1
|
Weidle UH, Birzele F. Prostate Cancer: De-regulated Circular RNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2025; 22:136-165. [PMID: 39993805 PMCID: PMC11880926 DOI: 10.21873/cgp.20494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/28/2025] [Accepted: 12/03/2024] [Indexed: 02/26/2025] Open
Abstract
Therapy resistance, including castration-resistance and metastasis, remains a major hurdle in the treatment of prostate cancer. In order to identify novel therapeutic targets and treatment modalities for prostate cancer, we conducted a comprehensive literature search on PubMed to identify de-regulated circular RNAs that influence treatment efficacy in preclinical prostate cancer-related in vivo models. Our analysis identified 49 circular RNAs associated with various processes, including treatment resistance, transmembrane and secreted proteins, transcription factors, signaling cascades, human antigen R, nuclear receptor binding, ubiquitination, metabolism, epigenetics and other target categories. The identified targets and circular RNAs can be further scrutinized through target validation approaches. Down-regulated circular RNAs are candidates for reconstitution therapy, while up-regulated RNAs can be inhibited using small interfering RNA (siRNA), antisense oligonucleotides (ASO) or clustered regularly interspaced short palindromic repeats/CRISPR associated (CRISPR-CAS)-related approaches.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
2
|
Lusby R, Demirdizen E, Inayatullah M, Kundu P, Maiques O, Zhang Z, Terp MG, Sanz-Moreno V, Tiwari VK. Pan-cancer drivers of metastasis. Mol Cancer 2025; 24:2. [PMID: 39748426 PMCID: PMC11697158 DOI: 10.1186/s12943-024-02182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
Metastasis remains a leading cause of cancer-related mortality, irrespective of the primary tumour origin. However, the core gene regulatory program governing distinct stages of metastasis across cancers remains poorly understood. We investigate this through single-cell transcriptome analysis encompassing over two hundred patients with metastatic and non-metastatic tumours across six cancer types. Our analysis revealed a prognostic core gene signature that provides insights into the intricate cellular dynamics and gene regulatory networks driving metastasis progression at the pan-cancer and single-cell level. Notably, the dissection of transcription factor networks active across different stages of metastasis, combined with functional perturbation, identified SP1 and KLF5 as key regulators, acting as drivers and suppressors of metastasis, respectively, at critical steps of this transition across multiple cancer types. Through in vivo and in vitro loss of function of SP1 in cancer cells, we revealed its role in driving cancer cell survival, invasive growth, and metastatic colonisation. Furthermore, tumour cells and the microenvironment increasingly engage in communication through WNT signalling as metastasis progresses, driven by SP1. Further validating these observations, a drug repurposing analysis identified distinct FDA-approved drugs with anti-metastasis properties, including inhibitors of WNT signalling across various cancers.
Collapse
Affiliation(s)
- Ryan Lusby
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK
| | - Engin Demirdizen
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Mohammed Inayatullah
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Paramita Kundu
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Oscar Maiques
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ziyi Zhang
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK
| | - Mikkel Green Terp
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Victoria Sanz-Moreno
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK.
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, BT9 7AE, Belfast, UK.
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, 5000, Odense C, Denmark.
| |
Collapse
|
3
|
Xu R, Chen Y, Wei S, Chen J. Comprehensive Pan-Cancer Analysis of the Prognostic Role of KLF Transcription Factor 2 (KLF2) in Human Tumors. Onco Targets Ther 2024; 17:887-904. [PMID: 39507409 PMCID: PMC11539754 DOI: 10.2147/ott.s476179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Background KLF2 is a transcription factor expressed early in mammalian development that plays a role in many processes of development and disease. Recently, increasing studies revealed that KLF2 plays a key role in the occurrence and progression of cancer. Purpose The aim of this study was to explore the role of KLF2 in various tumor types using the Cancer Genome Atlas dataset. Methods Here, we set out to explore the role of KLF2 in 33 tumor types using TCGA (The Cancer Genome Atlas), GEO (Gene Expression Omnibus) dataset, Human Protein Atlas (HPA), UALCAN database, CancerSEA, GSCALite and several bioinformatic tools. Furthermore, we also performed immunohistochemistry and qPCR to further validate the role of KLF2 in multiple cancers and its correlation with prognosis. Results We found that KLF2 was underexpressed in most tumors and generally predicted poor OS in tumor patients. We found that amplification of KLF2 may be a risk factor for patients with OV (Ovarian serous cystadenocarcinoma). We also analyzed the abundance of checkpoints and markers of specific immune subsets including CD8+ T lymphocytes (T cells), CD4+ T cells, macrophages, and endothelial cells that significantly correlated with the expression level of KLF2 in pan-carcinoma tissues. In some cancers, KLF2 expression levels are positively correlated with gene promoter DNA methylation and drug sensitivity. In addition, we found that KLF2 is involved in single-cell level cell invasion in some cancers. In addition, KLF2 is co-expressed with several intracellular signal transduction genes involved in immune system processes. Immunohistochemistry and qPCR confirmed the low expression of KLF2 in STAD (stomach adenocarcinoma) and renal cancer. Conclusion Our pan-cancer analysis provides a comprehensive overview of the oncogenic roles of KLF2 in multiple human cancers and can be regarded as a potential prognostic marker and a novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Rong Xu
- Department of Dermatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yuhan Chen
- Department of Pathology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shicai Wei
- Department of Dermatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jun Chen
- Department of Dermatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
4
|
Ran X, Hu A, Kuang Y, Wang C, Liu W, Xiao X, Zacksenhaus E, Yu X, Ben-David Y. UM171 suppresses breast cancer progression by inducing KLF2. Breast Cancer Res Treat 2024; 207:405-415. [PMID: 38874684 PMCID: PMC11297059 DOI: 10.1007/s10549-024-07372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Breast cancer is the most frequent cancer in women with significant death rate. Morbidity is associated with drug resistance and metastasis. Development of novel drugs is unmet need. The aim of this study is to show potent anti-neoplastic activity of the UM171 compound on breast cancer cells and its mechanism of action. METHODS The inhibitory effect of UM171 on several breast cancer (BC) cell lines was examined using MTT and colony-forming assays. Cell cycle and apoptosis assays were utilized to determine the effect of UM171 on BC cell proliferation and survival. Wound healing scratch and transwell migration assays were used to examine the migration of BC cell lines in culture. Xenograft of mouse model with 4T1 cells was used to determine inhibitory effect of UM171 in vivo. Q-RT-PCR and western blotting were used to determine the expression level of genes effected by UM171. Lentivirus-mediated shRNAs were used to knockdown the expression of KLF2 in BC cells. RESULTS UM171 was previously identified as a potent agonist of human hematopoietic stem cell renewal and inhibitor of leukemia. In this study, UM171 was shown to inhibit the growth of multiple breast cancer cell lines in culture. UM171-mediated growth inhibition was associated with the induction of apoptosis, G2/M cell cycle arrest, lower colony-forming capacity, and reduced motility. In a xenotransplantation model of mouse triple-negative breast cancer 4T1 cells injected into syngeneic BALB/c mice, UM171 strongly inhibited tumor growth at a level comparable to control paclitaxel. UM171 increased the expression of the three PIM genes (PIM1-3) in breast cancer cells. Moreover, UM171 strongly induced the expression of the tumor suppressor gene KLF2 and cell cycle inhibitor P21CIP1. Accordingly, knockdown of KLF2 using lentivirus-mediated shRNA significantly attenuated the growth suppressor activity of UM171. As PIM1-3 act as oncogenes and are involved in breast cancer progression, induction of these kinases likely impedes the inhibitory effect of KLF2 induction by UM171. Accordingly, combination of UM171 with a PAN-PIM inhibitor LGH447 significantly reduced tumor growth in culture. CONCLUSION These results suggested that UM171 inhibited breast cancer progression in part through activation of KLF2 and P21. Combination of UM171 with a PAN-PIM inhibitor offer a novel therapy for aggressive forms of breast cancer.
