1
|
Suzuki H, Yamashita S, Tanaka S, Kannaka K, Sasaki I, Ohshima Y, Watanabe S, Ooe K, Watabe T, Ishioka NS, Tanaka H, Uehara T. An 211At-labeled alpha-melanocyte stimulating hormone peptide analog for targeted alpha therapy of metastatic melanoma. Eur J Nucl Med Mol Imaging 2025; 52:2107-2117. [PMID: 39828865 PMCID: PMC12014842 DOI: 10.1007/s00259-024-07056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE Patients who develop metastatic melanoma have a very poor prognosis, and new treatments are needed to improve the response rates. Melanocortin-1 receptor (MC1R) is a promising target for radionuclide therapy of metastatic melanoma, and alpha-melanocyte stimulating hormone (α-MSH) peptide analogs show high affinities to MC1Rs. Because targeted alpha therapy (TAT) can be a desirable treatment for metastatic melanoma, this study aimed to develop an 211At-labeled α-MSH peptide analog for TAT of metastatic melanoma. METHODS We designed an α-MSH analog labeled with 211At using a neopentyl glycol scaffold via a hydrophilic linker. Preliminary studies using 125I-labeled α-MSH analogs were performed to identify suitable hydrophilic linkers. Then, [211At]NpG-GGN4c was prepared using a procedure similar to that of the 125I-labeled counterpart, [125I]NpG-GGN4b. The biodistribution profile of [211At]NpG-GGN4c in B16F10 tumor-bearing mice was compared with that of [125I]NpG-GGN4b. B16F10 tumor-bearing mice were treated with a single dose of vehicle or [211At]NpG-GGN4c (1 or 0.4 MBq). RESULTS The D-Glu-D-Arg linker was identified as the optimal hydrophilic linker because of its high affinity for MC1R and good biodistribution profile, especially with low accumulation in the liver and intestine. [211At]NpG-GGN4c showed tumor accumulation comparable to that of [125I]NpG-GGN4b and maintained the tumor radioactivity retention from 1 to 3 h postinjection. [211At]NpG-GGN4c exhibited a dose-dependent inhibitory effect on B16F10 xenograft growth without apparent body weight loss. CONCLUSION [211At]NpG-GGN4c showed dose-dependent efficacy against B16F10 xenografts, suggesting that [211At]NpG-GGN4c is a promising TAT agent for treating metastatic melanoma.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| | - Saki Yamashita
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Shoko Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Kento Kannaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Ichiro Sasaki
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, Watanuki, Takasaki, 1233, 370-1292, Gunma, Japan
| | - Yasuhiro Ohshima
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, Watanuki, Takasaki, 1233, 370-1292, Gunma, Japan
| | - Shigeki Watanabe
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, Watanuki, Takasaki, 1233, 370-1292, Gunma, Japan
| | - Kazuhiro Ooe
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadashi Watabe
- Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | - Noriko S Ishioka
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology, Watanuki, Takasaki, 1233, 370-1292, Gunma, Japan
| | - Hiroshi Tanaka
- Faculty of Pharmacy, Juntendo University, 6-8-1 Hinode, Urayasu, 279-0013, Chiba, Japan
- Department of Chemical Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tomoya Uehara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
2
|
Wharton L, McNeil SW, Zhang C, Engudar G, Van de Voorde M, Zeisler J, Koniar H, Sekar S, Yuan Z, Schaffer P, Radchenko V, Ooms M, Kunz P, Bénard F, Yang H. Preclinical evaluation of MC1R targeting theranostic pair [ 155Tb]Tb-crown-αMSH and [ 161Tb]Tb-crown-αMSH. Nucl Med Biol 2024; 136-137:108925. [PMID: 38796924 DOI: 10.1016/j.nucmedbio.2024.