1
|
Belkacemi Z, van Dokkum LEH, Tchechmedjiev A, Lepetit-Coiffe M, Mottet D, Le Bars E. Can motion capture improve task-based fMRI studies of motor function post-stroke? A systematic review. J Neuroeng Rehabil 2025; 22:70. [PMID: 40181338 PMCID: PMC11966795 DOI: 10.1186/s12984-025-01611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Variability in motor recovery after stroke represents a major challenge in its understanding and management. While functional MRI has been used to unravel interactions between stroke motor function and clinical outcome, fMRI alone cannot clarify any relation between brain activation and movement characteristics. OBJECTIVES We aimed to identify fMRI and kinematic coupling approaches and to evaluate their potential contribution to the understanding of motor function post-stroke. METHOD A systematic literature review was performed according to PRISMA guidelines on studies using fMRI and kinematics in post-stroke individuals. We assessed the internal, external, statistical, and technological validity of each study. Data extraction included study design and analysis procedures used to couple brain activity with movement characteristics. RESULTS Of the 404 studies found, 23 were included in the final review. The overall study quality was moderate (0.6/1). Thirteen studies used kinematic information either parallel to the fMRI results, or as a real-time input to external devices, for instance to provide feedback to the patient. Ten studies performed a statistical analysis between movement and brain activity by either using kinematics as variables during group or individual level regression or correlation. This permitted establishing links between movement characteristics and brain activity, unraveling cortico-kinematic relationships. For instance, increased activity in the ipsilesional Premotor Cortex was related to less smooth movements, whereas trunk compensation was expressed by increased activity in the contralesional Primary Motor Cortex. CONCLUSION Our review suggests that the coupling of fMRI and kinematics may provide valuable insight into cortico-kinematic relationships. The optimization and standardization of both data measurement and treatment procedures may help the field to move forward and to fully use the potential of multimodal cortico-kinematic integration to unravel the complexity of post-stroke motor function and recovery.
Collapse
Affiliation(s)
- Zakaria Belkacemi
- Siemens Healthcare SAS, Courbevoie, France.
- Euromov Digital Health in Motion, University of Montpellier, IMT Mines Alès, Montpellier, France.
- Montpellier University Hospital, Montpellier, France.
| | | | - Andon Tchechmedjiev
- Euromov Digital Health in Motion, University of Montpellier, IMT Mines Alès, Montpellier, France
| | | | - Denis Mottet
- Euromov Digital Health in Motion, University of Montpellier, IMT Mines Alès, Montpellier, France
| | | |
Collapse
|
2
|
Kim Y, Jun SY, Oh J, Koo J, Lee E. Poststroke Ipsilesional Motor Performance: Microstructural Biomarkers and Their Associations With Executive Function. Neurorehabil Neural Repair 2025; 39:202-212. [PMID: 39744982 DOI: 10.1177/15459683241309580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BackgroundUnilateral hemispheric stroke can impair the ipsilesional motor performance, which is crucial for attaining optimal functional outcomes poststroke. However, the specific brain structures contributing to ipsilesional motor performance impairment remain unclear.ObjectiveTo explore the link between ipsilesional motor performance and the microstructural integrity of relevant neural pathways.MethodsThis study enrolled 60 consecutive patients in the early subacute phase of stroke recovery. Ipsilesional motor performance was assessed using the Box and Block Test. Multiple linear regression was used to evaluate the associations between ipsilesional motor performance and the microstructural integrity of relevant white matter tracts (Biomarker models) and cognitive function test scores (Cognition models).ResultsBiomarker models, including the genu of the corpus callosum, ipsilesional cingulum, fornix, uncinate fasciculus, superior longitudinal fasciculus, and contralesional inferior longitudinal fasciculus, showed a significant association with ipsilesional motor performance. Cognition models, including Mini-Mental State Examination and Trail Making Test-B, were significantly associated with ipsilesional motor performance. Final regression models (combined Cognition and Biomarker models) revealed that the performance time of Trail Making Test-B, in combination with biomarkers, including the genu of the corpus callosum, ipsilesional superior longitudinal fasciculus, and ipsilesional cingulum, predicted ipsilesional motor performance with high explanatory power (adjusted R2 = .721, .709, and .696, respectively).ConclusionsThis study demonstrated that executive function is associated with poststroke ipsilesional motor performance, as evidenced by the microstructural biomarkers involved in executive function. Our findings highlight that the comprehensive role of cognitive functioning rather than the motor system is closely linked to poststroke ipsilesional motor performance.