Collapse
Affiliation(s)
- Xiaojuan Ran
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, People's Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People's Republic of China
| | - Yi Kuang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, People's Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People's Republic of China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, People's Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People's Republic of China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, People's Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People's Republic of China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, People's Republic of China
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People's Republic of China
| | - Eldad Zacksenhaus
- Department of Medicine, Laboratory Medicine & Pathobiology and Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L1, Canada
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Xiangdi Yu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
- Anesthesiology Department of Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, 545000, Guangxi, China.
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, People's Republic of China.
- The Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
5
|
Shi Y, Yao M, Shen S, Wang L, Yao D. Abnormal expression of Krüppel-like transcription factors and their potential values in lung cancer. Heliyon 2024; 10:e28292. [PMID: 38560274 PMCID: PMC10979174 DOI: 10.1016/j.heliyon.2024.e28292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer still is one of the most common malignancy tumors in the world. However, the mechanisms of its occurrence and development have not been fully elucidated. Zinc finger protein family (ZNFs) is the largest transcription factor family in human genome. Recently, the more and more basic and clinical evidences have confirmed that ZNFs/Krüppel-like factors (KLFs) refer to a group of conserved zinc finger-containing transcription factors that are involved in lung cancer progression, with the functions of promotion, inhibition, dual roles and unknown classifications. Based on the recent literature, some of the oncogenic KLFs are promising molecular biomarkers for diagnosis, prognosis or therapeutic targets of lung cancer. Interestingly, a novel computational approach has been proposed by using machine learning on features calculated from primary sequences, the XGBoost-based model with accuracy of 96.4 % is efficient in identifying KLF proteins. This paper reviews the recent some progresses of the oncogenic KLFs with their potential values for diagnosis, prognosis and molecular target in lung cancer.
Collapse
Affiliation(s)
- Yang Shi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
- Department of Thoracic Surgery, First People's Hospital of Yancheng, Yancheng 224001, China
| | - Min Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| | - Shuijie Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, Jiangsu, China
| | - Dengfu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University & Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
6
|
Jha K, Kumar A, Bhatnagar K, Patra A, Bhavesh NS, Singh B, Chaudhary S. Modulation of Krüppel-like factors (KLFs) interaction with their binding partners in cancers through acetylation and phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195003. [PMID: 37992989 DOI: 10.1016/j.bbagrm.2023.195003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Post-translational modifications (PTMs) of transcription factors regulate transcriptional activity and play a key role in essentially all biological processes and generate indispensable insight towards biological function including activity state, subcellular localization, protein solubility, protein folding, substrate trafficking, and protein-protein interactions. Amino acids modified chemically via PTMs, function as molecular switches and affect the protein function and characterization and increase the proteome complexity. Krüppel-like transcription factors (KLFs) control essential cellular processes including proliferation, differentiation, migration, programmed cell death and various cancer-relevant processes. We investigated the interactions of KLF group-2 members with their binding partners to assess the role of acetylation and phosphorylation in KLFs on their binding affinity. It was observed that acetylation and phosphorylation at different positions in KLFs have a variable effect on binding with specific partners. KLF2-EP300, KLF4-SP1, KLF6-ATF3, KLF6-JUN, and KLF7-JUN show stabilization upon acetylation or phosphorylation at variable positions. On the other hand, KLF4-CBP, KLF4-EP300, KLF5-CBP, KLF5-WWP1, KLF6-SP1, and KLF7-ATF3 show stabilization or destabilization due to acetylation or phosphorylation at variable positions in KLFs. This provides a molecular explanation of the experimentally observed dual role of KLF group-2 members as a suppressor or activator of cancers in a PTM-dependent manner.
Collapse
Affiliation(s)
- Kanupriya Jha
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India.
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India.
| | - Bipin Singh
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India; Centre for Life Sciences, Mahindra University, Bahadurpally, Jeedimetla, Hyderabad, Telangana 500043, India.
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh 201310, India.
| |
Collapse
|
7
|
Cheng X, Shen C, Liao Z. KLF2 transcription suppresses endometrial cancer cell proliferation, invasion, and migration through the inhibition of NPM1. J OBSTET GYNAECOL 2023; 43:2238827. [PMID: 37610103 DOI: 10.1080/01443615.2023.2238827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/16/2023] [Indexed: 08/24/2023]
Abstract
Endometrial cancer (EC) is the most common gynaecologic malignancy. This study was to explore the role of kruppel-like factor 2 (KLF2) in EC cell behaviours. The expression of KLF2 in EC and its correlation with NPM1 were first predicted on the database. Levels of KLF2 and nucleophosmin 1 (NPM1) in EC cell lines were then determined. After transfection of the overexpression vector of KLF2 or NPM1, cell proliferation, invasion, and migration were evaluated. The binding relationship between KLF2 and the NPM1 promoter was analysed. KLF2 was downregulated while NPM1 was upregulated in EC cells. KLF2 overexpression reduced the proliferation potential of EC cells and the number of invaded and migrated cells. KLF2 was enriched in the NPM1 promoter and inhibited NPM1 transcriptional level. NPM1 overexpression neutralised the effects of KLF2 overexpression on suppressing EC cell growth. Collectively, KLF2 was decreased in EC cells and KLF2 overexpression increased the binding to the NPM1 promoter to inhibit NPM1 transcription, thus suppressing EC cell growth.