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Targeted radionuclide therapy is established as a highly effective strategy for the treatment of metastatic tumors; however, the co-development of suitable imaging companions to therapy remains significant challenge. Theranostic isotopes of terbium (149Tb, 152Tb, 155Tb, 161Tb) have the potential to provide chemically identical radionuclidic pairs, which collectively encompass all modes of nuclear decay relevant to nuclear medicine. Herein, we report the first radiochemistry and preclinical studies involving 155Tb- and 161Tb-labeled crown-αMSH, a small peptide-based bioconjugate suitable for targeting melanoma. METHODS 155Tb was produced via proton induced spallation of Ta targets using the isotope separation and acceleration facility at TRIUMF with isotope separation on-line (ISAC/ISOL). The radiolabeling characteristics of crown-αMSH with 155Tb and/or 161Tb were evaluated by concentration-dependence radiolabeling studies, and radio-HPLC stability studies. LogD7.4 measurements were obtained for [161Tb]Tb-crown-αMSH. Competitive binding assays were undertaken to determine the inhibition constant for [natTb]Tb-crown-αMSH in B16-F10 cells. Pre-clinical biodistribution and SPECT/CT imaging studies of 155Tb and 161Tb labeled crown-αMSH were undertaken in male C57Bl/6 J mice bearing B16-F10 melanoma tumors to evaluate tumor specific uptake and imaging potential for each radionuclide. RESULTS Quantitative radiolabeling of crown-αMSH with [155Tb]Tb3+ and [161Tb]Tb3+ was demonstrated under mild conditions (RT, 10 min) and low chelator concentrations; achieving high molar activities (23-29 MBq/nmol). Radio-HPLC studies showed [161Tb]Tb-crown-αMSH maintains excellent radiochemical purity in human serum, while gradual metabolic degradation is observed in mouse serum. Competitive binding assays showed the high affinity of [natTb]Tb-crown-αMSH toward MC1R. Two different methods for preparation of the [155Tb]Tb-crown-αMSH radiotracer were investigated and the impacts on the biodistribution profile in tumor bearing mice is compared. Preclinical in vivo studies of 155Tb- and 161Tb- labeled crown-αMSH were performed in parallel, in mice bearing B16-F10 tumors; where the biodistribution results showed similar tumor specific uptake (6.06-7.44 %IA/g at 2 h pi) and very low uptake in nontarget organs. These results were further corroborated through a series of single-photon emission computed tomography (SPECT) studies, with [155Tb]Tb-crown-αMSH and [161Tb]Tb-crown-αMSH showing comparable uptake profiles and excellent image contrast. CONCLUSIONS Collectively, our studies highlight the promising characteristics of [155Tb]Tb-crown-αMSH and [161Tb]Tb-crown-αMSH as theranostic pair for nuclear imaging (155Tb) and radionuclide therapy (161Tb).
Collapse
Affiliation(s)
- Luke Wharton
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Scott W McNeil
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Gokce Engudar
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | | | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Helena Koniar
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Sathiya Sekar
- Centre for Comparative Medicine, University of British Columbia, 4145 Wesbrook Mall, Vancouver, BC V6T 1W5, Canada
| | - Zheliang Yuan
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Maarten Ooms
- Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - Peter Kunz
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Accelerator Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
3
|
Bunda S, Kálmán-Szabó I, Lihi N, Képes Z, Szikra D, Peline Szabo J, Timári I, Szücs D, May NV, Papp G, Trencsényi G, Kálmán FK. Diagnosis of Melanoma with 61Cu-Labeled PET Tracer. J Med Chem 2024; 67:9342-9354. [PMID: 38753457 DOI: 10.1021/acs.jmedchem.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Until the recent years, substances containing radioactive 61Cu were strongly considered as potential positron-emitting radiopharmaceuticals for use in positron emission tomography (PET) applications; however, due to their suitably long half-life, and generator-independent and cost-effective production, they seem to be economically viable for human imaging. Since malignant melanoma (MM) is a major public health problem, its early diagnosis is a crucial contributor to long-term survival, which can be achieved using radiolabeled α-melanocyte-stimulating hormone analog NAPamide derivatives. Here, we report on the physicochemical features of a new CB-15aneN5-based Cu(II) complex ([Cu(KFTGdiac)]-) and the ex vivo and in vivo characterization of its NAPamide conjugate. The rigid chelate possesses prompt complex formation and suitable inertness (t1/2 = 18.4 min in 5.0 M HCl at 50 °C), as well as excellent features in the diagnosis of B16-F10 melanoma tumors (T/M(SUVs) (in vivo): 12.7, %ID/g: 6.6 ± 0.3, T/M (ex vivo): 22).