Collapse
Affiliation(s)
- Youngkook Kim
- Department of Rehabilitation Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - So Yeon Jun
- Department of Physical Medicine and Rehabilitation, Korea University Guro Hospital, Seoul, Korea
| | - Jeehae Oh
- Independent Scholar, Rehabilitation Medicine, Seoul, Republic of Korea
| | - Jaeun Koo
- Department of Rehabilitation Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunji Lee
- Department of Rehabilitation Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Zhuang J, Lei X, Guo X, Ding L, Jia J. Motor and parietal cortex activity responses to mirror visual feedback in patients with subacute stroke: An EEG study. Clin Neurophysiol Pract 2024; 10:12-21. [PMID: 39834475 PMCID: PMC11743862 DOI: 10.1016/j.cnp.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 01/22/2025] Open
Abstract
Objective To elucidate the immediate electrophysiological effects of mirror visual feedback (MVF) combined with or without touch task in subacute stroke. Methods Subacute stroke patients and healthy controls were recruited to participate in four grasping tasks (MVF or no MVF, combined with rubber ball or no ball) under electroencephalogram (EEG) monitoring. Event-related desynchronization (ERD) /event-related synchronization (ERS) and the lateralization index (LI) were utilized to observe the electrophysiological effects. Results MVF reduced ERD suppression in the contralateral primary motor cortex (M1) of stroke patients. This reduction was observed in the low mu band for the contralateral parietal cortex during pure MVF. The laterality effects in the low mu band under MVF was noted in M1 for stroke patients and in the parietal cortex for all participants. Conclusions MVF inhibits the excitability of the contralateral M1 for subacute stroke. MVF inhibit activities in the contralateral M1 and parietal cortex, and reestablished hemispheric balance in the low mu band. Significance MVF has an instantaneous effect on subacute stroke by inhibiting the excitability of the contralateral sensorimotor cortex. The attenuated ERD in the low mu band in contralateral M1 and parietal cortex may serve as biomarkers of MVF for stroke rehabilitation.
Collapse
Affiliation(s)
- Jinyang Zhuang
- Department of Rehabilitation Medicine, Shanghai Jing’an District Central Hospital, Shanghai, China
| | - Xiyuan Lei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li Ding
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Shanghai Jing’an District Central Hospital, Shanghai, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Rehabilitation Medicine, Fujian Branch of Huashan Hospital, Fudan University, Fujian, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, China
| |
Collapse
|
4
|
Smith DB, Scott SH, Semrau JA, Dukelow SP. Impairments of the ipsilesional upper-extremity in the first 6-months post-stroke. J Neuroeng Rehabil 2023; 20:106. [PMID: 37580751 PMCID: PMC10424459 DOI: 10.1186/s12984-023-01230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Ipsilesional motor impairments of the arm are common after stroke. Previous studies have suggested that severity of contralesional arm impairment and/or hemisphere of lesion may predict the severity of ipsilesional arm impairments. Historically, these impairments have been assessed using clinical scales, which are less sensitive than robot-based measures of sensorimotor performance. Therefore, the objective of this study was to characterize progression of ipsilesional arm motor impairments using a robot-based assessment of motor function over the first 6-months post-stroke and quantify their relationship to (1) contralesional arm impairment severity and (2) stroke-lesioned hemisphere. METHODS A total of 106 participants with first-time, unilateral stroke completed a unilateral assessment of arm motor impairment (visually guided reaching task) using the Kinarm Exoskeleton. Participants completed the assessment along with a battery of clinical measures with both ipsilesional and contralesional arms at 1-, 6-, 12-, and 26-weeks post-stroke. RESULTS Robotic assessment of arm motor function revealed a higher incidence of ipsilesional arm impairment than clinical measures immediately post-stroke. The incidence of ipsilesional arm impairments decreased from 47 to 14% across the study period. Kolmogorov-Smirnov tests revealed that ipsilesional arm impairment severity, as measured by our task, was not related to which hemisphere was lesioned. The severity of ipsilesional arm impairments was variable but displayed moderate significant relationships to contralesional arm impairment severity with some robot-based parameters. CONCLUSIONS Ipsilesional arm impairments were variable. They displayed relationships of varying strength with contralesional impairments and were not well predicted by lesioned hemisphere. With standard clinical care, 86% of ipsilesional impairments recovered by 6-months post-stroke.
