1
|
Ahmed MM, Malachowska B, Guha C. Radiation-Induced Tissue Regeneration: Pathways, Mechanisms, and Therapeutic Potential. Hematol Oncol Clin North Am 2025; 39:431-452. [PMID: 39827040 DOI: 10.1016/j.hoc.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This article explores the paradoxic nature of radiation as both a destructive and regenerative force. The article examines the interplay of signaling pathways, immune modulation, and stem cells in tissue regeneration post radiation, emphasizing the roles of key pathways like Wnt, Hedgehog, Notch, and p53. It highlights advancements in low-dose radiation therapy, extracellular vesicles, and stem cell-based interventions. Furthermore, the immune system's dual role in repair and damage is dissected, along with technologies such as artificial intelligence and bioengineered scaffolds that enhance therapeutic outcomes. The article offers a roadmap for integrating therapeutic innovation with regenerative medicine to improve patient outcomes.
Collapse
Affiliation(s)
- Mansoor M Ahmed
- Division of Radiation Biology and Molecular Therapeutics, Department of Radiation Oncology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Chandan Guha
- Department of Radiation Oncology, Institute for Onco-Physics, Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY 10461, USA.
| |
Collapse
|
2
|
Seno M. A Landscape of Cancer Initiation and Cancer Stem Cells. Cancers (Basel) 2025; 17:203. [PMID: 39857984 PMCID: PMC11764454 DOI: 10.3390/cancers17020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Exposure to radiation and chemicals, oncogenic viruses, microbiomes, and inflammation are the major events of cancer initiation. DNA damage and chromosomal aberrations are classically considered the main causes of cancer. The recent idea of epigenetics is broadening the concept, including the suggestion that oncogenic virus infection disrupts various intracellular signaling cascades. Chronic inflammation was proposed as the origin of cancer in the 19th century, and the molecular level of events has been made clear with scientific development. Much knowledge of cancer initiation has become available for integration into research. Simultaneously, the presence of cancer stem cells has been identified and characterized. However, the point of shift from normal to malignant still appears obscure even when taking cancer stem cells into consideration. From these points of view, the advent of cancer stem cells and cancer initiation are briefly discussed as the points of shift from normal to malignant in this paper.
Collapse
Affiliation(s)
- Masaharu Seno
- Laboratory of Cancer Stem Cell Engineering, Faculty of Interdisciplinary Science and Engineering of Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
3
|
Wilson C, Adams GG, Patel P, Windham K, Ennis C, Caffrey E. A Review of Recent Low-dose Research and Recommendations for Moving Forward. HEALTH PHYSICS 2024; 126:386-396. [PMID: 38568156 DOI: 10.1097/hp.0000000000001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT The linear no-threshold (LNT) model has been the regulatory "law of the land" for decades. Despite the long-standing use of LNT, there is significant ongoing scientific disagreement on the applicability of LNT to low-dose radiation risk. A review of the low-dose risk literature of the last 10 y does not provide a clear answer, but rather the body of literature seems to be split between LNT, non-linear risk functions (e.g., supra- or sub-linear), and hormetic models. Furthermore, recent studies have started to explore whether radiation can play a role in the development of several non-cancer effects, such as heart disease, Parkinson's disease, and diabetes, the mechanisms of which are still being explored. Based on this review, there is insufficient evidence to replace LNT as the regulatory model despite the fact that it contributes to public radiophobia, unpreparedness in radiation emergency response, and extreme cleanup costs both following radiological or nuclear incidents and for routine decommissioning of nuclear power plants. Rather, additional research is needed to further understand the implications of low doses of radiation. The authors present an approach to meaningfully contribute to the science of low-dose research that incorporates machine learning and Edisonian approaches to data analysis.
Collapse
Affiliation(s)
- Charles Wilson
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Grace G Adams
- Gryphon Scientific, LLC, 6930 Carrol Ave., Suite 810, Takoma Park, MD 20912
| | - Pooja Patel
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Kiran Windham
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Colby Ennis
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Emily Caffrey
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| |
Collapse
|
4
|
Lee SH, Jeong YJ, Park J, Kim HY, Son Y, Kim KS, Lee HJ. Low-Dose Radiation Affects Cardiovascular Disease Risk in Human Aortic Endothelial Cells by Altering Gene Expression under Normal and Diabetic Conditions. Int J Mol Sci 2022; 23:8577. [PMID: 35955709 PMCID: PMC9369411 DOI: 10.3390/ijms23158577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
High doses of ionizing radiation can cause cardiovascular diseases (CVDs); however, the effects of <100 mGy radiation on CVD remain underreported. Endothelial cells (ECs) play major roles in cardiovascular health and disease, and their function is reduced by stimuli such as chronic disease, metabolic disorders, and smoking. However, whether exposure to low-dose radiation results in the disruption of similar molecular mechanisms in ECs under diabetic and non-diabetic states remains largely unknown; we aimed to address this gap in knowledge through the molecular and functional characterization of primary human aortic endothelial cells (HAECs) derived from patients with type 2 diabetes (T2D-HAECs) and normal HAECs in response to low-dose radiation. To address these limitations, we performed RNA sequencing on HAECs and T2D-HAECs following exposure to 100 mGy of ionizing radiation and examined the transcriptome changes associated with the low-dose radiation. Compared with that in the non-irradiation group, low-dose irradiation induced 243 differentially expressed genes (DEGs) (133 down-regulated and 110 up-regulated) in HAECs and 378 DEGs (195 down-regulated and 183 up-regulated) in T2D-HAECs. We also discovered a significant association between the DEGs and the interferon (IFN)-I signaling pathway, which is associated with CVD by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein−protein network analysis, and module analysis. Our findings demonstrate the potential impact of low-dose radiation on EC functions that are related to the risk of CVD.