Collapse
Affiliation(s)
- Szilvia Bunda
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Ibolya Kálmán-Szabó
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Norbert Lihi
- HUN-REN-UD Mechanisms of Complex Homogeneous and Heterogeneous Chemical Reactions Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Dezső Szikra
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Judit Peline Szabo
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - István Timári
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Dániel Szücs
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Nóra V May
- Centre for Structural Science, Research Centre for Natural Sciences, Hungarian Research Network (HUN-REN), Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Gábor Papp
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ferenc K Kálmán
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| |
Collapse
|
4
|
Todorovic M, Blanc A, Wang Z, Lozada J, Froelich J, Zeisler J, Zhang C, Merkens H, Benard F, Perrin DM. 5-Hydroxypyrroloindoline Affords Tryptathionine and 2,2'-bis-Indole Peptide Staples: Application to Melanotan-II. Chemistry 2024; 30:e202304270. [PMID: 38285527 DOI: 10.1002/chem.202304270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
With peptides increasingly favored as drugs, natural product motifs, namely the tryptathionine staple, found in amatoxins and phallotoxins, and the 2,2'-bis-indole found in staurosporine represent unexplored staples for unnatural peptide macrocycles. We disclose the efficient condensation of a 5-hydroxypyrroloindoline with either a cysteine-thiol or a tryptophan-indole to form a tryptathionine or 2-2'-bis-indole staple. Judicious use of protecting groups provides for chemoselective stapling using α-MSH, which provides a basis for investigating both chemoselectivity and affinity. Both classes of stapled peptides show nanomolar Ki's, with one showing a sub-nanomolar Ki value.
Collapse
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Antoine Blanc
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Zhou Wang
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Jerome Lozada
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Juliette Froelich
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Francois Benard
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - David M Perrin
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| |
Collapse
|
5
|
Tosato M, Randhawa P, Lazzari L, McNeil BL, Dalla Tiezza M, Zanoni G, Mancin F, Orian L, Ramogida CF, Di Marco V. Tuning the Softness of the Pendant Arms and the Polyazamacrocyclic Backbone to Chelate the 203Pb/ 212Pb Theranostic Pair. Inorg Chem 2024; 63:1745-1758. [PMID: 38230993 PMCID: PMC10828988 DOI: 10.1021/acs.inorgchem.3c02610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
A series of macrocyclic ligands were considered for the chelation of Pb2+: 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), 1,7-bis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane-4,10-diacetic acid (DO2A2S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S). The equilibrium, the acid-mediated dissociation kinetics, and the structural properties of the Pb2+ complexes formed by these chelators were examined by UV-Visible and nuclear magnetic resonance (NMR) spectroscopies, combined with potentiometry and density functional theory (DFT) calculations. The obtained results indicated that DO4S, DO3S, DO3SAm, and DO2A2S were able to efficiently chelate Pb2+ and that the most suitable macrocyclic scaffold for Pb2+ is 1,4,7,10-tetrazacyclododecane. NMR spectroscopy gave insights into the solution structures of the Pb2+ complexes, and 1H-207Pb interactions confirmed the involvement of S and/or O donors in the metal coordination sphere. Highly fluxional solution behavior was discovered when Pb2+ was coordinated to symmetric ligands (i.e., DO4S and DO2A2S) while the introduction of structural asymmetry in DO3S and DO3SAm slowed down the intramolecular dynamics. The ligand ability to chelate [203Pb]Pb2+ under highly dilute reaction conditions was explored through radiolabeling experiments. While DO4S and DO3S possessed modest performance, DO3SAm and DO2A2S demonstrated high complexation efficiency under mild reaction conditions (pH = 7, 5 min reaction time). The [203Pb]Pb2+ complexes' integrity in human serum over 24 h was appreciably good for [203Pb][Pb(DO4S)]2+ (80 ± 5%) and excellent for [203Pb][Pb(DO3SAm)]2+ (93 ± 1%) and [203Pb][Pb(DO2A2S)] (94 ± 1%). These results reveal the promise of DO2A2S and DO3SAm as chelators in cutting-edge theranostic [203/212Pb]Pb2+ radiopharmaceuticals.
Collapse
Affiliation(s)
- Marianna Tosato
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Radiopharmaceutical
Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Parmissa Randhawa
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Luca Lazzari
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Brooke L. McNeil
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Marco Dalla Tiezza
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Giordano Zanoni
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Laura Orian
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Caterina F. Ramogida
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Valerio Di Marco
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Kálmán-Szabó I, Bunda S, Lihi N, Szaniszló Z, Szikra D, Szabó Péliné J, Fekete A, Gyuricza B, Szücs D, Papp G, Trencsényi G, Kálmán FK. 61Cu-Labelled radiodiagnostics of melanoma with NAPamide-targeted radiopharmaceutical. Int J Pharm 2023; 632:122527. [PMID: 36566825 DOI: 10.1016/j.ijpharm.2022.122527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Malignant melanoma is a major public health problem with an increasing incidence and mortality in the Caucasian population due to its significant metastatic potential. The early detection of this cancer type by imaging techniques like positron emission tomography acts as an important contributor to the long-term survival. Based on literature data, the radio labelled alpha-MSH analog NAPamide molecule is an appropriate diagnostic tool for the detection of melanoma tumors. Inspired by these facts, a new radiotracer, the [61Cu]Cu-KFTG-NAPamide has been synthesized to exploit the beneficial features of the positron emitter 61Cu and the melanoma specificity of the NAPamide molecule. In this work, we report a new member of the CB-15aneN5 ligand family (KFTG) as the chelator for 61Cu(II) complexation. On the basis of the thorough physico-chemical characterization, the rigid [Cu(KFTG)]+ complex exhibits fast complex formation (t1/2 = 155 s at pH 5.0 and 25 °C) and high inertness (t1/2 = 2.0 h in 5.0 M HCl at 50 °C) as well as moderate superoxide dismutase activity (IC50 = 2.3 μM). Furthermore, the [61Cu]Cu-KFTG-NAPamide possesses outstanding features in the diagnostics of B16-F10 melanoma tumors by PET imaging: (T/M(SUVs) (in vivo): appr. 14, %ID/g: 7 ± 1 and T/M (ex vivo): 315 ± 24 at 180 min).