Collapse
Affiliation(s)
- Donovan B Smith
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 1403 29th Street NW, Foothills Medical Centre, South Tower, Room 905, Calgary, AB, T2N 2T9, Canada
| | - Stephen H Scott
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Jennifer A Semrau
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 1403 29th Street NW, Foothills Medical Centre, South Tower, Room 905, Calgary, AB, T2N 2T9, Canada.
| |
Collapse
|
5
|
Bunketorp Käll L, Björnsdotter M, Wangdell J, Reinholdt C, Cooper R, Skau S. Feasibility of using fNIRS to explore motor-related regional haemodynamic signal changes in patients with sensorimotor impairment and healthy controls: A pilot study. Restor Neurol Neurosci 2023; 41:91-101. [PMID: 37458052 PMCID: PMC10741372 DOI: 10.3233/rnn-221292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND While functional near-infrared spectroscopy (fNIRS) can provide insight into cortical brain activity during motor tasks in healthy and diseased populations, the feasibility of using fNIRS to assess haemoglobin-evoked responses to reanimated upper limb motor function in patients with tetraplegia remains unknown. OBJECTIVE The primary objective of this pilot study is to determine the feasibility of using fNIRS to assess cortical signal intensity changes during upper limb motor tasks in individuals with surgically restored grip functions. The secondary objectives are: 1) to collect pilot data on individuals with tetraplegia to determine any trends in the cortical signal intensity changes as measured by fNIRS and 2) to compare cortical signal intensity changes in affected individuals versus age-appropriate healthy volunteers. Specifically, patients presented with tetraplegia, a type of paralysis resulting from a cervical spinal cord injury causing loss of movement and sensation in both lower and upper limbs. All patients have their grip functions restored by surgical tendon transfer, a procedure which constitutes a unique, focused stimulus for brain plasticity. METHOD fNIRS is used to assess changes in cortical signal intensity during the performance of two motor tasks (isometric elbow and thumb flexion). Six individuals with tetraplegia and six healthy controls participate in the study. A block paradigm is utilized to assess contralateral and ipsilateral haemodynamic responses in the premotor cortex (PMC) and primary motor cortex (M1). We assess the amplitude of the optical signal and spatial features during the paradigms. The accuracy of channel locations is maximized through 3D digitizations of channel locations and co-registering these locations to template atlas brains. A general linear model approach, with short-separation regression, is used to extract haemodynamic response functions at the individual and group levels. RESULTS Peak oxyhaemoglobin (oxy-Hb) changes in PMC appear to be particularly bilateral in nature in the tetraplegia group during both pinch and elbow trials whereas for controls, a bilateral PMC response is not especially evident. In M1 / primary sensory cortex (S1), the oxy-Hb responses to the pinch task are mainly contralateral in both groups, while for the elbow flexion task, lateralization is not particularly clear. CONCLUSIONS This pilot study shows that the experimental setup is feasible for assessing brain activation using fNIRS during volitional upper limb motor tasks in individuals with surgically restored grip functions. Cortical signal changes in brain regions associated with upper extremity sensorimotor processing appear to be larger and more bilateral in nature in the tetraplegia group than in the control group. The bilateral hemispheric response in the tetraplegia group may reflect a signature of adaptive brain plasticity mechanisms. Larger studies than this one are needed to confirm these findings and draw reliable conclusions.
