer retinal function with higher spatial resolution than the classical full-field electroretinogram (ERG). However, the relationships between functional information revealed by OCT and ERG are largely unexplored. In this study, we directly compared the fast and slow OCT responses with the ERG. Fast responses [i.e. the optoretinogram (ORG)] are dominated by reflectance changes in the outer segment (OS) and the inner segment ellipsoid zone (ISez). The ORG OS response has faster kinetics and a higher light sensitivity than the ISez response, and both differ significantly with ERG parameters. Sildenafil-inhibition of phototransduction reduced the ORG light sensitivity, suggesting a complete phototransduction pathway is needed for ORG responses. Slower OCT responses were dominated by light-induced changes in the external limiting membrane to retinal pigment epithelium (ELM-RPE) thickness and photoreceptor-tip hyporeflective band (HB) magnitudes, with the biggest changes occurring after prolonged light stimulation. Mice with high (129S6/ev) vs. low (C57BL/6 J) ATP(adenosine triphosphate) synthesis efficiency show similar fast ORG, but dissimilar slow OCT responses. We propose that the ORG reflects passive physiology, such as water movement from photoreceptors, in response to the photocurrent response (measurable by ERG), whereas the slow OCT responses measure mitochondria-driven physiology in the outer retina, such as dark-provoked water removal from the subretinal space.
Collapse
Affiliation(s)
- Shasha Gao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong Zeng
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ethan D Cohen
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Kim TH, Ma G, Son T, Yao X. Functional Optical Coherence Tomography for Intrinsic Signal Optoretinography: Recent Developments and Deployment Challenges. Front Med (Lausanne) 2022; 9:864824. [PMID: 35445037 PMCID: PMC9013890 DOI: 10.3389/fmed.2022.864824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Intrinsic optical signal (IOS) imaging of the retina, also termed as optoretinogram or optoretinography (ORG), promises a non-invasive method for the objective assessment of retinal function. By providing the unparalleled capability to differentiate individual retinal layers, functional optical coherence tomography (OCT) has been actively investigated for intrinsic signal ORG measurements. However, clinical deployment of functional OCT for quantitative ORG is still challenging due to the lack of a standardized imaging protocol and the complication of IOS sources and mechanisms. This article aims to summarize recent developments of functional OCT for ORG measurement, OCT intensity- and phase-based IOS processing. Technical challenges and perspectives of quantitative IOS analysis and ORG interpretations are discussed.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Guangying Ma
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Taeyoon Son
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Xincheng Yao
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
12
|
Kim TH, Ding J, Yao X. Intrinsic signal optoretinography of dark adaptation kinetics. Sci Rep 2022; 12:2475. [PMID: 35169239 PMCID: PMC8847457 DOI: 10.1038/s41598-022-06562-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Delayed dark adaptation due to impaired rod photoreceptor homeostasis has been reported as the earliest symptom of eye diseases such as age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa. Objective measurement of dark adaptation can facilitate early diagnosis to enable prompt intervention to prevent vision loss. However, there is a lack of noninvasive methods capable of spatiotemporal monitoring of photoreceptor changes during dark adaptation. Here we demonstrate functional optical coherence tomography (OCT) for in vivo intrinsic signal optoretinography (ORG) of dark adaptation kinetics in the C57BL/6J mouse retina. Functional OCT revealed a shortening of the outer retina, a rearrangement of the cone and rod photoreceptor interdigitation zone, and a reduction in intrinsic signal amplitude at the photoreceptor inner segment ellipsoid (ISe). A strong positive correlation between the outer retinal shortening and ISe intensity reduction was also confirmed. Functional OCT of dark adaptation kinetics promises an objective method for rapid ORG assessment of physiological integrity of retinal photoreceptors.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jie Ding
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Messner A, Aranha Dos Santos V, Stegmann H, Puchner S, Schmidl D, Leitgeb R, Schmetterer L, Werkmeister RM. Quantification of intrinsic optical signals in the outer human retina using optical coherence tomography. Ann N Y Acad Sci 2021; 1510:145-157. [PMID: 34893981 PMCID: PMC9299665 DOI: 10.1111/nyas.14721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023]