Collapse
Affiliation(s)
- Ibolya Kálmán-Szabó
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary; Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Szilvia Bunda
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Norbert Lihi
- ELKH-DE, Mechanisms of Complex Homogeneous and Heterogeneous Chemical Reactions Research Group, Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Zsófia Szaniszló
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Dezső Szikra
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Judit Szabó Péliné
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Anikó Fekete
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Barbara Gyuricza
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Dániel Szücs
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Gábor Papp
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary; Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ferenc K Kálmán
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| |
Collapse
|
7
|
Wang Y, Wang Q, Chen Z, Yang J, Liu H, Peng D, Lei L, Liu L, Wang L, Xing N, Qiu L, Feng Y, Chen Y. Preparation, biological characterization and preliminary human imaging studies of 68Ga-DOTA-IBA. Front Oncol 2022; 12:1027792. [PMID: 36591490 PMCID: PMC9795169 DOI: 10.3389/fonc.2022.1027792] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose In this study, DOTA-IBA was radiolabeled with 68Ga and we determined the optimum labelling conditions and assessed the biological properties of 68Ga-DOTA-IBA. We investigated the biodistribution of 68Ga-DOTA-IBA in normal animals and undertook PET/CT imaging in humans. Finally, we explored the feasibility 68Ga-DOTA-IBA as a bone imaging agent and demonstrated its potential for the therapeutic release of 177Lu/225Ac-DOTA-IBA. Methods The controlled variables method was used to assess the impact of variables on the radiochemical purity of 68Ga-DOTA-IBA. The biological properties of 68Ga-DOTA-IBA were investigated.68Ga-DOTA-IBA micro-PET/CT imaging was performed on animals. Volunteers were recruited for 68Ga-DOTA-IBA imaging and data were compared to 99mTc-MDP imaging studies to calculate the target to non-target ratio (T/NT) of the lesions. Results The prepared 68Ga-DOTA-IBA had a radiochemical purity of >97% and demonstrated good biological properties with a good safety profile in normal mice. PET/CT imaging of the animals showed rapid blood clearance with high contrast between the bone and stroma. Human imaging showed that 68Ga-DOTA-IBA could detect more lesions compared to 99mTc-MDP and had a higher targeted to untargeted ratio. Conclusions 68Ga-DOTA-IBA is an osteophilic radiopharmaceutical that can be synthesized using a simple labelling method. 68Ga-DOTA-IBA has high radiochemical purity and is stable in vitro stability. It is rapidly cleared from the blood, has low toxicity and has strong targeting to the bone with long retention times. We also found that it is rapidly cleared in non-target tissues and has high contrast on whole-body bone imaging. 68Ga-DOTA-IBA PET/CT has potential as a novel bone imaging bone modality in patients with metastatic disease.