Collapse
Affiliation(s)
- Lina Bunketorp Käll
- Center for Advanced Reconstruction of Extremities (C.A.R.E.), Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Björnsdotter
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Wangdell
- Center for Advanced Reconstruction of Extremities (C.A.R.E.), Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Hand Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Reinholdt
- Center for Advanced Reconstruction of Extremities (C.A.R.E.), Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Hand Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert Cooper
- Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, University College London, UK
| | - Simon Skau
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Zhuang JY, Ding L, Shu BB, Chen D, Jia J. Associated Mirror Therapy Enhances Motor Recovery of the Upper Extremity and Daily Function after Stroke: A Randomized Control Study. Neural Plast 2021; 2021:7266263. [PMID: 34630560 PMCID: PMC8494575 DOI: 10.1155/2021/7266263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Bimanual cooperation plays a vital role in functions of the upper extremity and daily activities. Based on the principle of bilateral movement, mirror therapy could provide bimanual cooperation training. However, conventional mirror therapy could not achieve the isolation of the mirror. A novel paradigm mirror therapy called associated mirror therapy (AMT) was proposed to achieve bimanual cooperation task-based mirror visual feedback isolating from the mirror. The study was aimed at exploring the feasibility and effectiveness of AMT on stroke patients. We conducted a single-blind, randomized controlled trial. Thirty-six eligible patients were equally assigned into the experimental group (EG) receiving AMT and the control group (CG) receiving bimanual training without mirroring for five days/week, lasting four weeks. The Fugl-Meyer Assessment Upper Limb subscale (FMA-UL) for upper extremity motor impairment was used as the primary outcome. The secondary outcomes were the Box and Block Test (BBT) and Functional Independence Measure (FIM) for motor and daily function. All patients participated in trials throughout without adverse events or side effects. The scores of FMA-UL and FIM improved significantly in both groups following the intervention. Compared to CG, the scores of FMA-UL and FIM were improved more significantly in EG after the intervention. The BBT scores were improved significantly for EG following the intervention, but no differences were found in the BBT scores of CG after the intervention. However, no differences in BBT scores were observed between the two groups. In summary, our study suggested that AMT was a feasible and practical approach to enhance the motor recovery of paretic arms and daily function in stroke patients. Furthermore, AMT may improve manual dexterity for poststroke rehabilitation.
Collapse
Affiliation(s)
- Jin-Yang Zhuang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Ding
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bei-Bei Shu
- Department of Rehabilitation Medicine, Shanghai Jing'an District Central Hospital, Shanghai, China
| | - Dan Chen
- Department of Rehabilitation Medicine, Shanghai Jing'an District Central Hospital, Shanghai, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Jing'an District Central Hospital, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, China
| |
Collapse
|
7
|
Hoonhorst MHJ, Nijland RHM, Emmelot CH, Kollen BJ, Kwakkel G. TMS-Induced Central Motor Conduction Time at the Non-Infarcted Hemisphere Is Associated with Spontaneous Motor Recovery of the Paretic Upper Limb after Severe Stroke. Brain Sci 2021; 11:brainsci11050648. [PMID: 34063558 PMCID: PMC8157217 DOI: 10.3390/brainsci11050648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Stroke affects the neuronal networks of the non-infarcted hemisphere. The central motor conduction time (CMCT) induced by transcranial magnetic stimulation (TMS) could be used to determine the conduction time of the corticospinal tract of the non-infarcted hemisphere after a stroke. Objectives: Our primary aim was to demonstrate the existence of prolonged CMCT in the non-infarcted hemisphere, measured within the first 48 h when compared to normative data, and secondly, if the severity of motor impairment of the affected upper limb was significantly associated with prolonged CMCTs in the non-infarcted hemisphere when measured within the first 2 weeks post stroke. Methods: CMCT in the non-infarcted hemisphere was measured in 50 patients within 48 h and at 11 days after a first-ever ischemic stroke. Patients lacking significant spontaneous motor recovery, so-called non-recoverers, were defined as those who started below 18 points on the FM-UE and showed less than 6 points (10%) improvement within 6 months. Results: CMCT in the non-infarcted hemisphere was prolonged in 30/50 (60%) patients within 48 h and still in 24/49 (49%) patients at 11 days. Sustained prolonged CMCT in the non-infarcted hemisphere was significantly more frequent in non-recoverers following FM-UE. Conclusions: The current study suggests that CMCT in the non-infarcted hemisphere is significantly prolonged in 60% of severely affected, ischemic stroke patients when measured within the first 48 h post stroke. The likelihood of CMCT is significantly higher in non-recoverers when compared to those that show spontaneous motor recovery early post stroke.