Abstract
Intrinsic optical signals constitute a noninvasive biomarker promising the objective assessment of retinal photoreceptor function. We employed a commercial optical coherence tomography (OCT) system and an OCT signal model for evaluation of optical path length (OPL) changes in the temporal outer retina of five healthy subjects during light adaptation. Data were acquired at 30 time points, in ambient light and during long duration stimulation with white light, and analyzed, employing a signal model based on the sum of seven Gaussian curves corresponding to all relevant anatomical structures of the outer retina. During light stimulation, mean OPL between rod outer segment tips (ROST) and the retinal pigment epithelium (RPE) decreased by 21.4 ± 3.5%. Further, OPL between the external‐limiting membrane (ELM) and the RPE decreased by 5.2 ± 0.9% versus baseline, while OPL between ELM and ROST showed an initial decrease by 2.1 ± 1.6% versus baseline and, thereafter, increased by 2.8 ± 2.1% versus baseline. Thus, the presented approach allowed for assess to dynamic changes in the outer retina in response to light. The change in the subretinal space occurring in the context of light adaptation could be measured using a standard OCT platform and a dedicated signal model.
Collapse
Affiliation(s)
- Alina Messner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Stegmann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Ocular and Dermal Effects of Thiomers, Medical University of Vienna, Vienna, Austria
| | - Stefan Puchner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Ocular and Dermal Effects of Thiomers, Medical University of Vienna, Vienna, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Singapore Eye Research Institute, The Academia, Singapore.,SERI-NTU Advanced Ocular Engineering (STANCE) Program, Nanyang Technological University, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore.,Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - René M Werkmeister
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Ocular and Dermal Effects of Thiomers, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Pijewska E, Zhang P, Meina M, Meleppat RK, Szkulmowski M, Zawadzki RJ. Extraction of phase-based optoretinograms (ORG) from serial B-scans acquired over tens of seconds by mouse retinal raster scanning OCT system. BIOMEDICAL OPTICS EXPRESS 2021; 12:7849-7871. [PMID: 35003871 PMCID: PMC8713677 DOI: 10.1364/boe.439900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Several specialized retinal optical coherence tomography (OCT) acquisition and processing methods have been recently developed to allow in vivo probing of light-evoked photoreceptors function, focusing on measurements in individual photoreceptors (rods and cones). Recent OCT investigations in humans and experimental animals have shown that the outer segments in dark-adapted rods and cones elongate in response to the visible optical stimuli that bleach fractions of their visual photopigment. We have previously successfully contributed to these developments by implementing OCT intensity-based "optoretinograms" (ORG), the paradigm of using near-infrared OCT (NIR OCT) to measure bleaching-induced back-scattering and/or elongation changes of photoreceptors in the eye in vivo. In parallel, several groups have successfully implemented phase-based ORGs, mainly in human studies, exploiting changes in the phases of back-scattered light. This allowed more sensitive observations of tiny alterations of photoreceptors structures. Applications of the phase-based ORG have been implemented primarily in high speed and cellular resolution AO-OCT systems that can visualize photoreceptor mosaic, allowing phase measurements of path length changes in outer segments of individual photoreceptors. The phase-based ORG in standard resolution OCT systems is much more demanding to implement and has not been explored extensively. This manuscript describes our efforts to implement a phase analysis framework to retinal images acquired with a standard resolution and raster scanning OCT system, which offers much lower phase stability than line-field or full-field OCT detection schemes due to the relatively slower acquisition speed. Our initial results showcase the successful extraction of phase-based ORG signal from the B-scans acquired at ∼100 Hz rate and its favorable comparison with intensity-based ORG signal extracted from the same data sets. We implemented the calculation of phase-based ORG signals using Knox-Thompson paths and modified signal recovery by adding decorrelation weights. The phase-sensitive ORG signal analysis developed here for mouse retinal raster scanning OCT systems could be in principle extended to clinical retinal raster scanning OCT systems, potentially opening doors for clinically friendly ORG probing.
