1
|
Li W, Cao P, Wei R, Wong DWC. Effect of Sequential Repetitive Transcranial Magnetic Stimulation With Bilateral Arm Training on the Brain Effective Connectivity in Chronic Stroke. JOURNAL OF BIOPHOTONICS 2025; 18:e202400508. [PMID: 40035295 DOI: 10.1002/jbio.202400508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/10/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
This study investigated the effects of combining repetitive transcranial magnetic stimulation (rTMS) with bilateral arm training (BAT) on effective brain connectivity in chronic stroke patients using functional near-infrared spectroscopy. Fifteen post-stroke patients and fifteen healthy individuals were enrolled. Coupling function analysis was performed to evaluate the effective connectivity inflow, outflow, and the dominant information flow (DIF) during standalone BAT and combined rTMS-BAT therapy. Significant task-related alterations were observed in the ipsilesional supplementary motor area and occipital lobe (OL) of stroke patients undergoing rTMS-BAT. During BAT, stroke patients exhibited more pronounced DIF from the OL to motor areas compared to healthy controls. Furthermore, in the rTMS-BAT condition, patients demonstrated enhanced DIF from the ipsilesional OL and contralesional prefrontal cortex to ipsilesional motor areas. These findings suggested a potential synergistic effect on cortical reorganization through the sequential combination of task-related training and TMS in chronic stroke patients, offering insights into rehabilitation strategies.
Collapse
Affiliation(s)
- Wenhao Li
- School of Rehabilitation Engineering, China Civil Affairs University, Beijing, China
| | - Ping Cao
- School of Rehabilitation Engineering, China Civil Affairs University, Beijing, China
| | - Ran Wei
- School of Rehabilitation Engineering, China Civil Affairs University, Beijing, China
| | - Duo Wai-Chi Wong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
2
|
Liu N, Yang L, Yao X, Luo Y. From light to insight: Functional near-infrared spectroscopy for unravelling cognitive impairment during task performance. Biosci Trends 2025; 19:53-71. [PMID: 39864831 DOI: 10.5582/bst.2024.01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cognitive impairment refers to the impairment of higher brain functions such as perception, thinking or memory that affects the individual's ability to perform daily or social activities. Studies have found that changes in neuronal activity during tasks in patients with cognitive impairment are closely related to changes in cerebral cortical hemodynamics. Functional near-infrared spectroscopy is an indirect method to measure neural activity based on changes in blood oxygen concentration in the cerebral cortex. Due to its strong anti-motion interference, high compatibility, and almost no restriction on participants and environment, it has shown great potential in the research field of cognitive impairment. Recognizing these benefits, this comprehensive review systematically elucidates the rationale, historical development, advantages and disadvantages of functional near-infrared spectroscopy, and also discusses the applications of combining functional near-infrared spectroscopy with other detection techniques. Additionally, this review summarized how functional near-infrared spectroscopy can be applied to cognitive impairment caused by different diseases, ultimately aiding the study of neural mechanisms of cognitive activities, which is crucial for the diagnosis, differentiation and treatment of cognitive impairment.
Collapse
Affiliation(s)
- Na Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiuqing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China
| | - Yaxi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Ma Y, Xie D, Yu Y, Yao K, Zhang S, Li Q, Hong Y, Shen X. Differences in brain activation and connectivity during unaffected hand exercise in subacute and convalescent stroke patients. Neuroscience 2025; 565:10-18. [PMID: 39561956 DOI: 10.1016/j.neuroscience.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Patients experiencing severe hemiplegia following a stroke struggle to rehabilitate their affected limbs. Cross-education (CE) training emerges as a promising rehabilitation method due to its safety, simplicity, low risk, and ability to effectively improve muscle strength in the affected limb. However, controversy surrounds the neural mechanisms and clinical applications of CE. To address this, we employed functional near-infrared spectroscopy to monitor the response of regions of interest (ROI) and functional connectivity in patients with stroke experiencing severe hemiplegia during one session of 50% maximal voluntary contraction (MVC) strength training with less-affected hand in both subacute and convalescent phases. Our objective was to compare the two stroke groups to gain insight into the potential utility for unilateral training of the less-affected limb as an effective rehabilitation approach during different phases post of stroke. The findings revealed varying degrees of activation in the ROIs within the affected hemisphere across both groups during the task. Additionally, we found that the subacute stroke patients with severe hemiplegia (SPS) had higher blood oxygen levels in the ipsilesional primary motor (iM1), ipsilesional pre-motor and supplementary motor area (iP-SMA) and contralesional P-SMA (cP-SMA). Functional connectivity strength between the iM1 and contralesional brain regions, as well as between the iP-SMA and ipsilesional ROIs, showed statistically significant differences in SPS compared to convalescent stroke patients with severe hemiplegia (CPS) during a 50% MVC strength training session using the less-affected hand. SIGNIFICANCE STATEMENT: Exploring the neural mechanisms underlying one session of 50% MVC strength training with less-affected hand sheds light on a safe therapy. The study enhances our understanding of less-affected hand training and investigates the feasibility as a future rehabilitation approach. Analyzing how one session of 50% MVC strength training with less-affected hand affects brain activation and connectivity could lead to more tailored and effective rehabilitation strategies.
Collapse
Affiliation(s)
- Yuqin Ma
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei 230000, China
| | - Dongyan Xie
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei 230000, China
| | - Yang Yu
- School of Rehabilitation, Capital Medical University, Beijing 100068, China
| | - Kexin Yao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei 230000, China
| | - Shuting Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Rond, Jinghu District, Wuhu 241000, China
| | - Qiqi Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei 230000, China
| | - Yongfeng Hong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei 230000, China.
| | - Xianshan Shen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Department of Rehabilitation and Sports Medicine, The Second Clinical College of Anhui Medical University, Hefei 230000, China.