Collapse
Affiliation(s)
| | - Rinske H. M. Nijland
- Amsterdam Rehabilitation Research Center|Reade, 1054 HW Amsterdam, The Netherlands;
| | - Cornelis H. Emmelot
- Department of Rehabilitation Medicine, Isala, 8025 AB Zwolle, The Netherlands;
| | - Boudewijn J. Kollen
- Department of General Practice and Elderly Care Medicine, University of Groningen, University Medical Center Groningen, 9712 CP Groningen, The Netherlands;
| | - Gert Kwakkel
- Amsterdam Rehabilitation Research Center|Reade, 1054 HW Amsterdam, The Netherlands;
- Amsterdam University Medical Center, Department of Rehabilitation Medicine, Amsterdam Movement Sciences, 1081 BT Amsterdam, The Netherlands
- Amsterdam Neurosciences, Amsterdam University Medical Centre, 1081 HV Amsterdam, The Netherlands
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University of Chicago, Evanston, IL 60208, USA
- Correspondence: ; Tel.: +31-204-441-940
| |
Collapse
|
8
|
Cheng HJ, Ng KK, Qian X, Ji F, Lu ZK, Teo WP, Hong X, Nasrallah FA, Ang KK, Chuang KH, Guan C, Yu H, Chew E, Zhou JH. Task-related brain functional network reconfigurations relate to motor recovery in chronic subcortical stroke. Sci Rep 2021; 11:8442. [PMID: 33875691 PMCID: PMC8055891 DOI: 10.1038/s41598-021-87789-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke leads to both regional brain functional disruptions and network reorganization. However, how brain functional networks reconfigure as task demand increases in stroke patients and whether such reorganization at baseline would facilitate post-stroke motor recovery are largely unknown. To address this gap, brain functional connectivity (FC) were examined at rest and motor tasks in eighteen chronic subcortical stroke patients and eleven age-matched healthy controls. Stroke patients underwent a 2-week intervention using a motor imagery-assisted brain computer interface-based (MI-BCI) training with or without transcranial direct current stimulation (tDCS). Motor recovery was determined by calculating the changes of the upper extremity component of the Fugl-Meyer Assessment (FMA) score between pre- and post-intervention divided by the pre-intervention FMA score. The results suggested that as task demand increased (i.e., from resting to passive unaffected hand gripping and to active affected hand gripping), patients showed greater FC disruptions in cognitive networks including the default and dorsal attention networks. Compared to controls, patients had lower task-related spatial similarity in the somatomotor-subcortical, default-somatomotor, salience/ventral attention-subcortical and subcortical-subcortical connections, suggesting greater inefficiency in motor execution. Importantly, higher baseline network-specific FC strength (e.g., dorsal attention and somatomotor) and more efficient brain network reconfigurations (e.g., somatomotor and subcortical) from rest to active affected hand gripping at baseline were related to better future motor recovery. Our findings underscore the importance of studying functional network reorganization during task-free and task conditions for motor recovery prediction in stroke.
Collapse
Affiliation(s)
- Hsiao-Ju Cheng
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Kwun Kei Ng
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xing Qian
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fang Ji
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhong Kang Lu
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
| | - Wei Peng Teo
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Xin Hong
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore
| | - Fatima Ali Nasrallah
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore
- Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Kai Keng Ang
- Institute for Infocomm Research, Agency for Science Technology and Research, Singapore, Singapore
- School of Computer Science and Engineering, Nanyang Technology University, Singapore, Singapore
| | - Kai-Hsiang Chuang
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore
- Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technology University, Singapore, Singapore
| | - Haoyong Yu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Effie Chew
- Division of Neurology/Rehabilitation Medicine, National University Hospital, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 11, Singapore, 119228, Singapore.
| | - Juan Helen Zhou
- Center for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Center for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Tahir Foundation Building (MD1), 12 Science Drive 2, #13-05C, Singapore, 117549, Singapore.
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Xu X, He B, Lin Z, Wang X, Yin J, Luo X, Luo S, Liang C, Wen X, Xiong S, Zhu D, Fu J, Lv D, Dai Z, Lin J, Li Y, Chen W, Luo Z, Wang Y, Ma G. SAP97 rs3915512 Polymorphism Affects the Neurocognition of Schizophrenic Patients: A Genetic Neuroimaging Study. Front Genet 2020; 11:572414. [PMID: 33133161 PMCID: PMC7578398 DOI: 10.3389/fgene.2020.572414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
Our previous study suggested that the synapse-associated protein 97 (SAP97) gene rs3915512 polymorphism may influence neurocognition in schizophrenia patients. Neuroimaging studies have shown a possible association between cognitive function and brain activity/connectivity. Considering the poor understanding of whether the disease state and SAP97 rs3915512 polymorphism have interactive effects on brain activity/connectivity, 52 first-episode schizophrenia (FES) patients and 52 healthy controls were genotyped using blood DNA samples and underwent magnetic resonance imaging scanning. A two-way ANCOVA model was performed with rs3915512 genotypes and disease state as the between-subject factors. A significant disease × SAP97 interactive effect was found for the amplitude of low-frequency fluctuation (ALFF) in the right supplementary motor area, left rolandic opercularis area (ROC-L), and bilateral middle occipital gyrus (MOG). In addition, among auditory/visual-related brain areas, a significant interactive effect was found for resting-state functional connectivity (RSFC) between the MOG-L and bilateral superior temporal gyrus (STG) in the STG-L with ROC-R, right cuneus (Cu-R), left fusiform (Fu-L), and left lingual gyrus (LG-L). Positive correlations were found between ALFF in the ROC-L and motor speed scores, between RSFC in the STG-L and LG-L and between Brief Assessment of Cognition in Schizophrenia verbal memory scores in FES. The SAP97 rs3915512 polymorphism may affect neurocognitive function in patients with schizophrenia by changing the brain activity and connectivity of auditory/visual-related brain areas.