Collapse
Affiliation(s)
- Xiyun Cheng
- Department of Obstetrics and Gynecology, Department of Gynecomatology, Ganzhou Cancer Hospital, Ganzhou, P.R. China
| | - Changmei Shen
- Department of Obstetrics and Gynecology, Department of Gynecomatology, Ganzhou Cancer Hospital, Ganzhou, P.R. China
| | - Zhenrong Liao
- Department of Obstetrics and Gynecology, Department of Gynecomatology, Ganzhou Cancer Hospital, Ganzhou, P.R. China
| |
Collapse
|
8
|
Huang S, Zhao J, Yu H, Chen G. Mechanism of tumor-derived extracellular vesicles in prostatic cancer progression through the circFMN2/KLF2/RNF128 axis. Apoptosis 2023; 28:1372-1389. [PMID: 37452271 DOI: 10.1007/s10495-023-01872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Circular RNAs (circRNAs) are a major type of cargos encapsulated in extracellular vesicles (EVs) and regulate the progression of prostatic cancer (PC). This study was conducted to explore the role of tumor-derived EVs in PC cell proliferation, invasion, and migration via shuttle of circRNA formin 2 (circFMN2). RT-qPCR or Western blot assay showed that circFMN2 was upregulated while KLF2 and RNF128 were downregulated in PC tissues and cells. EVs were separated from PC cells and characterized and its internalization in PC cells was examined, which suggested that PC-EVs mediated the shuttle of circFMN2 to upregulate circFMN2 expression in PC cells. PC cell functions were determined by cell counting kit-8, colony formation and Transwell assays, which suggested that PC-EVs fueled the proliferation, invasion, and migration of PC cells. At cellular level, PC-EVs mediated the shuttle of circFMN2 to upregulate circFMN2 expression in PC cells, and circFMN2 binding to HuR decreased the HuR-KLF2 interaction and repressed KLF2 expression, which further reduced the KLF2-RNF128 promoter binding and repressed RNF128 transcription. Overexpression of KLF2/RNF128 ablated the effects of PC-EVs on the proliferation, invasion, and migration of PC cells. The xenograft tumor models and lung/liver metastasis models were established and revealed that PC-EVs accelerated tumorigenesis and metastasis in vivo via delivery of circFMN2 and repression of KLF2/RNF128.
Collapse
Affiliation(s)
- Shuang Huang
- Department of Urology, The Third Medical Center of PLA General Hospital, No. 69 Yongding Road, Haidian District, Beijing, 100039, China
| | - Jianming Zhao
- Department of Urology, The Third Medical Center of PLA General Hospital, No. 69 Yongding Road, Haidian District, Beijing, 100039, China
| | - Hongkai Yu
- Department of Urology, The Third Medical Center of PLA General Hospital, No. 69 Yongding Road, Haidian District, Beijing, 100039, China
| | - Guangfu Chen
- Department of Urology, The Third Medical Center of PLA General Hospital, No. 69 Yongding Road, Haidian District, Beijing, 100039, China.
| |
Collapse
|
9
|
Li J, Jiang JL, Chen YM, Lu WQ. KLF2 inhibits colorectal cancer progression and metastasis by inducing ferroptosis via the PI3K/AKT signaling pathway. J Pathol Clin Res 2023; 9:423-435. [PMID: 37147883 PMCID: PMC10397377 DOI: 10.1002/cjp2.325] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 04/16/2023] [Indexed: 05/07/2023]
Abstract
Krüppel-like factor 2 (KLF2) belongs to the zinc finger family and is thought to be a tumor suppressor gene due to its low expression in various cancer types. However, its functional role and molecular pathway involvement in colorectal cancer (CRC) are not well defined. Herein, we investigated the potential mechanism of KLF2 in CRC cell invasion, migration, and epithelial-mesenchymal transition (EMT). We utilized the TCGA and GEPIA databases to analyze the expression of KLF2 in CRC patients and its correlation with different CRC stages and CRC prognosis. RT-PCR, western blot, and immunohistochemistry assays were used to measure KLF2 expression. Gain-of-function assays were performed to evaluate the role of KLF2 in CRC progression. Moreover, mechanistic experiments were conducted to investigate the molecular mechanism and involved signaling pathways regulated by KLF2. Additionally, we also conducted a xenograft tumor assay to evaluate the role of KLF2 in tumorigenesis. KLF2 expression was low in CRC patient tissues and cell lines, and low expression of KLF2 was associated with poor CRC prognosis. Remarkably, overexpressing KLF2 significantly inhibited the invasion, migration, and EMT capabilities of CRC cells, and tumor growth in xenografts. Mechanistically, KLF2 overexpression induced ferroptosis in CRC cells by regulating glutathione peroxidase 4 expression. Moreover, this KLF2-dependent ferroptosis in CRC cells was mediated by inhibiting the PI3K/AKT signaling pathway that resulted in the suppression of invasion, migration, and EMT of CRC cells. We report for the first time that KLF2 acts as a tumor suppressor in CRC by inducing ferroptosis via inhibiting the PI3K/AKT signaling pathway, thus providing a new direction for CRC prognosis assessment and targeted therapy.