| |
Collapse
|
4
|
Huo C, Shao G, Chen T, Li W, Wang J, Xie H, Wang Y, Li Z, Zheng P, Li L, Li L. Effectiveness of unilateral lower-limb exoskeleton robot on balance and gait recovery and neuroplasticity in patients with subacute stroke: a randomized controlled trial. J Neuroeng Rehabil 2024; 21:213. [PMID: 39639336 PMCID: PMC11622492 DOI: 10.1186/s12984-024-01493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Impaired balance and gait in stroke survivors are associated with decreased functional independence. This study aimed to evaluate the effectiveness of unilateral lower-limb exoskeleton robot-assisted overground gait training compared with conventional treatment and to explore the relationship between neuroplastic changes and motor function recovery in subacute stroke patients. METHODS In this randomized, single-blind clinical trial, 40 patients with subacute stroke were recruited and randomly assigned to either a robot-assisted training (RT) group or a conventional training (CT) group. All outcome measures were assessed at the enrollment baseline (T0), 2nd week (T1) and 4th week (T2) of the treatment. The primary outcome was the between-group difference in the change in the Berg balance scale (BBS) score from baseline to T2. The secondary measures included longitudinal changes in the Fugl-Meyer assessment of the lower limb (FMA-LE), modified Barthel index (mBI), functional ambulation category (FAC), and locomotion assessment with gait analysis. In addition, the cortical activation pattern related to robot-assisted training was measured before and after intervention via functional near-infrared spectroscopy. RESULTS A total of 30 patients with complete data were included in this study. Clinical outcomes improved after 4 weeks of training in both groups, with significantly better BBS (F = 6.341, p = 0.018, partial η2 = 0.185), FMA-LE (F = 5.979, p = 0.021, partial η2 = 0.176), FAC (F = 7.692, p = 0.010, partial η2 = 0.216), and mBI scores (F = 7.255, p = 0.042, partial η2 = 0.140) in the RT group than in the CT group. Both groups showed significant improvement in gait speed and stride cadence on the locomotion assessment. Only the RT group presented a significantly increased stride length (F = 4.913, p = 0.015, partial η2 = 0.267), support phase (F = 5.335, p = 0.011, partial η2 = 0.283), and toe-off angle (F = 3.829, p = 0.035, partial η2 = 0.228) on the affected side after the intervention. The RT group also showed increased neural activity response over the ipsilesional motor area and bilateral prefrontal cortex during robot-assisted weight-shift and gait training following 4 weeks of treatment. CONCLUSIONS Overground gait training with a unilateral exoskeleton robot showed improvements in balance and gait functions, resulting in better gait patterns and increased gait stability for stroke patients. The increased cortical response related to the ipsilesional motor areas and their related functional network is crucial in the rehabilitation of lower limb gait in post-stroke patients.
Collapse
Affiliation(s)
- Congcong Huo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, P.R. China
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, P.R. China
| | - Guangjian Shao
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, P.R. China
| | - Tiandi Chen
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, P.R. China
| | - Wenhao Li
- School of Rehabilitation Engineering, China Civil Affairs University, Beijing, 102600, China
| | - Jue Wang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, P.R. China
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, P.R. China
| | - Hui Xie
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, P.R. China
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, P.R. China
| | - Yan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, P.R. China.
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, P.R. China.
| | - Pengyuan Zheng
- The Fifth Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| | - Liguo Li
- Zhengzhou Health Vocational College, Henan, 450052, P.R. China
| | - Luya Li
- The Fifth Affiliated Hospital of Zhengzhou University, Henan, 450052, P.R. China
| |
Collapse
|
5
|
Yang J, Li X, Yang X, Zhu T, Ou S. Acute Traumatic Coma Awakening Induced by Median Nerve Electrical Stimulation: A Systematic Review and Meta-Analysis. Neurocrit Care 2024:10.1007/s12028-024-02141-9. [PMID: 39448428 DOI: 10.1007/s12028-024-02141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Traumatic brain injury (TBI) is widely recognized as a major cause of death and disability. Optimizing recovery from coma is a priority for improving patient prognosis. Recently, an increasing number of studies have demonstrated that median nerve electrical stimulation (MNES) may be a potential approach for comatose patients awakening with TBI, although the results of these studies are not consistent. The aim of this study was to evaluate the effects of the MNES on recovery from coma in patients with TBI based on data from randomized controlled trials. The PubMed, Embase, Ovid MEDLINE, Cochrane Library, and China National Knowledge Infrastructure electronic databases were systematically searched from their inception to July 2023 using specific keywords. The χ2 test and I2 test were used to evaluate the heterogeneity across these studies. The mean differences with 95% confidence intervals (CIs) and relative risk (RR) with 95% CIs were adopted to analyze the continuous outcomes and binary outcomes, respectively. A total of 1831 patients from 18 studies were included in this meta-analysis. There were significant differences in the proportions of patients who regained consciousness between the MNES group and the control group after treatment (RR 1.36, 95% CI 1.18-1.56; P < 0.001) and at 6 months after injury (RR 1.31, 95% CI 1.16-1.47; P < 0.001). MNES significantly improved the Glasgow Coma Scale score (mean difference 2.38, 95% CI 1.78-2.98; P < 0.001). Furthermore, no significant differences in complications between the two groups of patients were observed, including pneumonitis (RR 0.86, 95% CI 0.72-1.03; P = 0.107), seizures (RR 1.24, 95% CI 0.49-3.10; P = 0.651), or gastric hemorrhage (RR 1.08, 95% CI 0.60-1.93; P = 0.795).The results of the present study indicate that patients with TBI in the MNES group recovered from coma more rapidly after treatment and at 6 months after injury. These results suggest that MNES is an effective approach for coma awakening after TBI.
Collapse
Affiliation(s)
- Jinkun Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Anesthesiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Xijuan Li
- Department of Anesthesiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Xueping Yang
- Department of Anesthesiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shan Ou
- Department of Anesthesiology, Chengdu First People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Zhao JL, Chen PM, Zhang T, Xie H, Xiao WW, Ng SSM, Wang CH. Characteristics of central cortex and upper-limb flexors synchrony oxygenation during grasping in people with stroke: a controlled trial study protocol. Front Hum Neurosci 2024; 18:1409148. [PMID: 39268217 PMCID: PMC11390428 DOI: 10.3389/fnhum.2024.1409148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Background Upper limb motor impairment is a common consequence of stroke, and the effectiveness and underlying mechanisms of rehabilitation therapy for improving upper limb function remain uncertain. Functional near-infrared spectroscopy, a reliable wearable neuroimaging technique, holds promise for investigating brain activity during functional tasks. This study aims to explore the synchronous oxygenation characteristics of the central cortex and upper-limb flexors during a grasping task and investigate the rehabilitation mechanisms of upper limb motor function in individuals with stroke. Methods Participants with stroke who demonstrate the ability to grasp and lift cubic wood blocks of different sizes (2.5cm3, 5cm3, and 10cm3) using their affected hand will be divided into three groups: A, B, and C. Each group will consist of twenty stroke patients, resulting in a total of sixty participants with stroke. Additionally, twenty matched healthy subjects will be enrolled as a control group. Comprehensive assessments will be conducted before and after the intervention, including blood oxygen parameter monitoring of the cerebral cortex and upper limb flexors using fNIRS during the grasping task. Other assessments will include MyotonPRO, the Modified Ashworth Scale, the upper extremity section of the Fugl-Meyer Assessment, the Action Research Arm Test, and the Modified Barthel Index. The study will be undertaken between January 2024 and September 2025. Conclusions The results of this trial will provide an in-depth understanding of the Characteristics of central cortex and upper-limb flexors synchronous oxygenation during grasping task and how it may relate to the rehabilitation mechanism of upper limb motor function in people with stroke. Clinical trial registration https://www.chictr.org.cn, identifier ChiCTR2400080619.