Collapse
Affiliation(s)
- Xusan Xu
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Bin He
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoxia Wang
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shucun Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xia Wen
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - You Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wubiao Chen
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zebin Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guoda Ma
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
10
|
Barry AJ, Triandafilou KM, Stoykov ME, Bansal N, Roth EJ, Kamper DG. Survivors of Chronic Stroke Experience Continued Impairment of Dexterity But Not Strength in the Nonparetic Upper Limb. Arch Phys Med Rehabil 2020; 101:1170-1175. [PMID: 32113974 DOI: 10.1016/j.apmr.2020.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the performance of the less affected upper limb in people with stroke compared with normative values. To examine less affected upper limb function in those whose prestroke dominant limb became paretic and those whose prestroke nondominant limb became paretic. DESIGN Cohort study of survivors of chronic stroke (7.2±6.7y post incident). SETTING The study was performed at a freestanding academic rehabilitation hospital. PARTICIPANTS Survivors of chronic stroke (N=40) with severe hand impairment (Chedoke-McMaster Stroke Assessment rating of 2-3 on Stage of Hand) participated in the study. In 20 participants the prestroke dominant hand (DH) was tested (nondominant hand [NH] affected by stroke), and in 20 participants the prestroke NH was tested (DH affected by stroke). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURE Jebsen-Taylor Hand Function Test. Data from survivors of stroke were compared with normative age- and sex-matched data from neurologically intact individuals. RESULTS When combined, DH and NH groups performed significantly worse on fine motor tasks with their nonparetic hand relative to normative data (P<.007 for all measures). Even the participants who continued to use their prestroke DH as their primary hand after the stroke demonstrated reduced fine motor skills compared with normative data. In contrast, grip strength was not significantly affected in either group of survivors of stroke (P>.140). CONCLUSIONS Survivors of stroke with severe impairment of the paretic limb continue to present significant upper extremity impairment in their nominally nonparetic limb even years after stroke. This phenomenon was observed regardless of whether the DH or NH hand was primarily affected. Because this group of survivors of stroke is especially dependent on the nonparetic limb for performing functional tasks, our results suggest that the nonparetic upper limb should be targeted for rehabilitation.