Collapse
Affiliation(s)
- Soo-Ho Lee
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Ye Ji Jeong
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Jeongwoo Park
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Hyun-Yong Kim
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Yeonghoon Son
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Kwang Seok Kim
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| | - Hae-June Lee
- Divisions of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (S.-H.L.); (Y.J.J.); (J.P.); (H.-Y.K.); (Y.S.)
| |
Collapse
|
5
|
Shen H, Han J, Liu C, Cao F, Huang Y. Grape Seed Proanthocyanidins Exert a Radioprotective Effect on the Testes and Intestines Through Antioxidant Effects and Inhibition of MAPK Signal Pathways. Front Med (Lausanne) 2022; 8:836528. [PMID: 35141259 PMCID: PMC8818786 DOI: 10.3389/fmed.2021.836528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022] Open
Abstract
The testes and intestines are highly sensitive to ionizing radiation. Low-dose radiation can cause infertility and enteritis. However, there is a lack of safe and efficient radioprotective agents. This study aims to investigate the radioprotective effects of grape seed proanthocyanidins (GSPs) on testicular and intestinal damage induced by ionizing radiation. In vitro, GSPs reduced the apoptosis and proliferation inhibition of mouse testicular stromal cells TM3 and human small intestinal crypt epithelial cells HIEC induced by ionizing radiation, and alleviated DNA double-strand breaks. In vivo, GSPs ameliorated the pathological damage of the testes and intestines induced by ionizing radiation, and protected the endocrine function of the testes and the barrier function of the intestines. In addition, we preliminarily proved that the radioprotective effect of GSPs is related to its antioxidant effect and inhibition of MAPK signaling pathways. Our results indicate that GSPs are expected to be a safe and effective radioprotective drug.
Collapse
Affiliation(s)
- Hui Shen
- Department of Central Laboratory, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jun Han
- Department of Radiology, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chunlei Liu
- Department of Radiation Oncology, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Fei Cao
- Department of Radiotherapy, Changhai Hospital of Shanghai, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yijuan Huang
- Department of Radiology, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
6
|
Ventura JA, Donoghue JF, Nowell CJ, Cann LM, Day LRJ, Smyth LML, Forrester HB, Rogers PAW, Crosbie JC. The γH2AX DSB marker may not be a suitable biodosimeter to measure the biological MRT valley dose. Int J Radiat Biol 2021; 97:642-656. [PMID: 33617395 DOI: 10.1080/09553002.2021.1893854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/31/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE γH2AX biodosimetry has been proposed as an alternative dosimetry method for microbeam radiation therapy (MRT) because conventional dosimeters, such as ionization chambers, lack the spatial resolution required to accurately measure the MRT valley dose. Here we investigated whether γH2AX biodosimetry should be used to measure the biological valley dose of MRT-irradiated mammalian cells. MATERIALS AND METHODS We irradiated human skin fibroblasts and mouse skin flaps with synchrotron MRT and broad beam (BB) radiation. BB doses of 1-5 Gy were used to generate a calibration curve in order to estimate the biological MRT valley dose using the γH2AX assay. RESULTS Our key finding was that MRT induced a non-linear dose response compared to BB, where doses 2-3 times greater showed the same level of DNA DSB damage in the valley in cell and tissue studies. This indicates that γH2AX may not be an appropriate biodosimeter to estimate the biological valley doses of MRT-irradiated samples. We also established foci yields of 5.9 ± 0 . 04 and 27.4 ± 2 . 5 foci/cell/Gy in mouse skin tissue and human fibroblasts respectively, induced by BB. Using Monte Carlo simulations, a linear dose response was seen in cell and tissue studies and produced predicted peak-to-valley dose ratios (PVDRs) of ∼30 and ∼107 for human fibroblasts and mouse skin tissue respectively. CONCLUSIONS Our report highlights novel MRT radiobiology, attempts to explain why γH2AX may not be an appropriate biodosimeter and suggests further studies aimed at revealing the biological and cellular communication mechanisms that drive the normal tissue sparing effect, which is characteristic of MRT.