Collapse
Affiliation(s)
- Jiang-Li Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pei-Ming Chen
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tao Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Xie
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen-Wu Xiao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chu-Huai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Yu P, Dong R, Wang X, Tang Y, Liu Y, Wang C, Zhao L. Neuroimaging of motor recovery after ischemic stroke - functional reorganization of motor network. Neuroimage Clin 2024; 43:103636. [PMID: 38950504 PMCID: PMC11267109 DOI: 10.1016/j.nicl.2024.103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
The long-term motor outcome of acute stroke patients may be correlated to the reorganization of brain motor network. Abundant neuroimaging studies contribute to understand the pathological changes and recovery of motor networks after stroke. In this review, we summarized how current neuroimaging studies have increased understanding of reorganization and plasticity in post stroke motor recovery. Firstly, we discussed the changes in the motor network over time during the motor-activation and resting states, as well as the overall functional integration trend of the motor network. These studies indicate that the motor network undergoes dynamic bilateral hemispheric functional reorganization, as well as a trend towards network randomization. In the second part, we summarized the current study progress in the application of neuroimaging technology to early predict the post-stroke motor outcome. In the third part, we discuss the neuroimaging techniques commonly used in the post-stroke recovery. These methods provide direct or indirect visualization patterns to understand the neural mechanisms of post-stroke motor recovery, opening up new avenues for studying spontaneous and treatment-induced recovery and plasticity after stroke.
Collapse
Affiliation(s)
- Pei Yu
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ruoyu Dong
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Wang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuqi Tang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yaning Liu
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Can Wang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ling Zhao
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Yuan R, Peng Y, Ji R, Zheng Y. Comparison of the activation level in the sensorimotor cortex between motor point and proximal nerve bundle electrical stimulation. J Neural Eng 2024; 21:026029. [PMID: 38537271 DOI: 10.1088/1741-2552/ad3850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Objective.Neuromuscular electrical stimulation (NMES) is widely used for motor function rehabilitation in stroke survivors. Compared with the conventional motor point (MP) stimulation, the stimulation at the proximal segment of the peripheral nerve (PN) bundles has been demonstrated to have multiple advantages. However, it is not known yet whether the PN stimulation can increase the cortical activation level, which is crucial for motor function rehabilitation.Approach.The current stimuli were delivered transcutaneously at the muscle belly of the finger flexors and the proximal segment of the median and ulnar nerves, respectively for the MP and PN stimulation. The stimulation intensity was determined to elicit the same contraction levels between the two stimulation methods in 18 healthy individuals and a stroke patient. The functional near-infrared spectroscopy and the electromyogram were recorded to compare the activation pattern of the sensorimotor regions and the target muscles.Main Results.For the healthy subjects, the PN stimulation induced significantly increased concentration of the oxygenated hemoglobin in the contralateral sensorimotor areas, and enhanced the functional connectivity between brain regions compared with the MP stimulation. Meanwhile, the compound action potentials had a smaller amplitude and the H-reflex became stronger under the PN stimulation, indicating that more sensory axons were activated in the PN stimulation. For the stroke patient, the PN stimulation can elicit finger forces and induce activation of both the contralateral and ipsilateral motor cortex.Conclusions. Compared with the MP stimulation, the PN stimulation can induce more cortical activation in the contralateral sensorimotor areas possibly via involving more activities in the central pathway.Significance.This study demonstrated the potential of the PN stimulation to facilitate functional recovery via increasing the cortical activation level, which may help to improve the outcome of the NMES-based rehabilitation for motor function recovery after stroke.
Collapse
Affiliation(s)
- Rui Yuan
- Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yu Peng
- Department of Rehabilitation, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Run Ji
- National Research Center for Rehabilitation Technical Aids and the Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, Beijing, People's Republic of China
| | - Yang Zheng
- Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
9
|
Wang J, Li Y, Wang Y, Wang C, Qie S, Jin Z, Du W. Comparison of different rhythmic auditory stimuli on prefrontal cortex cortical activation during upper limb movement in patients with Parkinson's disease: a functional near-infrared spectroscopy study. Front Neurol 2024; 15:1336268. [PMID: 38476192 PMCID: PMC10927970 DOI: 10.3389/fneur.2024.1336268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Background A large number of literatures show that rhythmic auditory stimulation (RAS) can effectively improve Parkinson's disease (PD) patients' gait speed, frequency and speed. Its application and curative effect on upper limb motor function is relatively few. Objective By studying the immediate effect of RAS with different rhythms on the prefrontal cortex (PFC) blood oxygen response during upper limb movement in PD patients, this study discusses the potential neurophysiological mechanism of RAS on upper limb movement in PD patients, which is expected to provide guidance for patients with upper limb dysfunction such as Parkinson's disease. Methods In this study, 31 PD patients with upper limb static tremors were recruited to complete the nail board task on the healthy upper limb under the baseline rhythm, slow rhythm and fast rhythm provided by the therapist. At the same time, fNIRS was used to observe the blood oxygen response of PFC. Results There was no significant main effect onsidein all brain regions (p > 0.05), and there was no interaction between rhythm and side (p > 0.05); Except lPFC, the main effect of rhythm in other brain regions was significant (p < 0.05), and ΔHbO increased with the change of rhythm. Paired analysis showed that there were significant differences in ΔHbO between slow rhythm and baseline rhythm, between fast rhythm and baseline rhythm, and between slow rhythm and fast rhythm (p < 0.05); The ΔHbO of rPFC, lDLPFC and rDLPFC were significantly different between slow rhythm and fast rhythm (p < 0.05); there were significant differences in the ΔHbO of BA8 between slow rhythm and baseline rhythm, and between slow rhythm and fast rhythm (p < 0.05). Conclusion RAS may be a useful upper limb rehabilitation strategy for PD patients with upper limb dysfunction. At the same time, RAS with different rhythms also have different responses to PFC blood oxygen during upper limb movement in PD patients, so that we can design interventions for this kind of cortical mechanism. Identifying the neurophysiological mechanism of RAS on upper limb movement in PD patients may help clinicians customize rehabilitation methods for patients according to clues, so as to highly personalize upper limb training and optimize its effect.
Collapse
Affiliation(s)
- Jie Wang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yingqi Li
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yingpeng Wang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Congxiao Wang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Shuyan Qie
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Wenjun Du
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Li R, Zhang P, Lu J, Zhuang J, Wang M, Fang H, Zhang X, Gao Y, Yang Z, Chin KL. Case report: Ultrasound-guided median nerve electrical stimulation on functional recovery of hemiplegic upper limb after stroke. Front Neurol 2023; 14:1244192. [PMID: 38046582 PMCID: PMC10691377 DOI: 10.3389/fneur.2023.1244192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Background Functional restoration of hemiplegic upper limbs is a difficult area in the field of neurological rehabilitation. Electrical stimulation is one of the treatments that has shown promising advancements and functional improvements. Most of the electrical stimulations used in clinical practice are surface stimulations. In this case, we aimed to investigate the feasibility of a minimally invasive, ultrasound-guided median nerve electrical stimulation (UG-MNES) in improving the upper limb motor function and activity of a patient with right-sided hemiparesis. Case presentation A 65-year-old male recovering from a left massive intracerebral hemorrhage after open debridement hematoma removal had impaired right limb movement, right hemianesthesia, motor aphasia, dysphagia, and complete dependence on his daily living ability. After receiving 3 months of conventional rehabilitation therapy, his cognitive, speech, and swallowing significantly improved but the Brunnstrom Motor Staging (BMS) of his right upper limb and hand was at stage I-I. UG-MNES was applied on the right upper limb for four sessions, once per week, together with conventional rehabilitation. Immediate improvement in the upper limb function was observed after the first treatment. To determine the effect of UG-MNES on long-term functional recovery, assessments were conducted a week after the second and fourth intervention sessions, and motor function recovery was observed after 4-week of rehabilitation. After completing the full rehabilitation course, his BMS was at stage V-IV, the completion time of Jebsen Hand Function Test (JHFT) was shortened, and the scores of Fugl-Meyer Assessment for upper extremity (FMA-UE) and Modified Barthel Index (MBI) were increased. Overall, the motor function of the hemiplegic upper limb had significantly improved, and the right hand was the utility hand. Electromyography (EMG) and nerve conduction velocity (NCV) tests were normal before and after treatment. Conclusion The minimally invasive, UG-MNES could be a new alternative treatment in stroke rehabilitation for functional recovery of the upper limbs.