Collapse
Affiliation(s)
- Yingwei Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China,Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Qixin Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China,Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Zan Chen
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China,Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Hanxiang Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China,Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Dengsai Peng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China,Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Lei Lei
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China,Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China,Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China,Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Naiguo Xing
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China,Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Qiu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China,Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China,*Correspondence: Lin Qiu, ; Yue Feng, ; Yue Chen,
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China,Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China,*Correspondence: Lin Qiu, ; Yue Feng, ; Yue Chen,
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China,Nuclear Medicine Institute of Southwest Medical University, Luzhou, Sichuan, China,*Correspondence: Lin Qiu, ; Yue Feng, ; Yue Chen,
| |
Collapse
|
8
|
White AM, Dellsén A, Larsson N, Kaas Q, Jansen F, Plowright AT, Knerr L, Durek T, Craik DJ. Late-Stage Functionalization with Cysteine Staples Generates Potent and Selective Melanocortin Receptor-1 Agonists. J Med Chem 2022; 65:12956-12969. [PMID: 36167503 DOI: 10.1021/acs.jmedchem.2c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, cysteine staples were used as a late-stage functionalization strategy to diversify peptides and build conjugates targeting the melanocortin G-protein-coupled receptors [melanocortin receptor-1 (MC1R) and MC3R-MC5R]. Monocyclic and bicyclic agonists based on sunflower trypsin inhibitor-1 were used to generate a selection of stapled peptides that were evaluated for binding (pKi) and functional activation (pEC50) of the melanocortin receptor subtypes. Stapled peptides generally had improved activity, with aromatic stapled peptides yielding selective MC1R agonists, including a xylene-stapled peptide (2) with an EC50 of 1.9 nM for MC1R and >150-fold selectivity for MC3R and MC4R. Selected stapled peptides were further functionalized with linkers and payloads, generating a series of conjugated peptides with potent MC1R activity, including one pyridazine-functionalized peptide (21) with picomolar activity at MC1R (Ki 58 pM; EC50 < 9 pM). This work demonstrates that staples can be used as modular synthetic tools to tune potency and selectivity in peptide-based drug design.
Collapse
Affiliation(s)
- Andrew M White
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anita Dellsén
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Niklas Larsson
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Frank Jansen
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Alleyn T Plowright
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
9
|
Durek T, Kaas Q, White AM, Weidmann J, Fuaad AA, Cheneval O, Schroeder CI, de Veer SJ, Dellsén A, Österlund T, Larsson N, Knerr L, Bauer U, Plowright AT, Craik DJ. Melanocortin 1 Receptor Agonists Based on a Bivalent, Bicyclic Peptide Framework. J Med Chem 2021; 64:9906-9915. [PMID: 34197114 DOI: 10.1021/acs.jmedchem.1c00095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have designed a new class of highly potent bivalent melanocortin receptor ligands based on the nature-derived bicyclic peptide sunflower trypsin inhibitor 1 (SFTI-1). Incorporation of melanotropin pharmacophores in each of the two turn regions of SFTI-1 resulted in substantial gains in agonist activity particularly at human melanocortin receptors 1 and 3 (hMC1R/hMC3R) compared to monovalent analogues. In in vitro binding and functional assays, the most potent molecule, compound 6, displayed low picomolar agonist activity at hMC1R (pEC50 > 10.3; EC50 < 50 pM; pKi: 10.16 ± 0.04; Ki: 69 ± 5 pM) and is at least 30-fold more selective for this receptor than for hMC3R, hMC4R, or hMC5R. The results are discussed in the context of structural homology models of hMCRs in complex with the developed bivalent ligands.
Collapse
Affiliation(s)
- Thomas Durek
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew M White
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joachim Weidmann
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Abdullah Ahmad Fuaad
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Olivier Cheneval
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Simon J de Veer
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anita Dellsén
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Mölndal, Sweden
| | - Torben Österlund
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Mölndal, Sweden.,Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Mölndal, Sweden
| | - Niklas Larsson
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Mölndal, Sweden
| | - Laurent Knerr
- Medicinal Chemistry, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Mölndal, Sweden
| | - Udo Bauer
- Medicinal Chemistry, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Mölndal, Sweden