Collapse
Affiliation(s)
- Jia Li
- Department of General SurgeryShenzhen Traditional Chinese Medicine HospitalShenzhenPR China
| | - Ji Ling Jiang
- Department of General SurgeryShenzhen Traditional Chinese Medicine HospitalShenzhenPR China
| | - Yi Mei Chen
- Department of Breast SurgeryShenzhen Women & Children's Health Care HospitalShenzhenPR China
| | - Wei Qi Lu
- Department of Gastrointestinal SurgeryFirst Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouPR China
| |
Collapse
|
10
|
Chen XQ, Ma J, Xu D, Xiang ZL. Comprehensive analysis of KLF2 as a prognostic biomarker associated with fibrosis and immune infiltration in advanced hepatocellular carcinoma. BMC Bioinformatics 2023; 24:270. [PMID: 37386390 PMCID: PMC10308631 DOI: 10.1186/s12859-023-05391-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
PURPOSE Most Hepatocellular carcinoma (HCC) patients are in advanced or metastatic stage at the time of diagnosis. Prognosis for advanced HCC patients is dismal. This study was based on our previous microarray results, and aimed to explore the promising diagnostic and prognostic markers for advanced HCC by focusing on the important function of KLF2. METHODS The Cancer Genome Atlas (TCGA), Cancer Genome Consortium database (ICGC), and the Gene Expression Comprehensive Database (GEO) provided the raw data of this study research. The cBioPortal platform, CeDR Atlas platform, and the Human Protein Atlas (HPA) website were applied to analyze the mutational landscape and single-cell sequencing data of KLF2. Basing on the results of single-cell sequencing analyses, we further explored the molecular mechanism of KLF2 regulation in the fibrosis and immune infiltration of HCC. RESULTS Decreased KLF2 expression was discovered to be mainly regulated by hypermethylation, and indicated a poor prognosis of HCC. Single-cell level expression analyses revealed KLF2 was highly expressed in immune cells and fibroblasts. The function enrichment analysis of KLF2 targets indicated the crucial association between KLF2 and tumor matrix. 33-genes related with cancer associated fibroblasts (CAFs) were collected to identify the significant association of KLF2 with fibrosis. And SPP1 was validated as a promising prognostic and diagnostic marker for advanced HCC patients. CXCR6 CD8+ T cells were noted as a predominant proportion in the immune microenvironment, and T cell receptor CD3D was discovered to be a potential therapeutic biomarker for HCC immunotherapy. CONCLUSION This study identified that KLF2 is an important factor promoting HCC progression by affecting the fibrosis and immune infiltration, highlighting its great potential as a novel prognostic biomarker for advanced HCC.
Collapse
Affiliation(s)
- Xue-Qin Chen
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jie Ma
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Di Xu
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Radiation Oncology, Shanghai East Hospital Ji'an hospital, Jiangxi, 343000, China.
| |
Collapse
|
11
|
Jobst M, Kiss E, Gerner C, Marko D, Del Favero G. Activation of autophagy triggers mitochondrial loss and changes acetylation profile relevant for mechanotransduction in bladder cancer cells. Arch Toxicol 2023; 97:217-233. [PMID: 36214828 PMCID: PMC9816236 DOI: 10.1007/s00204-022-03375-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/05/2022] [Indexed: 01/19/2023]
Abstract
Bladder cells are constantly exposed to multiple xenobiotics and bioactive metabolites. In addition to this challenging chemical environment, they are also exposed to shear stress originating from urine and interstitial fluids. Hence, physiological function of bladder cells relies on a high biochemical and biomechanical adaptive competence, which, in turn, is largely supported via autophagy-related mechanisms. As a negative side of this plasticity, bladder cancer cells are known to adapt readily to chemotherapeutic programs. At the molecular level, autophagy was described to support resistance against pharmacological treatments and to contribute to the maintenance of cell structure and metabolic competence. In this study, we enhanced autophagy with rapamycin (1-100 nM) and assessed its effects on the motility of bladder cells, as well as the capability to respond to shear stress. We observed that rapamycin reduced cell migration and the mechanical-induced translocation potential of Krüppel-like transcription factor 2 (KLF2). These effects were accompanied by a rearrangement of cytoskeletal elements and mitochondrial loss. In parallel, intracellular acetylation levels were decreased. Mechanistically, inhibition of the NAD + -dependent deacetylase sirtuin-1 (SIRT1) with nicotinamide (NAM; 0.1-5 mM) restored acetylation levels hampered by rapamycin and cell motility. Taken together, we described the effects of rapamycin on cytoskeletal elements crucial for mechanotransduction and the dependency of these changes on the mitochondrial turnover caused by autophagy activation. Additionally, we could show that targeted metabolic intervention could revert the outcome of autophagy activation, reinforcing the idea that bladder cells can easily adapt to multiple xenobiotics and circumvent in this way the effects of single chemicals.
Collapse
Affiliation(s)
- Maximilian Jobst
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria
| | - Endre Kiss
- Core Facility Multimodal, Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria ,Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria ,Core Facility Multimodal, Imaging, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090 Vienna, Austria
| |
Collapse
|
12
|
Mieszczański P, Januszyk S, Zmarzły N, Ossowski P, Dziobek K, Sagan D, Boroń D, Opławski M, Grabarek BO. miRNAs Participate in the Regulation of Oxidative Stress-Related Gene Expression in Endometrioid Endometrial Cancer. Int J Mol Sci 2022; 23:ijms232415817. [PMID: 36555458 PMCID: PMC9779631 DOI: 10.3390/ijms232415817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species are formed as by-products of normal cell metabolism. They are needed to maintain cell homeostasis and signaling, which is possible due to defense systems. Disruption of this balance leads to oxidative stress that can induce cancer. Redox regulation by miRNAs may be a potential therapeutic target. The aim of the study was to assess the activity of genes associated with oxidative stress in endometrial cancer and to determine their relationship with miRNAs. The study included 45 patients with endometrioid endometrial cancer and 45 without neoplastic changes. The expression profile of genes associated with oxidative stress was determined with mRNA microarrays, RT-qPCR and ELISA. The miRNA prediction was performed based on the miRNA microarray experiment and the mirDB tool. PRDX2 and AQP1 showed overexpression that was probably not related to miRNA activity. A high level of PKD2 may be the result of a decrease in the activity of miR-195-3p, miR-20a, miR-134. A SOD3 level reduction can be caused by miR-328, miR-363. In addition, miR-363 can also regulate KLF2 expression. In the course of endometrial cancer, the phenomenon of oxidative stress is observed, the regulation of which may be influenced by miRNAs.