Collapse
Affiliation(s)
- Rui Li
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Ping Zhang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Jingyi Lu
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Jianlin Zhuang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Meiqi Wang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Hongmei Fang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Xiaowei Zhang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Ying Gao
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Zhufen Yang
- Department of Rehabilitation Medicine, The Second People’s Hospital of Kunming, Rehabilitation Hospital Affiliated to Kunming University, Kunming, China
| | - Kai Ling Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Borneo Medical and Health Research Centre (BMHRC), Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
11
|
Kong Y, Peng W, Li J, Zhu C, Zhang C, Fan Y. Alteration in brain functional connectivity in patients with post-stroke cognitive impairment during memory task: A fNIRS study. J Stroke Cerebrovasc Dis 2023; 32:107280. [PMID: 37517137 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
OBJECTIVE This study attempted to evaluate the functional connectivity (FC) in relevant cortex areas during three memory tasks using the functional near-infrared spectroscopy (fNIRS) method to expound the neural mechanisms in individuals with post-stroke cognitive impairment (PSCI). METHODS Short-term memory and visuospatial abilities were assessed using the clock drawing test, digit span test, and Corsi Block-tapping tests with simultaneous fNIRS. The oxygenated hemoglobin concentration signals were recorded from the bilateral motor sense cortex (LMS/RMS) and prefrontal lobe (LPFT/PFT/RPFT) of 19 subjects with cognitive impairment (PSCI group), 27 stroke subjects (STR group) and 26 healthy subjects (HC group). RESULTS MMSE scores were positively correlated with the clock drawing test and digit span test scores but not with Corsi Block-tapping scores. During each test, functional connectivity between the bilateral MS (LMS/RMS) was highest within each group, but the functional connectivity between motor sense cortex and frontal lobe was lowest. PSCI group showed decreased FC between bilateral motor sense cortex (P < 0.05) and between motor sense cortex and frontal lobe (P > 0.05) during clock drawing test and Corsi Block-tapping test while decreased FC between each region of interest during digit span test with no significant difference. Functional connectivity levels were closely related to MMSE scores. CONCLUSIONS Decreased functional connectivity level may be a marker of impaired cognitive function in post-stroke cognitive impairment. The fNIRS-based functional connectivity provides a non-invasive method to recognize cognitive impairment post-stroke. Functional connectivity changes may help to further understand the neural mechanisms of cognitive impairment post stroke.
Collapse
Affiliation(s)
- Ying Kong
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, No. 139, Renmin Rd. Furong District, Changsha 410011, Hunan China
| | - Wenna Peng
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, No. 139, Renmin Rd. Furong District, Changsha 410011, Hunan China
| | - Jing Li
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, No. 139, Renmin Rd. Furong District, Changsha 410011, Hunan China
| | - Chunjiao Zhu
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, No. 139, Renmin Rd. Furong District, Changsha 410011, Hunan China
| | - Changjie Zhang
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, No. 139, Renmin Rd. Furong District, Changsha 410011, Hunan China
| | - Yongmei Fan
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, No. 139, Renmin Rd. Furong District, Changsha 410011, Hunan China.
| |
Collapse
|
12
|
Huo C, Xu G, Xie H, Zhao H, Zhang X, Li W, Zhang S, Huo J, Li H, Sun A, Li Z. Effect of High-Frequency rTMS Combined with Bilateral Arm Training on Brain Functional Network in Patients with Chronic Stroke: An fNIRS study. Brain Res 2023; 1809:148357. [PMID: 37011721 DOI: 10.1016/j.brainres.2023.148357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVE Neurological evidence for the combinational intervention coupling rTMS with motor training for stroke rehabilitation remains limited. This study aimed to investigate the effects of rTMS combined with bilateral arm training (BAT) on the brain functional reorganization in patients with chronic stroke via functional near-infrared spectroscopy (fNIRS). METHODS Fifteen stroke patients and fifteen age-matched healthy participants were enrolled and underwent single BAT session (s-BAT) and BAT immediately after 5-Hz rTMS over the ipsilesional M1 (rTMS-BAT), measured cerebral haemodynamics by fNIRS. Functional connectivity (FC), the clustering coefficient (Ccoef), and local efficiency (Eloc) were applied to evaluate the functional response to the training paradigms. RESULTS The differences in FC responses to the two training paradigms were more pronounced in stroke patients than in healthy controls. In the resting state, stroke patients exhibited significantly lower FC than controls in both hemispheres. rTMS-BAT induced no significant difference in FC between groups. Compared to the resting state, rTMS-BAT induced significant decreases in Ccoef and Eloc of the contralesional M1 and significant increases in Eloc of the ipsilesional M1 in stroke patients. Additionally, these above two network metrics of the ipsilesional motor area were significantly positively correlated with the motor function of stroke patients. CONCLUSIONS These results suggest that the rTMS-BAT paradigm had additional effects on task-dependent brain functional reorganization. The engagement of the ipsilesional motor area in the functional network was associated with the motor impairment severity of stroke patients. fNIRS-based assessments may provide information about the neural mechanisms underlying combination interventions for stroke rehabilitation.
Collapse
|
13
|
Huo C, Xu G, Sun A, Xie H, Hu X, Li W, Li Z, Fan Y. Cortical response induced by task-oriented training of the upper limb in subacute stroke patients as assessed by functional near-infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202200228. [PMID: 36222197 DOI: 10.1002/jbio.202200228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Despite the popularity of task-oriented training for stroke, the cortical reorganization associated with this type of therapy remains to be fully elucidated due to the lack of dynamic assessment tools. A good tolerance for motion artifacts makes functional near-infrared spectroscopy (fNIRS) suitable for investigating task-induced cortical responses in stroke patients. Here, patients were randomly assigned to receive task oriented (n = 25) or cyclic rotary training (n = 25) with simultaneous cortical activation and effective connectivity network analysis between prefrontal and motor cortices (PFC/MC). Compared with cyclic rotary training, task-oriented training induced significantly increased activation in both hemispheres and enhanced influence of PFC on MC. In addition, significantly decreased activation lateralization and increased betweenness centrality of the contralesional MC suggested widespread involvement of the contralesional hemisphere during task-oriented training. This study verifies the feasibility of fNIRS combined with motor paradigms for assessing neural responses associated with stroke rehabilitation in real time.