| | - Alleyn T Plowright
- Medicinal Chemistry, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg 43183, Mölndal, Sweden
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
10
|
Zhang C, Zhang Z, Zeisler J, Colpo N, Lin KS, Bénard F. Selective Cyclized α-Melanocyte-Stimulating Hormone Derivative with Multiple N-Methylations for Melanoma Imaging with Positron Emission Tomography. ACS OMEGA 2020; 5:10767-10773. [PMID: 32455196 PMCID: PMC7240809 DOI: 10.1021/acsomega.0c00310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
In this study, we designed and evaluated a novel α-melanocyte-stimulating hormone derivative with four N-methylations for melanocortin 1 receptor-targeted melanoma imaging with positron emission tomography (PET). The resulting peptide, DOTA-Pip-Nle4-Cyclo[Asp5-N-Me-His6-d-Phe7-N-Me-Arg8-N-Me-Trp9-N-Me-Lys10]αMSH4-10-NH2 (CCZ01099), showed high receptor selectivity, greatly improved stability, and rapid internalization. [68Ga]Ga-CCZ01099 showed clear tumor visualization and excellent tumor-to-normal tissue contrast with PET imaging in a preclinical melanoma model. Therefore, CCZ01099 is a promising compound for imaging and potentially radioligand therapy for melanoma.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jutta Zeisler
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Nadine Colpo
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Kuo-Shyan Lin
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - François Bénard
- Department
of Molecular Oncology, BC Cancer, 675 W 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
11
|
18F-Labeled Cyclized α-Melanocyte-Stimulating Hormone Derivatives for Imaging Human Melanoma Xenograft with Positron Emission Tomography. Sci Rep 2019; 9:13575. [PMID: 31537869 PMCID: PMC6753210 DOI: 10.1038/s41598-019-50014-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022] Open
Abstract
Since metastatic melanoma is deadly, early diagnosis thereof is crucial for managing the disease. We recently developed α-melanocyte-stimulating hormone (αMSH) derivatives, [68Ga]Ga-CCZ01048 and [18F]CCZ01064, that target the melanocortin 1 receptor (MC1R) for mouse melanoma imaging. In this study, we aim to evaluate [18F]CCZ01064 as well as a novel dual-ammoniomethyl-trifluoroborate (AmBF3) derivative, [18F]CCZ01096, for targeting human melanoma xenograft using μPET imaging. The peptides were synthesized on solid phase using Fmoc chemistry. Radiolabeling was achieved in a one-step 18F-19F isotope-exchange reaction. μPET imaging and biodistribution studies were performed in NSG mice bearing SK-MEL-1 melanoma xenografts. The MC1R density on the SK-MEL-1 cell line was determined to be 972 ± 154 receptors/cell (n = 4) via saturation assays. Using [18F]CCZ01064, moderate tumor uptake (3.05 ± 0.47%ID/g) and image contrast were observed at 2 h post-injection. Molar activity was determined to play a key role. CCZ01096 with two AmBF3 motifs showed comparable sub-nanomolar binding affinity to MC1R and much higher molar activity. This resulted in improved tumor uptake (6.46 ± 1.42%ID/g) and image contrast (tumor-to-blood and tumor-to-muscle ratios were 30.6 ± 5.7 and 85.7 ± 11.3, respectively) at 2 h post-injection. [18F]CCZ01096 represents a promising αMSH-based μPET imaging agent for human melanoma and warrants further investigation for potential clinical translation.
Collapse
|
12
|
Gao F, Sihver W, Bergmann R, Walther M, Stephan H, Belter B, Neuber C, Haase-Kohn C, Bolzati C, Pietzsch J, Pietzsch HJ. Radiochemical and radiopharmacological characterization of a 64 Cu-labeled α-MSH analog conjugated with different chelators. J Labelled Comp Radiopharm 2019; 62:495-509. [PMID: 30912594 DOI: 10.1002/jlcr.3728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
Abstract
Radiolabeled α-melanocyte-stimulating hormone (α-MSH) derivatives have a high potential for diagnosis and treatment of melanoma, because of high specificity and binding affinity to the melanocortin-1 receptor (MC1R). Hence, the α-MSH-derived peptide NAP-NS1 with a β-Ala linker (ε-Ahx-β-Ala-Nle-Asp-His-D-Phe-Arg-Trp-Gly-NH2 ) was conjugated to different chelators: either to NOTA (p-SCN-Bn-1,4,7-triazacyclononane-1,4,7-triacetic acid), to a hexadentate bispidine carbonate derivative (dimethyl-9-(((4-nitrophenoxy)carbonyl)oxy)-2,4-di(pyridin-2-yl)-3,7-bis(pyridin-2-ylmethyl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylate), or to DMPTACN (p-SCN-Ph-bis(2-pyridyl-methyl)-1,4,7-triaza-cyclononane), labeled with 64 Cu, and investigated in terms of radiochemical and radiopharmacological properties. For the three 64 Cu-labeled conjugates negligible transchelation, suitable buffer and serum stability, as well as appropriate water solubility, was determined. The three conjugates exhibited high binding affinity (low nanomolar range) in murine B16F10, human MeWo, and human TXM13 cells. The Bmax values of [64 Cu]Cu-bispidine-NAP-NS1 ([64 Cu]Cu-2) and [64 Cu]Cu-DMPTACN-NAP-NS1 ([64 Cu]Cu-3) were higher than those of [64 Cu]Cu-NOTA-NAP-NS1 ([64 Cu]Cu-1), implying that different charged chelate units might have an impact on binding capacity. Preliminary in vivo biodistribution studies suggested the main excretion pathway of [64 Cu]Cu-1 and [64 Cu]Cu-3 to be renal, while that of [64 Cu]Cu-2 seemed to be both renal and hepatobiliary. An initial moderate uptake in the kidney decreased clearly after 60 minutes. All three 64 Cu-labeled conjugates should be considered for further in vivo investigations using a suitable xenograft mouse model.