Collapse
Affiliation(s)
- Paweł Mieszczański
- Hospital of Ministry of Interior and Administration, 40-052 Katowice, Poland
- Correspondence:
| | - Szmon Januszyk
- ICZ Healthcare Hospital in Zywiec, 34-300 Zywiec, Poland
| | - Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, 41-800 Zabrze, Poland
| | - Piotr Ossowski
- Woman and Child Medical Center in Cracow, 30-002 Cracow, Poland
| | - Konrad Dziobek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics Faculty of Medicine, Academy of Silesia, 41-800 Zabrze, Poland
| | - Dorota Sagan
- Medical Center Dormed Medical SPA, 28-105 Busko-Zdroj, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics Faculty of Medicine, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Cracow, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Cracow, 30-705 Cracow, Poland
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Cracow, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Cracow, 30-705 Cracow, Poland
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics Faculty of Medicine, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Cracow, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, 40-662 Katowice, Poland
- Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
| |
Collapse
|
13
|
Bispo IMC, Granger HP, Almeida PP, Nishiyama PB, de Freitas LM. Systems biology and OMIC data integration to understand gastrointestinal cancers. World J Clin Oncol 2022; 13:762-778. [PMID: 36337313 PMCID: PMC9630993 DOI: 10.5306/wjco.v13.i10.762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/22/2021] [Accepted: 10/02/2022] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers are a set of diverse diseases affecting many parts/ organs. The five most frequent GI cancer types are esophageal, gastric cancer (GC), liver cancer, pancreatic cancer, and colorectal cancer (CRC); together, they give rise to 5 million new cases and cause the death of 3.5 million people annually. We provide information about molecular changes crucial to tumorigenesis and the behavior and prognosis. During the formation of cancer cells, the genomic changes are microsatellite instability with multiple chromosomal arrangements in GC and CRC. The genomically stable subtype is observed in GC and pancreatic cancer. Besides these genomic subtypes, CRC has epigenetic modification (hypermethylation) associated with a poor prognosis. The pathway information highlights the functions shared by GI cancers such as apoptosis; focal adhesion; and the p21-activated kinase, phosphoinositide 3-kinase/Akt, transforming growth factor beta, and Toll-like receptor signaling pathways. These pathways show survival, cell proliferation, and cell motility. In addition, the immune response and inflammation are also essential elements in the shared functions. We also retrieved information on protein-protein interaction from the STRING database, and found that proteins Akt1, catenin beta 1 (CTNNB1), E1A binding protein P300, tumor protein p53 (TP53), and TP53 binding protein 1 (TP53BP1) are central nodes in the network. The protein expression of these genes is associated with overall survival in some GI cancers. The low TP53BP1 expression in CRC, high EP300 expression in esophageal cancer, and increased expression of Akt1/TP53 or low CTNNB1 expression in GC are associated with a poor prognosis. The Kaplan Meier plotter database also confirmed the association between expression of the five central genes and GC survival rates. In conclusion, GI cancers are very diverse at the molecular level. However, the shared mutations and protein pathways might be used to understand better and reveal diagnostic/prognostic or drug targets.
Collapse
Affiliation(s)
- Iasmin Moreira Costa Bispo
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Henry Paul Granger
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Palloma Porto Almeida
- Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | - Patricia Belini Nishiyama
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Leandro Martins de Freitas
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| |
Collapse
|
14
|
Mašić S, Bacalja J, Vučić M, Čupić H, Tomas D, Ulamec M, Spajić B, Skenderi F, Krušlin B. CORRELATION OF EXPRESSION OF TGF- β AND MMP2 BETWEEN PROSTATIC ADENOCARCINOMA AND ADJACENT UNAFFECTED PARENCHYMA. Acta Clin Croat 2022; 61:9-14. [PMID: 36938549 PMCID: PMC10022412 DOI: 10.20471/acc.2022.61.s3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
In prostate adenocarcinoma, both tumorous stroma and epithelium have important role in tumor progression. Transforming growth factor beta (TGF- β) is a promotor in advanced stages of prostate cancer. Matrix Metalloproteinase 2 (MMP2), the endopeptidase that degrades extracellular matrix is considered to be overexpressed in prostatic carcinoma related to its growth and aggressiveness. Therefore, the aim was to analyze the expression of proteins TGF- β and MMP2 between both epithelium and stroma of prostatic adenocarcinoma and adjacent unaffected parenchyma. The intensity of TGF- β and MMP2 expression in epithelium, tumorous stroma and adjacent unaffected parenchyma was analyzed in 62 specimens of prostatic adenocarcinoma by microarray-based immunohistochemistry. TGF- β was more expressed in tumorous than in prostate stroma (p =0.000), while no statistical significance in case of MMP2 (p = 0.097) was found. MMP2 was more expressed in tumorous than in prostate epithelium (p =0.000), while no statistical significance in case of TGF- β (p = 0.096) was observed. The study results indicate that both tumorous stroma and epithelium have a role in tumor progression and support potential role of TGF- β and MMP2 in prostatic adenocarcinoma progression.
Collapse
Affiliation(s)
- Silvija Mašić
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jasna Bacalja
- Department of Pathology, Centrallasarettet Växjö, Växjö, Sweden
| | - Majda Vučić
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
- Department of Pathology, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Čupić
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
- Department of Pathology, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Davor Tomas
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Monika Ulamec
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
- Department of Pathology, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Borislav Spajić
- Clinical Department of Urology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Faruk Skenderi
- Faculty of Health Sciences, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Božo Krušlin
- Ljudevit Jurak Clinical Department of Pathology and Cytology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
15
|
Yoshida Y, Yuki K, Dan S, Yamazaki K, Noda M. Suppression of tumor metastasis by a RECK-activating small molecule. Sci Rep 2022; 12:2319. [PMID: 35149728 PMCID: PMC8837781 DOI: 10.1038/s41598-022-06288-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
RECK encodes a membrane-anchored protease-regulator which is often downregulated in a wide variety of cancers, and reduced RECK expression often correlates with poorer prognoses. In mouse models, forced expression of RECK in tumor xenografts results in suppression of tumor angiogenesis, invasion, and metastasis. RECK mutations, however, are rare in cancer genomes, suggesting that agents that re-activate dormant RECK may be of clinical value. We found a potent RECK-inducer, DSK638, that inhibits spontaneous lung metastasis in our mouse xenograft model. Induction of RECK expression involves SP1 sites in its promoter and may be mediated by KLF2. DSK638 also upregulates MXI1, an endogenous MYC-antagonist, and inhibition of metastasis by DSK638 is dependent on both RECK and MXI1. This study demonstrates the utility of our approach (using a simple reporter assay followed by multiple phenotypic assays) and DSK638 itself (as a reference compound) in finding potential metastasis-suppressing drugs.
Collapse
Affiliation(s)
- Yoko Yoshida
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8501, Japan. .,Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan.