Collapse
Affiliation(s)
- Congcong Huo
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Gongcheng Xu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Aiping Sun
- Department of Neurological Rehabilitation, National Rehabilitation Hospital of National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Hui Xie
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Wenhao Li
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Neuro-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, China
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
14
|
Wang Y, Yu N, Lu J, Zhang X, Wang J, Shu Z, Cheng Y, Zhu Z, Yu Y, Liu P, Han J, Wu J. Increased Effective Connectivity of the Left Parietal Lobe During Walking Tasks in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:165-178. [PMID: 36872789 PMCID: PMC10041419 DOI: 10.3233/jpd-223564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND In Parkinson's disease (PD), walking may depend on the activation of the cerebral cortex. Understanding the patterns of interaction between cortical regions during walking tasks is of great importance. OBJECTIVE This study investigated differences in the effective connectivity (EC) of the cerebral cortex during walking tasks in individuals with PD and healthy controls. METHODS We evaluated 30 individuals with PD (62.4±7.2 years) and 22 age-matched healthy controls (61.0±6.4 years). A mobile functional near-infrared spectroscopy (fNIRS) was used to record cerebral oxygenation signals in the left prefrontal cortex (LPFC), right prefrontal cortex (RPFC), left parietal lobe (LPL), and right parietal lobe (RPL) and analyze the EC of the cerebral cortex. A wireless movement monitor was used to measure the gait parameters. RESULTS Individuals with PD demonstrated a primary coupling direction from LPL to LPFC during walking tasks, whereas healthy controls did not demonstrate any main coupling direction. Compared with healthy controls, individuals with PD showed statistically significantly increased EC coupling strength from LPL to LPFC, from LPL to RPFC, and from LPL to RPL. Individuals with PD showed decreased gait speed and stride length and increased variability in speed and stride length. The EC coupling strength from LPL to RPFC negatively correlated with speed and positively correlated with speed variability in individuals with PD. CONCLUSION In individuals with PD, the left prefrontal cortex may be regulated by the left parietal lobe during walking. This may be the result of functional compensation in the left parietal lobe.
Collapse
Affiliation(s)
- Yue Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Jiewei Lu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Xinyuan Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhilin Shu
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Yuanyuan Cheng
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhizhong Zhu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Yang Yu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Peipei Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Jialing Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, China
| |
Collapse
|
15
|
Wang P, Cao W, Zhou H, Zhang HX, Zhang L, Liu L, Sui Y, Zhang Z, Yin X, Yang F, Kong L. Efficacy of median nerve electrical stimulation on the recovery of patients with consciousness disorders: a systematic review and meta-analysis. J Int Med Res 2022; 50:3000605221134467. [PMID: 36448965 PMCID: PMC9720824 DOI: 10.1177/03000605221134467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/05/2022] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVE To identify whether median nerve stimulation (MNS) may be a potential candidate for the treatment of consciousness disorders via a systematic review and meta-analysis. METHODS PubMed, Cochrane Library, China National Knowledge Infrastructure, Chinese VIP Information, Wanfang, and SinoMed databases were searched. Risk of bias was assessed using the Cochrane Collaboration's tool. The Glasgow Coma Scale (GCS), Disability Rating Scale (DRS), electroencephalogram (EEG), days in the Intensive Care Unit (ICU), and cerebral blood flow measures were compared between the median nerve stimulation and control groups. The meta-analysis was conducted using Review Manager software. RESULTS We identified 2244 studies, of which 23 (with data from 1856 patients) qualified for the analysis. MNS improved GCS scores (mean difference [MD] = 2.15), EEG scores (MD = 1.61), cerebral mean blood flow velocity (MD = 4.23), and cerebral systolic blood flow velocity (MD = 10.51). Furthermore, it decreased DRS scores (MD = -1.77) and days in the ICU (MD = -2.02). The effects of MNS on GCS scores increased with longer treatments (1 week, MD = 1.03; 1 month, MD = 2.35) and were better with right MNS (right, MD = 2.36; bilateral, MD = 1.72). CONCLUSIONS MNS may promote recovery from consciousness disorders.
Collapse
Affiliation(s)
- Peng Wang
- The First Clinical College, Shandong University of Traditional
Chinese Medicine, Jinan, China
- Department of Critical Care Unit, Shandong Provincial Hospital
Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Cao
- Department of Nephrology, The First Affiliated Hospital of
Shandong First Medical University, Jinan, China
- Department of Nephrology, Jinan, Shandong Provincial Qianfoshan
Hospital, Shandong, China
| | - Hong Zhou
- Department of Neurorehabilitation, Weifang Traditional Chinese
Hospital, Weifang, China
| | - Huan Xin Zhang
- Department of Neurorehabilitation, Weifang Traditional Chinese
Hospital, Weifang, China
| | - Lunzhong Zhang
- Department of Neurorehabilitation, Weifang Traditional Chinese
Hospital, Weifang, China
| | - Li Liu
- Department of Neurorehabilitation, Weifang Traditional Chinese
Hospital, Weifang, China
| | - Yunlong Sui
- Department of Neurorehabilitation, Weifang Traditional Chinese
Hospital, Weifang, China
| | - Zhen Zhang
- Department of Neurorehabilitation, Weifang Traditional Chinese
Hospital, Weifang, China
| | - Xiaoyu Yin
- Shandong Provincial Hospital Affiliated to Shandong First
Medical University, Medical College, Jinan, China
| | - Fan Yang
- Department of Rehabilitation Medicine, Shandong Provincial
Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Li Kong
- Department of Emergency Center, Shandong University of
Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
16
|
Xie H, Jing J, Ma Y, Song Y, Yin J, Xu G, Li X, Li Z, Wang Y. Effects of simultaneous use of m-NMES and language training on brain functional connectivity in stroke patients with aphasia: A randomized controlled clinical trial. Front Aging Neurosci 2022; 14:965486. [PMID: 36158562 PMCID: PMC9489908 DOI: 10.3389/fnagi.2022.965486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The m-NMES had been demonstrated to redistribute brain resources and induce plastic changes in the stroke patients. However, the physiological mechanism and clinical efficacy of m-NMES combination with existing clinical rehabilitation programs remains unclear in patients with aphasia after stroke. This study aimed to investigate the effects of simultaneous use of m-NMES and language training (m-NMES-LT) with on cerebral oscillations and brain connection, as well as the effect on clinical efficacy. Materials and methods Total 21 right–handed adult patients with aphasia were randomly assigned to language training (LT) group and m-NMES-LT group, and tissue concentration of oxyhemoglobin and deoxyhemoglobin oscillations were measured by functional near-infrared spectroscopy in resting and treatment state during three consecutive weeks. Five characteristic frequency signals (I, 0.6–2 Hz; II, 0.145–0.6 Hz; III, 0.052–0.145 Hz; IV, 0.021–0.052 Hz; and V, 0.0095–0.021 Hz) were identified using the wavelet method. The wavelet amplitude (WA) and wavelet phase coherence (WPCO) were calculated to describe the frequency-specific cortical activities. Results The m-NMES-LT induced significantly higher WA values in contralesional PFC in intervals I, II, and V, and ipsilesional MC in intervals I-V than the resting state. The WPCO values between ipsilesional PFC-MC in interval III-IV, and between bilateral MC in interval III-IV were significantly higher than resting state. In addition, there was a significant positive correlation between WPCO and Western Aphasia Battery in m-NMES-LT group. Conclusion The language training combined with neuromuscular electrical stimulation on median nerve could improve and achieve higher clinical efficacy for aphasia. This is attributed to the m-NMES-LT could enhance cortical activation and brain functional connectivity in patients with aphasia, which was derived from myogenic, neurogenic, and endothelial cell metabolic activities.