Collapse
Affiliation(s)
- Feng Gao
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Wiebke Sihver
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Ralf Bergmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Martin Walther
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Birgit Belter
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Christin Neuber
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Cathleen Haase-Kohn
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Cristina Bolzati
- Italian National Research Council - CNR, Institute of Condensed Matter Chemistry and Energy Technologies ICMATE-CNR, Padova, Italy
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Hans-Jürgen Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Kobayashi M, Kato T, Washiyama K, Ihara M, Mizutani A, Nishi K, Flores LG, Nishii R, Kawai K. The pharmacological properties of 3-arm or 4-arm DOTA constructs for conjugation to α-melanocyte-stimulating hormone analogues for melanoma imaging. PLoS One 2019; 14:e0213397. [PMID: 30901323 PMCID: PMC6430397 DOI: 10.1371/journal.pone.0213397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/20/2019] [Indexed: 11/19/2022] Open
Abstract
Background Although a 3-arm DOTA construct, which has three carboxylic acids, h has been applied for conjugation to many peptides, we investigated if a 4-arm DOTA construct conjugated to peptides improves chemical properties for melanoma imaging of the melanocortin 1 receptor compared to 3-arm DOTA-conjugated peptides. Methods Specific activities, radiolabeling efficiencies, and partition coefficients were evaluated using 111In-labeled 3-arm and 4-arm DOTA-α-melanocyte-stimulating hormone (MSH). For assessment of MC1-R affinity and accumulation in tumor cells in vitro, B16-F1 melanoma and/or 4T1 breast cancer cells were incubated with 111In-labeled 3-arm and 4-arm DOTA-α-MSH with and without α-MSH as a substrate. The stability was evaluated using mouse liver homogenates and plasma. Biological distribution and whole-body single photon emission computed tomography imaging of 111In-labeled 3-arm and 4-arm DOTA-α-MSH were obtained using B16-F1 melanoma-bearing mice. Results Specific activities and radiolabeling efficiencies of both radiotracers were about 1.2 MBq/nM and 90–95%, respectively. The partition coefficients were −0.28 ± 0.03 for 111In-labeled 3-arm DOTA-α-MSH and −0.13 ± 0.04 for 111In-labeled 4-arm DOTA-α-MSH. Although accumulation was significantly inhibited by α-MSH in B16-F1 cells, the inhibition rate of 111In-labeled 4-arm DOTA-α-MSH was lower than that of 111In-labeled 3-arm DOTA-α-MSH. 111In-labeled 4-arm DOTA-α-MSH was taken up early into B16-F1 cells and showed higher accumulation than 111In-labeled 3-arm DOTA-α-MSH after 10 min of incubation. Although these stabilities were relatively high, the stability of 111In-labeled 4-arm DOTA-α-MSH was higher than that of 111In-labeled 3-arm DOTA-α-MSH. Regarding biological distribution, 111In-labeled 4-arm DOTA-α-MSH showed significantly lower average renal accumulation (1.38-fold) and significantly higher average melanoma accumulation (1.32-fold) than 111In-labeled 3-arm DOTA-α-MSH at all acquisition times. 111In-labeled 4-arm DOTA-α-MSH showed significantly higher melanoma-to-kidney, melanoma-to-blood, and melanoma-to-muscle ratios than 111In-labeled 3-arm DOTA-α-MSH. Conclusions The 4-arm DOTA construct has better chemical properties for peptide radiotracers than the 3-arm DOTA construct.
Collapse
Affiliation(s)
- Masato Kobayashi
- Wellness Promotion Science Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Department of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- * E-mail:
| | - Toshitaka Kato
- Department of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kohshin Washiyama
- Department of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Masaaki Ihara
- Department of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Asuka Mizutani
- Department of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Leo G. Flores
- Department of Pediatrics, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ryuichi Nishii
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Keiichi Kawai
- Department of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| |
Collapse
|
14
|
Franco Machado J, Silva RD, Melo R, G Correia JD. Less Exploited GPCRs in Precision Medicine: Targets for Molecular Imaging and Theranostics. Molecules 2018; 24:E49. [PMID: 30583594 PMCID: PMC6337414 DOI: 10.3390/molecules24010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022] Open
Abstract
Precision medicine relies on individually tailored therapeutic intervention taking into account individual variability. It is strongly dependent on the availability of target-specific drugs and/or imaging agents that recognize molecular targets and patient-specific disease mechanisms. The most sensitive molecular imaging modalities, Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET), rely on the interaction between an imaging radioprobe and a target. Moreover, the use of target-specific molecular tools for both diagnostics and therapy, theranostic agents, represent an established methodology in nuclear medicine that is assuming an increasingly important role in precision medicine. The design of innovative imaging and/or theranostic agents is key for further accomplishments in the field. G-protein-coupled receptors (GPCRs), apart from being highly relevant drug targets, have also been largely exploited as molecular targets for non-invasive imaging and/or systemic radiotherapy of various diseases. Herein, we will discuss recent efforts towards the development of innovative imaging and/or theranostic agents targeting selected emergent GPCRs, namely the Frizzled receptor (FZD), Ghrelin receptor (GHSR-1a), G protein-coupled estrogen receptor (GPER), and Sphingosine-1-phosphate receptor (S1PR). The pharmacological and clinical relevance will be highlighted, giving particular attention to the studies on the synthesis and characterization of targeted molecular imaging agents, biological evaluation, and potential clinical applications in oncology and non-oncology diseases. Whenever relevant, supporting computational studies will be also discussed.