| | - Kanako Yuki
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Kanami Yamazaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Makoto Noda
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
16
|
Liu S, Gao W, Lu Y, Zhou Q, Su R, Hasegawa T, Du J, Li M. As a Novel Tumor Suppressor, LHPP Promotes Apoptosis by Inhibiting the PI3K/AKT Signaling Pathway in Oral Squamous Cell Carcinoma. Int J Biol Sci 2022; 18:491-506. [PMID: 35002505 PMCID: PMC8741864 DOI: 10.7150/ijbs.66841] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) refers to the malignant tumor of the head and neck with a highest morbidity. It exhibits a poor prognosis and unsatisfactory treatment partially attributed to delayed diagnosis. As indicated from existing reports, the protein histidine phosphatase LHPP acts as a vital factor in tumorigenesis in liver, lung, bladder, breast and pancreatic tumor tissues. Thus far, the functional mechanism of LHPP in OSCC remains unclear. DGE analysis, OSCC cell lines and OSCC cases were found that LHPP was down-regulated in OSCC tissues and cells compared with that in normal oral mucosa tissues and cells, and was closely related to OSCC differentiation. Cell counting Kit 8 test, EdU proliferation test, scratches test, invasion test, monoclonal formation test, mouse xenograft tumor model, HE staining and immunohistochemistry showed that LHPP inhibited OSCC growth, proliferation and migration in vivo and in vitro. GO and KEGG enrichment analysis, LHPP transcription factor analysis and flow cytometry found that LHPP promotes the apoptosis of OSCC by decreasing the transcriptional activity of p-PI3K and p-Akt. Finally, our results suggested that LHPP inhibited the progression of OSCC through the PI3K/AKT signaling pathway, indicating that LHPP may be a new target for the treatment of OSCC.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Wenzhen Gao
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yupu Lu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Qin Zhou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Rongjian Su
- Life Science Institute of Jinzhou Medical University, College of Basic Medicine of Jinzhou Medical University, Cell Biology and Genetic Department of Jinzhou Medical University, Key Lab of Molecular and Cellular Biology of the Education Department of Liaoning Province, Jinzhou 121001, China
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - Juan Du
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China.,Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| |
Collapse
|
17
|
Qin SY, Li B, Chen M, Qin MQ, Liu JM, Lv QL. MiR-32-5p promoted epithelial-to-mesenchymal transition of oral squamous cell carcinoma cells via regulating the KLF2/CXCR4 pathway. Kaohsiung J Med Sci 2021; 38:120-128. [PMID: 34741382 DOI: 10.1002/kjm2.12450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/26/2021] [Accepted: 08/17/2021] [Indexed: 11/07/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common carcinomas of the oral cavity. However, the regulatory mechanisms on miR-32-5p remain poorly understood in OSCC. The expression of miR-32-5p, Krüppel-like factor 2 (KLF2), C-X-C motif chemokine receptor 4 (CXCR4), and epithelial-to-mesenchymal transition (EMT)-related proteins (E-cadherin, Vimentin, N-cadherin, and Snail) were evaluated were assessed using RT-qPCR and Western blot. 3-(4, 5-Dimethylthiazolyl2)-2, 5-diphenyltetrazolium bromide assay, wound healing assay, and transwell assay were employed to detect cell proliferation, migration, and invasion of OSCC cells. Finally, dual-luciferase reporter assay was performed to verify the binding relationship between KLF2 and miR-32-5p. MiR-32-5p was highly expressed while KLF2 was lowly expressed in OSCC cells, and miR-32-5p knockdown or KLF2 overexpression could markedly reduce cell proliferation, migration, invasion, and EMT of OSCC cells. What is more, KLF2 was the target of miR-32-5p, and knockdown of KLF2 abolished the inhibitory effect of miR-32-5p inhibitor on progression of OSCC. Finally, CXCR4 expression was negatively regulated by KLF2, and inhibition of CXCR4 obviously alleviated the biological effects of si-KLF2 on the progression of OSCC. MiR-32-5p could enhance cell proliferation, migration, invasion, and EMT of OSCC cells, and the discovery of miR-32-5p/KLF2/CXCR4 axis might provide potential therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Shi-Yu Qin
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, China
| | - Bo Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, China
| | - Mei Chen
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, China
| | - Ming-Qun Qin
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, China
| | - Ji-Mu Liu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, China
| | - Qiu-Li Lv
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
18
|
Wang P, Zhao X, Wu X, Tang G, Yuan L. miR-15b-3p promotes the malignant progression of endometrial cancer cells through targeting KLF2. Cell Cycle 2021; 20:1431-1440. [PMID: 34224334 DOI: 10.1080/15384101.2021.1941611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Human endometrial cancer is one of the most common malignant tumors in women with an increased incidence by years. The biological function of miR-15b-3p in endometrial cancer is still unclear. Therefore, this study explores the expression and potential mechanism of miR-15b-3p in endometrial cancer, providing a novel theory basis for targeted therapy. Herein, differentially expressed miRNAs and mRNAs in endometrial cancer were determined by bioinformatics analysis. qRT-PCR measured expression of miRNAs and mRNAs. The protein expression of mRNA in cells was determined by western blot. MTT, wound healing, and Transwell assays evaluated the biological behavior of cells. Dual luciferase assay validated the targeted relationship between target miRNA and mRNA. miR-15b-3p was highly expressed in endometrial cancer, and overexpression of miR-15b-3p promoted the malignant progression of endometrial cancer cells. KLF2 was a downstream target of miR-15b-3p, and overexpression of KLF2 reversed the facilitation of miR-15b-3p on endometrial cancer cells. miR-15b-3p promoted the proliferation, migration, and invasion of endometrial cancer cells by targeting KLF2, which made miR-15b-3p a potential diagnostic factor and new molecular therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Ping Wang
- Department of Oncology, Tangshan People's Hospital, Tangshan, China
| | - Xiqing Zhao
- Department of Neurosurgery, Tangshan People's Hospital, Tangshan, China
| | - Xiaotang Wu
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Guoshuai Tang
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Linna Yuan
- Department of Pathology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
19
|