Collapse
Affiliation(s)
- Hui Xie
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Jing
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanping Ma
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ying Song
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiahui Yin
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Gongcheng Xu
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xinglou Li
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
- Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, China
- Zengyong Li,
| | - Yonghui Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
- *Correspondence: Yonghui Wang,
| |
Collapse
|
17
|
Ma H, Zhai Y, Xu Z, Fan S, Wu X, Xu J, Wu S, Ma C. Increased cerebral cortex activation in stroke patients during electrical stimulation of cerebellar fastigial nucleus with functional near-infrared spectroscopy. Front Neurosci 2022; 16:895237. [PMID: 36061594 PMCID: PMC9433974 DOI: 10.3389/fnins.2022.895237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Electrical stimulation of the cerebellar fastigial nucleus (FNS) has been shown to protect animals against cerebral ischemic injury. However, the changes in cortical activation as a response to FNS have not been illustrated in humans. Objective This study aims to detect functional connectivity changes in the brain of stroke patients, and investigate the cortical activation caused by FNS through measuring the oxygenated hemoglobin concentration (HBO) in the cerebral cortex of stroke patients and healthy controls (HCs). Methods This study recruited 20 patients with stroke and 20 HCs with all the following factors matched: age, gender and BMI. The experiment session was made up of the pre-task baseline, FNS task period, and post-task baseline. FNS task period contains 5 blocks, each block encompassing the resting state (30 s) and the FNS state (30 s). HBO signals were acquired by functional near-infrared spectroscopy (fNIRS) from the Prefrontal Cortex (PFC), the Motor Cortex (MC) and the Occipital Cortex (OC) throughout the experiment. The Pearson correlation coefficient was used to calculate the resting-state functional connectivity strength between the two groups, and the general linear model (GLM) was used to calculate the activation of 39 fNIRS channels during FNS in stroke patients and HCs, respectively. Results The coupling strength of stroke patients were significantly decreased in the following regions: right MC and left MC (t = 4.65, p = 0.0007), right MC and left OC (t = 2.93, p = 0.04), left MC and left OC (t = 2.81, p = 0.04). In stroke patients, the changes in cerebral oxygenated hemoglobin (ΔHBO) among 12 channels (CH) in the bilateral PFC and bilateral MC regions were significantly increased during the FNS state (FDR corrected p < 0.05) compared with the resting state. In HCs, only 1 channel was increased (FDR corrected p < 0.05) in the left PFC during FNS. Conclusion By using the FNS and fNIRS techniques, the characteristics of functional connectivity were found to decrease in stroke patients. It was also noticed that FNS activates the PFC and MC regions. These findings may help to guide functional rehabilitation in stroke patients.
Collapse
|
18
|
Altered Brain Activity and Effective Connectivity within the Nonsensory Cortex during Stimulation of a Latent Myofascial Trigger Point. Neural Plast 2022; 2022:4416672. [PMID: 35992300 PMCID: PMC9391196 DOI: 10.1155/2022/4416672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Myofascial trigger point (MTrP), an iconic characteristic of myofascial pain syndrome (MPS), can induce cerebral cortex changes including altered cortical excitability and connectivity. The corresponding characteristically reactive cortex is still ambiguous. Seventeen participants with latent MTrPs underwent functional near-infrared spectroscopy (fNIRS) to collect cerebral oxygenation hemoglobin (Δ[oxy-Hb]) signals. The Δ[oxy-Hb] signals of the left/right prefrontal cortex (L/R PFC), left/right motor cortex (L/R MC), and left/right occipital lobe (L/R OL) of the subjects were measured using functional near-infrared spectroscopy (fNIRS) in the resting state, nonmyofascial trigger point (NMTrP), state and MTrP state. The data investigated the latent MTrP-induced changes in brain activity and effective connectivity (EC) within the nonsensory cortex. The parameter wavelet amplitude (WA) was used to describe cortical activation, EC to show brain network connectivity, and main coupling direction (mCD) to exhibit the dominant connectivity direction in different frequency bands. An increasing trend of WA and a decreasing trend of EC values were observed in the PFC. The interregional mCD was primarily shifted from a unidirectional to bidirectional connection, especially from PFC to MC or OL, when responding to manual stimulation during the MTrP state compared with resting state and NMTrP state in the intervals III, IV, and V. This study demonstrates that the nonsensory cortex PFC, MC, and OL can participate in the cortical reactions induced by stimulation of a latent MTrP. Additionally, the PFC shows nonnegligible higher activation and weakened regulation than other brain regions. Thus, the PFC may be responsible for the central cortical regulation of a latent MTrP. This trial is registered with ChiCTR2100048433.