Collapse
Affiliation(s)
- Ewelina Pijewska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Torun, Poland
| | - Pengfei Zhang
- UC Davis Eyepod Imaging Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, USA
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province 116024, China
| | - Michał Meina
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Torun, Poland
| | - Ratheesh K. Meleppat
- UC Davis Eyepod Imaging Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, USA
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Torun, Poland
| | - Robert J. Zawadzki
- UC Davis Eyepod Imaging Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, USA
- Department of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street Suite 2400 Sacramento, CA 95817, USA
| |
Collapse
|
15
|
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210150-PER. [PMID: 34672145 PMCID: PMC8528212 DOI: 10.1117/1.jbo.26.10.100601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE After three decades, more than 75,000 publications, tens of companies being involved in its commercialization, and a global market perspective of about USD 1.5 billion in 2023, optical coherence tomography (OCT) has become one of the fastest successfully translated imaging techniques with substantial clinical and economic impacts and acceptance. AIM Our perspective focuses on disruptive forward-looking innovations and key technologies to further boost OCT performance and therefore enable significantly enhanced medical diagnosis. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. RESULTS The most disruptive future OCT innovations include imaging resolution and speed (single-beam raster scanning versus parallelization) improvement, new implementations for dual modality or even multimodality systems, and using endogenous or exogenous contrast in these hybrid OCT systems targeting molecular and metabolic imaging. Aside from OCT angiography, no other functional or contrast enhancing OCT extension has accomplished comparable clinical and commercial impacts. Some more recently developed extensions, e.g., optical coherence elastography, dynamic contrast OCT, optoretinography, and artificial intelligence enhanced OCT are also considered with high potential for the future. In addition, OCT miniaturization for portable, compact, handheld, and/or cost-effective capsule-based OCT applications, home-OCT, and self-OCT systems based on micro-optic assemblies or photonic integrated circuits will revolutionize new applications and availability in the near future. Finally, clinical translation of OCT including medical device regulatory challenges will continue to be absolutely essential. CONCLUSIONS With its exquisite non-invasive, micrometer resolution depth sectioning capability, OCT has especially revolutionized ophthalmic diagnosis and hence is the fastest adopted imaging technology in the history of ophthalmology. Nonetheless, OCT has not been completely exploited and has substantial growth potential-in academics as well as in industry. This applies not only to the ophthalmic application field, but also especially to the original motivation of OCT to enable optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology but without the need for tissue excision.
Collapse
Affiliation(s)
- Rainer Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | - Fabian Placzek
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Elisabet Rank
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Lisa Krainz
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Richard Haindl
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Qian Li
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Mengyang Liu
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Tilman Schmoll
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Address all correspondence to Wolfgang Drexler,
| |
Collapse
|
16
|
Ma G, Son T, Kim TH, Yao X. Functional optoretinography: concurrent OCT monitoring of intrinsic signal amplitude and phase dynamics in human photoreceptors. BIOMEDICAL OPTICS EXPRESS 2021; 12:2661-2669. [PMID: 34123495 PMCID: PMC8176815 DOI: 10.1364/boe.423733] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 05/12/2023]
Abstract
Intrinsic optical signal (IOS) imaging promises a noninvasive method for objective assessment of retinal function. This study demonstrates concurrent optical coherence tomography (OCT) of amplitude-IOS and phase-IOS changes in human photoreceptors. A new procedure for differential-phase-mapping (DPM) is validated to enable depth-resolved phase-IOS imaging. Dynamic OCT revealed rapid amplitude-IOS and phase-IOS changes, which occur almost right away after the stimulus onset. These IOS changes were predominantly observed within the photoreceptor outer segment (OS), particularly two boundaries connecting to the inner segment and retinal pigment epithelium. The comparative analysis supports that both amplitude-IOS and phase-IOS attribute to transient OS morphological change associated with phototransduction activation in retinal photoreceptors. A simulation modeling is proposed to discuss the relationship between the photoreceptor OS length and phase-IOS changes.
Collapse
Affiliation(s)
- Guangying Ma
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|