Jung J. Characterizing therapeutic signatures of transcription factors in cancer by incorporating profiles in compound treated cells. Bioinformatics 2021; 37:1008-1014. [PMID: 32886093 DOI: 10.1093/bioinformatics/btaa765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Cancers are promoted by abnormal alterations in biological processes, such as cell cycle and apoptosis. An immediate reason for those aberrant processes is the deregulation of their involved transcription factors (TFs). Thus, the deregulated TFs in cancer have been experimented as successful therapeutic targets, such as RARA and RUNX1. This therapeutic strategy can be accelerated by characterizing new potential TF targets. RESULTS Two kinds of therapeutic signatures of TFs in A375 (skin) and HT29 (colon) cancer cells were characterized by analyzing TF activities under effective and ineffective compounds to cancer. First, the therapeutic TFs (TTs) were identified as the TFs that are significantly activated or repressed under effective compared to ineffective compounds. Second, the therapeutically correlated TF pairs (TCPs) were determined as the TF pairs whose activity correlations show substantial discrepancy between the effective and ineffective compounds. It was facilitated by incorporating (i)compound-induced gene expressions (LINCS), (ii) compound-induced cell viabilities (GDSC) and (iii) TF-target interactions (TRUST2). As a result, among 627 TFs, the 35 TTs (such as MYCN and TP53) and the 214 TCPs (such as FOXO3 and POU2F2 pair) were identified. The TTs and the proteins on the paths between TCPs were compared with the known therapeutic targets, tumor suppressors, oncogenes and CRISPR-Cas9 knockout screening, which yielded significant consequences. We expect that the results provide good candidates for therapeutic TF targets in cancer. AVAILABILITY AND IMPLEMENTATION The data and Python implementations are available at https://github.com/jmjung83/TT_and_TCP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jinmyung Jung
- Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong 18323, Republic of Korea
| |
Collapse
|
20
|
METTL3-mediated m 6A methylation of SPHK2 promotes gastric cancer progression by targeting KLF2. Oncogene 2021; 40:2968-2981. [PMID: 33758320 DOI: 10.1038/s41388-021-01753-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 02/01/2023]
Abstract
N6-methyladenosine (m6A) RNA methylation is profoundly involved in epigenetic regulation, especially for carcinogenesis and tumor progression. Mounting evidence suggests that methyltransferase METTL3 regulates malignant behaviors of gastric cancer (GC). However, the clinical significance and biological implication of SPHK2 and its related m6A modification in GC remain unclear. In this study, quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry were utilized to detect the expression profiles and prognostic significance of SPHK2 in GC. Here, we showed that increased SPHK2 was signified a poor prognosis of GC patients. Phosphorylation and ubiquitination assays were used to investigate the possible mechanisms of SPHK2-mediated KLF2 expression. SPHK2 can promote the phosphorylation of KLF2, which triggers the ubiquitination and degradation of KLF2 protein in GC. Methylated RNA immunoprecipitation (MeRIP) was performed to uncover the m6A modification of SPHK2 mRNA. METTL3 promotes translation of SPHK2 mRNA via an m6A-YTHDF1-dependent manner. Functionally, SPHK2 facilitates GC cell proliferation, migration and invasion by inhibiting KLF2 expression. SPHK2/KLF2 regulates the cell proliferation, migration, and invasion induced by METTL3 in GC. Overall, our findings reveal that METTL3-mediated m6A modification of SPHK2 contributes to GC progression, which extends the understanding of the importance m6A methylation in GC and represents a potential target for GC therapy.
Collapse
|
21
|
Tang C, Wang M, Dai Y, Wei X. Krüppel-like factor 12 suppresses bladder cancer growth through transcriptionally inhibition of enolase 2. Gene 2020; 769:145338. [PMID: 33279628 DOI: 10.1016/j.gene.2020.145338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023]
Abstract
Krüppel-like factors (KLFs) are transcription factors and play important roles in bladder cancer (BC). Clarifying the function of KLFs will provide new strategies for clinical treatment of BC. In this study, we found that Krüppel-like factor 12 (KLF12) was decreased in BC tissues and cells. Knockdown of KLF12 by siRNA dramatically elevated the proliferation and colony formation of BC cells. By contrast, overexpressing KLF12 suppressed the cell viability and the number of clones. Overexpression of KLF12 also regulated cell cycle progression, apoptosis and migration of BC cells. Furthermore, KLF12 bound to the promoter of enolase 2 (ENO2) and transcriptionally inhibited the expression of ENO2, which was highly expressed in BC tissues. KLF12 suppressed, while ENO2 promoted glycolysis. Lastly, ENO2 overexpression and knockdown promoted and suppressed the proliferation and migration of BC cells, respectively. These results suggest that KLF12 acts as a tumor suppressor by negatively regulated ENO2. Targeting ENO2 is a promising treatment strategy for this malignancy.
Collapse
Affiliation(s)
- Cai Tang
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, China
| | - Miao Wang
- Public affairs department, West China Hospital, Sichuan University, China
| | - Yi Dai
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, China.
| | - Xin Wei
- Department of Urology, West China Hospital, Sichuan University, China.
| |
Collapse
|
22
|
ST09, A Novel Curcumin Derivative, Blocks Cell Migration by Inhibiting Matrix Metalloproteases in Breast Cancer Cells and Inhibits Tumor Progression in EAC Mouse Tumor Models. Molecules 2020; 25:molecules25194499. [PMID: 33008036 PMCID: PMC7583863 DOI: 10.3390/molecules25194499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose: Curcumin is known for its anticancer and migrastatic activity in various cancers, including breast cancer. Newer curcumin derivatives are being explored to overcome limitations of curcumin like low bioavailability, stability, and side effects due to its higher dose. In this study, the synthesis of ST09, a novel curcumin derivative, and its antiproliferative, cytotoxic, and migrastatic properties have been explored both in vitro and in vivo. Methods: After ST09 synthesis, anticancer activity was studied by performing standard cytotoxicity assays namely, lactate dehydrogenase (LDH) release assay, 3-(4, 5-dimethylthiazol-2-yl)-2–5-diphenyletrazolium bromide (MTT), and trypan blue exclusion assay. Annexin-FITC, cell cycle analysis using flow cytometry, and Western blotting were performed to elucidate cell death mechanisms. The effect on the inhibition of cell migration was studied by transwell migration assay. An EAC (Ehrlich Ascites carcinoma) induced mouse tumor model was used to study the effect of ST09 on tumor regression. Drug toxicity was measured using aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and flow-cytometry based lymphocyte count. Histological analysis was performed for assessment of any tissue injury post ST09 treatment. Results: ST09 shows an approximate 100-fold higher potency than curcumin, its parent compound, on breast tumor cell lines MCF-7 and MDA-MB231. ST09 arrests the cell cycle in a cell type-specific manner and induces an intrinsic apoptotic pathway both in vitro and in vivo. ST09 inhibits migration by downregulating matrix metalloprotease 1,2 (MMP1,2) and Vimentin. In vivo, ST09 administration led to decreased tumor volume in a mouse allograft model by boosting immunity with no significant drug toxicity. Conclusion: ST09 exhibits antiproliferative and cytotoxic activity at nanomolar concentrations. It induces cell death by activation of the intrinsic pathway of apoptosis both in vitro and in vivo. It also inhibits migration and invasion. This study provides evidence that ST09 can potentially be developed as a novel antitumor drug candidate for highly metastatic and aggressive breast cancer.