Collapse
|
19
|
Liu H, Peng Y, Liu Z, Wen X, Li F, Zhong L, Rao J, Li L, Wang M, Wang P. Hemodynamic signal changes and swallowing improvement of repetitive transcranial magnetic stimulation on stroke patients with dysphagia: A randomized controlled study. Front Neurol 2022; 13:918974. [PMID: 36034299 PMCID: PMC9403609 DOI: 10.3389/fneur.2022.918974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Our study aims to measure the cortical correlates of swallowing execution in patients with dysphagia after repetitive transcranial magnetic stimulation (rTMS) therapy using functional near-infrared spectroscopy (fNIRS), and observe the change of pattern of brain activation in stroke patients with dysphagia after rTMS intervention. In addition, we tried to analyze the effect of rTMS on brain activation in dysphagia patients with different lesion sides. This study also concentrated on the effect of stimulating the affected mylohyoid cortical region by 5 Hz rTMS, providing clinical evidence for rTMS therapy of dysphagia in stroke patients. METHODS This study was a sham-controlled, single-blind, randomized controlled study with a blinded observer. A total of 49 patients completed the study, which was randomized to the rTMS group (n = 23) and sham rTMS group (n = 26) by the random number table method. The rTMS group received 5 Hz rTMS stimulation to the affected mylohyoid cortical region of the brain and the sham rTMS group underwent rTMS using the same parameters as the rTMS group, except for the position of the coil. Each patient received 2 weeks of stimulation followed by conventional swallowing therapy. Standardized Swallowing Assessment (SSA), Fiberoptic Endoscopic Dysphagia Severity Scale (FEDSS), Penetration-Aspiration Scale (PAS), and functional oral intake status were assessed at two times: baseline (before treatment) and 2 weeks (after intervention). Meanwhile, we use the fNIRS system to measure the cerebral hemodynamic changes during the experimental procedure. RESULTS The rTMS group exhibited significant improvement in the SSA scale, FEDSS scale, and PAS scale after rTMS therapy (all P < 0.001). The sham rTMS group had the same analysis on the same scales (all P < 0.001). There was no significant difference observed in clinical assessments at 2 weeks after baseline between the rTMS group and sham rTMS group (all P > 0.05). However, there were statistically significant differences between the two groups in the rate of change in the FEDSS score (P = 0.018) and PAS score (P = 0.004), except for the SSA score (P = 0.067). As for the removal rate of the feeding tube, there was no significant difference between the rTMS group and sham rTMS group (P = 0.355), but there was a significant difference compared with the baseline characteristics in both groups (P rTMS < 0.001, P shamrTMS = 0.002). In fNIRS analysis, the block average result showed differences in brain areas RPFC (right prefrontal cortex) and RMC (right motor cortex) significantly between the rTMS group and sham rTMS group after intervention (P channel30 = 0.046, P channel16 = 0.006). In the subgroup analysis, rTMS group was divided into left-rTMS group and right-rTMS group and sham rTMS group was divided into sham left-rTMS group and sham right-rTMS group. The fNIRS results showed no significance in block average and block differential after intervention between the left-rTMS group and sham left-rTMS group, but differences were statistically significant between the right-rTMS group and sham right-rTMS group in block average: channel 30 (T = -2.34, P = 0.028) in LPFC (left prefrontal cortex) and 16 (T = 2.54, P = 0.018) in RMC. After intervention, there was no significance in left-rTMS group compared with baseline, but in right-rTMS group, channel 27 (T = 2.18, P = 0.039) in LPFC and 47 (T = 2.17, P = 0.039) in RPFC had significance in block differential. In the sham rTMS group, neither sham left-rTMS group and sham right-rTMS group had significant differences in block average and block differential in each brain area after intervention (P > 0.05). CONCLUSIONS The present study confirmed that a 5-Hz rTMS is feasible at the affected mylohyoid cortical region in post-stroke patients with dysphagia and rTMS therapy can alter cortical excitability. Based on previous studies, there is a dominant hemisphere in swallowing and the results of our fNIRS analysis seemed to show a better increase in cortical activation on the right side than on the left after rTMS of the affected mylohyoid cortical region. However, there was no difference between the left and right hemispheres in the subgroup analysis. Nevertheless, the present study provides a novel and feasible method of applying fNIRS to assessment in stroke patients with dysphagia.
Collapse
Affiliation(s)
- Huiyu Liu
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Yang Peng
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Zicai Liu
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Xin Wen
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Fang Li
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Lida Zhong
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Jinzhu Rao
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Li Li
- Yue Bei People's Hospital, Shaoguan, China
| | - Minghong Wang
- Department of Rehabilitation Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Pu Wang
- Department of Rehabilitation Medicine, The 7th Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
20
|
Ultrasound-Guided Median Nerve Electrical Stimulation to Promote Upper Limb Function Recovery after Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3590057. [PMID: 35873627 PMCID: PMC9303480 DOI: 10.1155/2022/3590057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Peripheral electrical nerve stimulation enhances hand function during stroke rehabilitation. Here, we proposed a percutaneous direct median nerve stimulation guided by ultrasound (ultrasound‐guided median nerve electrical stimulation, UG-MNES) and evaluated its feasibility and effectiveness in the treatment of stroke patients with upper limb extremity impairments. Sixty-three stroke patients (2-3 months of onset) were randomly divided into control and UG-MNES groups. Both groups received routine rehabilitation and the UG-MNES group received an additional ultrasound-guided electrical stimulation of the median nerve at 2 Hz, 0.2 ms pulse-width for 20 minutes with gradual intensity enhancement. The Fugl-Meyer Assessment for upper extremity motor function (FMA-UE) was used as the primary outcome. The secondary outcomes were the Functional Test for the Hemiplegic Upper Extremity (FTHUE-HK), Hand Function Rating Scale, Brunnstrom Stages, and Barthel Index scores for motor and daily functions. All the participants completed the trial without any side effects or adverse events during the intervention. After 4 weeks of intervention, the functions of the upper limbs on the hemiplegic side in both groups achieved significant recovery. Compared to the control group, all evaluation indices used in this trial were improved significantly in the UG-MNES group after 2 and 4 weeks of intervention; particularly, the first intervention of UG-MNES immediately improved all the assessment items significantly. In conclusion, the UG-MNES is a safe and feasible treatment for stroke patients with upper limb extremity impairments and could significantly improve the motor function of the affected upper limb, especially in the first intervention. The UG-MNES could be an effective alternative intervention for stroke with upper limb extremity impairments.
Collapse
|
21
|
Gao T, Zou C, Li J, Han C, Zhang H, Li Y, Tang X, Fan Y. Identification of moyamoya disease based on cerebral oxygen saturation signals using machine learning methods. JOURNAL OF BIOPHOTONICS 2022; 15:e202100388. [PMID: 35102703 DOI: 10.1002/jbio.202100388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Moyamoya is a cerebrovascular disease with a high mortality rate. Early detection and mechanistic studies are necessary. Near-infrared spectroscopy (NIRS) was used to study the signals of the cerebral tissue oxygen saturation index (TOI) and the changes in oxygenated and deoxygenated hemoglobin concentrations (HbO and Hb) in 64 patients with moyamoya disease and 64 healthy volunteers. The wavelet transforms (WT) of TOI, HbO and Hb signals, as well as the wavelet phase coherence (WPCO) of these signals from the left and right frontal lobes of the same subject, were calculated. Features were extracted from the spontaneous oscillations of TOI, HbO and Hb in five physiological activity-related frequency segments. Machine learning models based on support vector machine (SVM), random forest (RF) and extreme gradient boosting (XGBoost) have been built to classify the two groups. For 20-min signals, the 10-fold cross-validation accuracies of SVM, RF and XGBoost were 87%, 85% and 85%, respectively. For 5-min signals, the accuracies of the three methods were 88%, 88% and 84%, respectively. The method proposed in this article has potential for detecting and screening moyamoya with high proficiency. Evaluating the cerebral oxygenation with NIRS shows great potential in screening moyamoya diseases.
Collapse
Affiliation(s)
- Tianxin Gao
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chuyue Zou
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jinyu Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Cong Han
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Houdi Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Yue Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoying Tang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
22
|
Cortico-muscular interaction to monitor the effects of neuromuscular electrical stimulation pedaling training in chronic stroke. Comput Biol Med 2021; 137:104801. [PMID: 34481180 DOI: 10.1016/j.compbiomed.2021.104801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022]
Abstract
Neuromuscular electrical stimulation (NMES) has been widely utilized in post-stroke motor restoration. However, its impact on the closed-loop sensorimotor control process remains largely unclear. This is the first study to investigate the directional changes in cortico-muscular interactions after repetitive rehabilitation training by measuring the noninvasive electroencephalogram (EEG) and electromyography (EMG) signals. In this study, 10 subjects with chronic stroke received 20 sessions of NMES-pedaling interventions, and each training session included three 10-min NMES-driven pedaling trials. In addition, pre- and post-intervention assessments of lower limb isometric contraction were conducted before and after the whole NMES-pedaling interventions. The EEG (128 channels) and EMG (3 bilateral lower limb sensors) signals were collected during the isometric contraction tasks for the paretic and non-paretic lower limbs. Both the cortico-muscular coherence (CMC) and generalized partial directed coherence (GPDC) values were analyzed between eight selected EEG channels in the central primary motor cortex and EMG channels. The results revealed significant clinical improvements. Additionally, rehabilitation training facilitated cortico-muscular interaction of the ipsilesional brain and paretic lower limbs (p = 0.004). Moreover, both the descending and ascending cortico-muscular pathways were altered after NMES-training (p = 0.001, p < 0.001). Therefore, the results implied potential applications of EEG-EMG in understanding neuromuscular changes during the post-stroke motor rehabilitation process.