Collapse
Affiliation(s)
| | | | | | - Naveen Bansal
- Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Elliot J Roth
- Shirley Ryan AbilityLab, Chicago, Illinois; Department of Physical Medicine & Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Derek G Kamper
- Department of Physical Medicine & Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois; UNC/NC State Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina; Closed-Loop Engineering for Advanced Rehabilitation Research Core, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
11
|
Laffont I, Froger J, Jourdan C, Bakhti K, van Dokkum LEH, Gouaich A, Bonnin HY, Armingaud P, Jaussent A, Picot MC, Le Bars E, Dupeyron A, Arquizan C, Gelis A, Mottet D. Rehabilitation of the upper arm early after stroke: Video games versus conventional rehabilitation. A randomized controlled trial. Ann Phys Rehabil Med 2019; 63:173-180. [PMID: 31830535 DOI: 10.1016/j.rehab.2019.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Few rehabilitation methods have proven their efficacy in increasing sensori-motor recovery and/or function of the upper limb (UL) after stroke. Video games (VGs) are promising tools in this indication. OBJECTIVE To compare UL rehabilitation by using VGs and conventional rehabilitation (CR) in patients with sub-acute stroke. DESIGN Single-blind, multicentric trial, with central randomization and stratification by center. SETTING Physical and rehabilitation medicine departments of 2 university hospitals. PARTICIPANTS Adults within 3 months after a first vascular cerebral accident, with UL Fugl Meyer Score (UL-FMS)<30/66 and without major cognitive impairment. INTERVENTION A 45-min additional session of conventional occupational therapy (OT) or a VG-based OT session as add-on therapy to usual rehabilitation programs, 5 days/week for 6 weeks. MAIN OUTCOME MEASURES Primary outcome: UL-FMS. Secondary outcome: Box and Block Test (BBT), Wolf Motor Function test (WMFT), Motor Activity Log (MAL), Barthel Index and quality of life (SF-36). RESULTS We included 51 patients (20 women) at a mean (SD) of 27.2 (19.4) days post-stroke (mean age 58 years [range 24-83]), 26 in the CR group and 25 in the VG group (23 in each group at 6-month follow-up). The mean duration of the additional rehabilitation session was similar in both groups: 29.3 (4.3) vs 28.0 (4.4) min in CR and VG groups. Shoulder pain occurred in 4 patients in the VG group versus 7 in the CR group. At day 45, gain in UL-FMS did not significantly differ between the groups (CR mean 17.8 [14.6] vs VG 24.1 [14.8]; P=0.10), whereas gain in BBT was doubled in the VG group (CR 7.4 [12.2] vs VG 15.7 [16.3]; P=0.02). At 6-month follow-up, the study was inconclusive about between-group differences in UL-FMS, BBT and other criteria. Post-hoc analysis showed that gains in UL-FMS or BBT were significantly higher in the VG than CR group for patients included within 30 days post-stroke. CONCLUSION In general, we cannot conclude that video gaming and conventional OT led to different long-term sensorimotor recovery of the UL after sub-acute stroke. However, when applied within the first month after stroke, video gaming was more efficient than conventional rehabilitation on both sensorimotor recovery and gross grasping function. TRIAL REGISTRATION ClinicalTrials.gov (NCT01554449).
Collapse
Affiliation(s)
- Isabelle Laffont
- PRM Department, University of Montpellier, Hôpital Lapeyronie, Montpellier University Hospital, 191, boulevard du Doyen-Gaston-Giraud, 34291 Montpellier cedex 05, France; IFRH, Euromov, University of Montpellier, Montpellier, France.
| | - Jerome Froger
- IFRH, Euromov, University of Montpellier, Montpellier, France; PRM Department, University of Montpellier, Nimes University Hospital, Grau du Roi, France
| | - Claire Jourdan
- PRM Department, University of Montpellier, Hôpital Lapeyronie, Montpellier University Hospital, 191, boulevard du Doyen-Gaston-Giraud, 34291 Montpellier cedex 05, France; IFRH, Euromov, University of Montpellier, Montpellier, France
| | - Karima Bakhti
- PRM Department, University of Montpellier, Hôpital Lapeyronie, Montpellier University Hospital, 191, boulevard du Doyen-Gaston-Giraud, 34291 Montpellier cedex 05, France; IFRH, Euromov, University of Montpellier, Montpellier, France
| | - Liesjet E H van Dokkum
- Neuro Imagery Department, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | | | - Huei Yune Bonnin
- PRM Department, University of Montpellier, Nimes University Hospital, Grau du Roi, France
| | - Philippe Armingaud
- PRM Department, University of Montpellier, Nimes University Hospital, Grau du Roi, France
| | - Audrey Jaussent
- Inserm, Clinical Research and Epidemiology Unit, University of Montpellier, Montpellier, France
| | - Marie Christine Picot
- Inserm, Clinical Research and Epidemiology Unit, University of Montpellier, Montpellier, France
| | - Emmanuelle Le Bars
- CNRS, L2C, University of Montpellier, Montpellier, France; Neuro Imagery Department, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Arnaud Dupeyron
- IFRH, Euromov, University of Montpellier, Montpellier, France; PRM Department, University of Montpellier, Nimes University Hospital, Grau du Roi, France
| | - Caroline Arquizan
- Neurology Department, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Anthony Gelis
- PRM Department, Propara Center, Montpellier, France; Epsylon, Paul Valery University, Montpellier, France
| | - Denis Mottet
- IFRH, Euromov, University of Montpellier, Montpellier, France
| |
Collapse
|