Collapse
Affiliation(s)
- João Franco Machado
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Rúben D Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
- Center for Neuroscience and Cell Biology; Rua Larga, Faculdade de Medicina, Polo I, 1ºandar, Universidade de Coimbra, 3004-504 Coimbra, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal.
| |
Collapse
|
15
|
Zhang C, Zhang Z, Lin KS, Lau J, Zeisler J, Colpo N, Perrin DM, Bénard F. Melanoma Imaging Using 18F-Labeled α-Melanocyte-Stimulating Hormone Derivatives with Positron Emission Tomography. Mol Pharm 2018; 15:2116-2122. [PMID: 29714486 DOI: 10.1021/acs.molpharmaceut.7b01113] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Melanocortin 1 receptor (MC1R) is specifically expressed in the majority of melanomas, a leading cause of death related to skin cancers. Accurate staging and early detection is crucial in managing melanoma. Based on the α-melanocyte-stimulating hormone (αMSH) sequence, MC1R-targeted peptides have been studied for melanoma imaging, predominately for use with single-photon emission computed tomography, with few attempts made for positron emission tomography (PET). 18F is a commonly used PET isotope due to readily available cyclotron production, pure positron emission, and a favorable half-life (109.8 min). In this study, we aim to design and evaluate αMSH derivatives that enable radiolabeling with 18F for PET imaging of melanoma. We synthesized three imaging probes based on the structure of Nle4-cyclo[Asp5-His-d-Phe7-Arg-Trp-Lys10]-NH2 (Nle-CycMSHhex), with a Pip linker (CCZ01064), an Acp linker (CCZ01070), or an Aoc linker (CCZ01071). 18F labeling was enabled by an ammoniomethyl-trifluoroborate (AmBF3) moiety. In vitro competition binding assays showed subnanomolar inhibition constant ( Ki) values for all three peptides. The 18F radiolabeling was performed via a one-step 18F-19F isotope exchange reaction that resulted in high radiochemical purity (>95%) and good molar activity (specific activity) ranging from 40.7 to 66.6 MBq/nmol. All three 18F-labeled peptides produced excellent tumor visualization with PET imaging in C57BL/6J mice bearing B16-F10 tumors. The tumor uptake was 7.80 ± 1.77, 5.27 ± 2.38, and 5.46 ± 2.64% injected dose per gram of tissue (%ID/g) for [18F]CCZ01064, [18F]CCZ01070, and [18F]CCZ01071 at 1 h post-injection (p.i.), respectively. Minimal background activity was observed except for kidneys at 4.99 ± 0.20, 4.42 ± 0.54, and 13.55 ± 2.84%ID/g, respectively. The best candidate [18F]CCZ01064 was further evaluated at 2 h p.i., which showed increased tumor uptake at 11.96 ± 2.31%ID/g and further reduced normal tissue uptake. Moreover, a blocking study was performed for CCZ01064 at 1 h p.i., where tumor uptake was significantly reduced to 1.97 ± 0.60%ID/g, suggesting the tumor uptake was receptor mediated. In conclusion, [18F]CCZ01064 showed high tumor uptake, low normal tissue uptake, and fast clearance and is therefore a suitable and promising candidate for PET imaging of melanoma.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Molecular Oncology , BC Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology , BC Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology , BC Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Joseph Lau
- Department of Molecular Oncology , BC Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Jutta Zeisler
- Department of Molecular Oncology , BC Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Nadine Colpo
- Department of Molecular Oncology , BC Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| | | | - François Bénard
- Department of Molecular Oncology , BC Cancer Agency , Vancouver , British Columbia V5Z 1L3 , Canada
| |
Collapse
|