Collapse
|
23
|
Huo C, Xu G, Li W, Xie H, Zhang T, Liu Y, Li Z. A review on functional near-infrared spectroscopy and application in stroke rehabilitation. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Yu N, Liang S, Lu J, Shu Z, Li H, Yu Y, Wu J, Han J. Quantified assessment of deep brain stimulation on Parkinson's patients with task fNIRS measurements and functional connectivity analysis: a pilot study. Chin Neurosurg J 2021; 7:34. [PMID: 34225815 PMCID: PMC8256573 DOI: 10.1186/s41016-021-00251-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/26/2021] [Indexed: 12/02/2022] Open
Abstract
Background Deep brain stimulation (DBS) has proved effective for Parkinson’s disease (PD), but the identification of stimulation parameters relies on doctors’ subjective judgment on patient behavior. Methods Five PD patients performed 10-meter walking tasks under different brain stimulation frequencies. During walking tests, a wearable functional near-infrared spectroscopy (fNIRS) system was used to measure the concentration change of oxygenated hemoglobin (△HbO2) in prefrontal cortex, parietal lobe and occipital lobe. Brain functional connectivity and global efficiency were calculated to quantify the brain activities. Results We discovered that both the global and regional brain efficiency of all patients varied with stimulation parameters, and the DBS pattern enabling the highest brain efficiency was optimal for each patient, in accordance with the clinical assessments and DBS treatment decision made by the doctors. Conclusions Task fNIRS assessments and brain functional connectivity analysis promise a quantified and objective solution for patient-specific optimization of DBS treatment. Trial registration Name: Accurate treatment under the multidisciplinary cooperative diagnosis and treatment model of Parkinson’s disease. Registration number is ChiCTR1900022715. Date of registration is April 23, 2019.
Collapse
Affiliation(s)
- Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Siquan Liang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Jiewei Lu
- College of Artificial Intelligence, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Zhilin Shu
- College of Artificial Intelligence, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China
| | - Haitao Li
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Yang Yu
- Department of Neurorehabilitation, Tianjin Huanhu Hospital, Tianjin, China
| | - Jialing Wu
- Department of Neurorehabilitation, Tianjin Huanhu Hospital, Tianjin, China. .,Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China. .,Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin, China. .,Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, China.
| |
Collapse
|
25
|
Li W, Zhang M, Huo C, Xu G, Chen W, Wang D, Li Z. Time-evolving coupling functions for evaluating the interaction between cerebral oxyhemoglobin and arterial blood pressure with hypertension. Med Phys 2021; 48:2027-2037. [PMID: 33253413 DOI: 10.1002/mp.14627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/21/2020] [Accepted: 11/19/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSES This study aimed to investigate the network coupling between arterial blood pressure (ABP) and changes in cerebral oxyhemoglobin concentration (Δ [O2 Hb]/Δ [HHb]) oscillations based on dynamical Bayesian inference in hypertensive subjects. METHODS Two groups of subjects, consisting of 30 healthy (Group Control, 55.1 ± 10.6 y), and 32 hypertensive individuals (Group AH, 58.9 ± 8.7 y), participated in this study. A functional near-infrared spectroscopy system was used to measure the Δ [O2 Hb] and Δ [HHb] signals in the bilateral prefrontal cortex (LPFC/RPFC), motor cortex (LMC/RMC), and occipital lobe (LOL/ROL) during the resting state (12 min). Based on continuous wavelet analysis and coupling functions, the directed coupling strength (CS) between ABP and cerebral hemoglobin was identified and analyzed in three frequency intervals (I: 0.6-2 Hz, II: 0.145-0.6 Hz, III: 0.01-0.08 Hz). The Pearson correlations between the CS and blood pressure parameters were calculated in the hypertension group. RESULTS In interval I, Group AH exhibited a significantly higher CS for the coupling from ABP to Δ [O2 Hb] than Group Control in LMC, RMC, LOL, and ROL. In interval III, the CS from ABP to Δ [O2 Hb] in LPFC, RPFC, LMC, RMC, LOL, and ROL was significantly higher in Group AH than in Group Control. For the patients with hypertension, diastolic blood pressure was negatively and pulse pressure was positively related to the CS from ABP to Δ [O2 Hb] oscillations in interval III. CONCLUSIONS The higher CS from ABP to Δ [O2 Hb] in interval I indicated that the components of cardiac activity in cerebral hemoglobin oscillations were more directly responsive to the changes in systematic ABP in patients with hypertension than in healthy subjects. Meanwhile, the higher CS from ABP to Δ [O2 Hb] in interval III indicated that the cerebral hemoglobin oscillations were susceptible to changes in blood pressure in hypertensive subjects. The results may serve as evidence of impairment in cerebral autoregulation after hypertension. The Pearson correlation results showed that diastolic blood pressure and pulse pressure might be regarded as predictors of cerebral autoregulation function in patients with hypertension, and may be useful for hypertension stratification. This study provides novel insights into the interaction mechanism between ABP and cerebral hemodynamics and could help in the development of new assessment techniques for cerebral vascular disease.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Ming Zhang
- Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Congcong Huo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Gongcheng Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Wei Chen
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.,Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, China
| | - Daifa Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.,Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, China
| |
Collapse
|
26
|
Bao SC, Khan A, Song R, Kai-yu Tong R. Rewiring the Lesioned Brain: Electrical Stimulation for Post-Stroke Motor Restoration. J Stroke 2020; 22:47-63. [PMID: 32027791 PMCID: PMC7005350 DOI: 10.5853/jos.2019.03027] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Electrical stimulation has been extensively applied in post-stroke motor restoration, but its treatment mechanisms are not fully understood. Stimulation of neuromotor control system at multiple levels manipulates the corresponding neuronal circuits and results in neuroplasticity changes of stroke survivors. This rewires the lesioned brain and advances functional improvement. This review addresses the therapeutic mechanisms of different stimulation modalities, such as noninvasive brain stimulation, peripheral electrical stimulation, and other emerging techniques. The existing applications, the latest progress, and future directions are discussed. The use of electrical stimulation to facilitate post-stroke motor recovery presents great opportunities in terms of targeted intervention and easy applicability. Further technical improvements and clinical studies are required to reveal the neuromodulatory mechanisms and to enhance rehabilitation therapy efficiency in stroke survivors and people with other movement disorders.
Collapse
Affiliation(s)
- Shi-chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Ahsan Khan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Rong Song
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Raymond Kai-yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|