Collapse
|
23
|
Wen X, Gao L, Hu Y. LAceModule: Identification of Competing Endogenous RNA Modules by Integrating Dynamic Correlation. Front Genet 2020; 11:235. [PMID: 32256525 PMCID: PMC7093494 DOI: 10.3389/fgene.2020.00235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Competing endogenous RNAs (ceRNAs) regulate each other by competitively binding microRNAs they share. This is a vital post-transcriptional regulation mechanism and plays critical roles in physiological and pathological processes. Current computational methods for the identification of ceRNA pairs are mainly based on the correlation of the expression of ceRNA candidates and the number of shared microRNAs, without considering the sensitivity of the correlation to the expression levels of the shared microRNAs. To overcome this limitation, we introduced liquid association (LA), a dynamic correlation measure, which can evaluate the sensitivity of the correlation of ceRNAs to microRNAs, as an additional factor for the detection of ceRNAs. To this end, we firstly analyzed the effect of LA on detecting ceRNA pairs. Subsequently, we proposed an LA-based framework, termed LAceModule, to identify ceRNA modules by integrating the conventional Pearson correlation coefficient and dynamic correlation LA with multi-view non-negative matrix factorization. Using breast and liver cancer datasets, the experimental results demonstrated that LA is a useful measure in the detection of ceRNA pairs and modules. We found that the identified ceRNA modules play roles in cell adhesion, cell migration, and cell-cell communication. Furthermore, our results show that ceRNAs may represent potential drug targets and markers for the treatment and prognosis of cancer.
Collapse
Affiliation(s)
- Xiao Wen
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Yuxuan Hu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
24
|
Yuedi D, Houbao L, Pinxiang L, Hui W, Min T, Dexiang Z. KLF2 induces the senescence of pancreatic cancer cells by cooperating with FOXO4 to upregulate p21. Exp Cell Res 2020; 388:111784. [PMID: 31866399 DOI: 10.1016/j.yexcr.2019.111784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/02/2023]
Abstract
Pancreatic cancer is one of the most common malignancies in the world. Senescence is frequently observed in the progression of pancreatic cancer. In a previous study, we showed that KLF2 inhibited the growth and migration of pancreatic cancer. However, the mechanisms are not fully understood. In this study, we showed that overexpression of KLF2 induced the senescence of pancreatic cancer cells and inhibited tumorigenesis, and knockdown of KLF2 inhibited senescence and p21 expression. In the molecular mechanism study, KLF2 was found to interact with FOXO4 and cooperated with FOXO4 to induce the expression of p21. Downregulation of p21 and FOXO4 impaired the induction of senescence by KLF2. Overall, this study revealed the functions and mechanisms of KLF2 in senescence and provided a novel explanation for the suppressive roles of KLF2 in pancreatic cancer.
Collapse
Affiliation(s)
- Dai Yuedi
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Soochow, 215006, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, 200240, China.
| | - Liu Houbao
- General Surgery Department, Zhongshan Hospital, General Surgery Institute, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China.
| | - Lu Pinxiang
- General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, Shanghai, 200031, China.
| | - Wang Hui
- General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, Shanghai, 200031, China.
| | - Tao Min
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Soochow, 215006, China.
| | - Zhang Dexiang
- General Surgery Department, Zhongshan-Xuhui Hospital Affiliated to Fudan University, Shanghai, 200031, China.
| |
Collapse
|
25
|
Yoon JH, Min K, Lee SK. Epstein-Barr Virus miR-BART17-5p Promotes Migration and Anchorage-Independent Growth by Targeting Kruppel-Like Factor 2 in Gastric Cancer. Microorganisms 2020; 8:microorganisms8020258. [PMID: 32075248 PMCID: PMC7074886 DOI: 10.3390/microorganisms8020258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus (EBV) infects more than 90% of the global population and is associated with a variety of tumors including nasopharyngeal carcinoma, Hodgkin lymphoma, natural killer/T lymphoma, and gastric carcinoma. In EBV-associated gastric cancer (EBVaGC), highly expressed EBV BamHI A rightward transcripts (BART) miRNAs may contribute to tumorigenesis with limited viral antigens. Despite previous studies on the targets of BART miRNAs, the functions of all 44 BART miRNAs have not been fully clarified. Here, we used RNA sequencing data from the Cancer Genome Atlas to find genes with decreased expression in EBVaGC. Furthermore, we used AGS cells infected with EBV to determine whether expression was reduced by BART miRNA. We showed that the expression of Kruppel-like factor 2 (KLF2) is lower in AGS-EBV cells than in the AGS control. Using bioinformatics analysis, four BART miRNAs were selected to check whether they suppress KLF2 expression. We found that only miR-BART17-5p directly down-regulated KLF2 and promoted gastric carcinoma cell migration and anchorage-independent growth. Our data suggest that KLF2 functions as a tumor suppressor in EBVaGC and that miR-BART17-5p may be a valuable target for effective EBVaGC treatment.
Collapse
Affiliation(s)
| | | | - Suk Kyeong Lee
- Correspondence: ; Tel.: +82-2-2258-7480; Fax: +82-504-201-2396
| |
Collapse
|
26
|
Wang Y, Han S, You X, Shi X, Liu L, Sun Y, Ma Y, Qian Q, Liu H, Cui B, Zhang Y. The role of low density lipoprotein receptor-related protein 11 as a tumor promoter in cervical cancer. Cancer Manag Res 2019; 11:8081-8093. [PMID: 31507330 PMCID: PMC6719843 DOI: 10.2147/cmar.s211912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Background It is unclear whether low density lipoprotein receptor-related protein 11 (LRP11), a newly found lipoprotein receptor regulatory protein, has the carcinogenic effects in cervical cancer. Methods Bioinformatics analysis, immunohistochemical (IHC) staining and evaluation, cell proliferation assay, flow cytometry, transwell migration and invasion assays, Western blotting, growth of LRP11-silenced cells in athymic nude mice were performed in this research. Results We found that LRP11 expression was higher in high-grade squamous intraepithelial lesions (HSIL) and cervical cancer tissue than in normal cervix, and high expression of LRP11 was associated with differentiation degree (P=0.0266), indicating poor prognosis (P=0.0210). The silencing of LRP11 in SiHa and CaSki cell lines inhibited cell proliferation, reduced migration and invasion and suppressed cell growth in nude mice, which possibly related to cell cycle protein regulation of CDK 2/4, cyclin D1/E1, MMP-2/9, and VEGF. Furthermore, LRP11 showed substantial positive correlation with P16 in vivo and in vitro. Conclusion LRP11 plays important roles in proliferation, migration and invasion, with the potential to be a useful prognostic marker and therapeutic target for patients with HSIL and cervical cancer.
Collapse
Affiliation(s)
- Ying Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China.,Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Xuewu You
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Xuejiao Shi
- Department of Rheumatism and Immunology, Weihai Municipal Hospital, Weihai, Shandong 264200, People's Republic of China
| | - Lu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yu Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yana Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Qiuhong Qian
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Hongli Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|