Collapse
Affiliation(s)
- Jessica A Ventura
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Jacqueline F Donoghue
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Cameron J Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Leonie M Cann
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Liam R J Day
- School of Science, RMIT University, Melbourne, Australia
| | - Lloyd M L Smyth
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | - Helen B Forrester
- School of Science, RMIT University, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
7
|
Gordillo GM, Biswas A, Singh K, Sen A, Guda PR, Miller C, Pan X, Khanna S, Cadenas E, Sen CK. Mitochondria as Target for Tumor Management of Hemangioendothelioma. Antioxid Redox Signal 2021; 34:137-153. [PMID: 32597200 PMCID: PMC7757590 DOI: 10.1089/ars.2020.8059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022]
Abstract
Aims: Hemangioendothelioma (HE) may be benign or malignant. Mouse hemangioendothelioma endothelial (EOMA) cells are validated to study mechanisms in HE. This work demonstrates that EOMA cells heavily rely on mitochondria to thrive. Thus, a combination therapy, including weak X-ray therapy (XRT, 0.5 Gy) and a standardized natural berry extract (NBE) was tested. This NBE is known to be effective in managing experimental HE and has been awarded with the Food and Drug Administration Investigational New Drug (FDA-IND) number 140318 for clinical studies on infantile hemangioma. Results: NBE treatment alone selectively attenuated basal oxygen consumption rate of EOMA cells. NBE specifically sensitized EOMA, but not murine aortic endothelial cells to XRT-dependent attenuation of mitochondrial respiration and adenosine triphosphate (ATP) production. Combination treatment, selectively and potently, influenced mitochondrial dynamics in EOMA cells such that fission was augmented. This was achieved by lowering of mitochondrial sirtuin 3 (SIRT3) causing increased phosphorylation of AMP-activated protein kinase (AMPK). A key role of SIRT3 in loss of EOMA cell viability caused by the combination therapy was evident when pyrroloquinoline quinone, an inducer of SIRT3, pretreatment rescued these cells. Innovation and Conclusion: Mitochondria-targeting NBE significantly extended survival of HE-affected mice. The beneficial effect of NBE in combination with weak X-ray therapy was, however, far more potent with threefold increase in murine survival. The observation that safe natural products may target tumor cell mitochondria and sharply lower radiation dosage required for tumor management warrants clinical testing.
Collapse
Affiliation(s)
- Gayle M. Gordillo
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ayan Biswas
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kanhaiya Singh
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abhishek Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Poornachander R. Guda
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Caroline Miller
- Electron Microscopy Core, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xueliang Pan
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Savita Khanna
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Chandan K. Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
8
|
Bertho JM, Bo R, Magneron V, Legendre A, Cochard M, Broggio D, Tack K. Co-exposure to internal and external radiation alters cesium biokinetics and retention in mice. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:504-519. [PMID: 32109890 DOI: 10.1088/1361-6498/ab7b43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exposures in post-accidental situations are complex and include both external exposure and internal contamination with several radionuclides. However, in vivo and in vitro studies generally use simplified exposures, while a recent study suggested that combined external irradiation and internal contamination may induce more severe biological effects compared to single exposures. In an attempt to test the hypothesis of potential non-additive effects of multiple radiological exposures, we used a mouse model of combined external x-ray irradiation at 1 and 5 Gy and internal contamination with injection of 20 KBq 137Cs. The results showed differential kinetics of 137Cs elimination in irradiated animals compared to sham-irradiated, 137Cs injected animals. Moreover, changes in plasma potassium and in relative testis weight were observed 38 days after irradiation and injection in co-exposed animals compared to 137Cs injection alone. These results demonstrate that an external exposure combined with an internal contamination may lead to unexpected changes in biokinetics of radionuclides and biological effects compared to single exposures.
Collapse
Affiliation(s)
- Jean-Marc Bertho
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE, Fontenay-aux Roses, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Devic C, Ferlazzo ML, Berthel E, Foray N. Influence of Individual Radiosensitivity on the Hormesis Phenomenon: Toward a Mechanistic Explanation Based on the Nucleoshuttling of ATM Protein. Dose Response 2020; 18:1559325820913784. [PMID: 32425719 PMCID: PMC7218313 DOI: 10.1177/1559325820913784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Hormesis is a low-dose phenomenon that has been reported to occur, to different extents, in animals, plants, and microorganisms. However, a review of the literature shows that only a few reports describe it in humans. Also, the diversity of experimental protocols and cellular models used makes deciphering the mechanisms of hormesis difficult. In humans, hormesis mostly appears in the 20 to 75 mGy dose range and in nontransformed, radioresistant cells. In a previous paper by Devic et al, a biological interpretation of the adaptive response (AR) phenomenon was proposed using our model that is based on the radiation-induced nucleoshuttling of the ATM protein (the RIANS model). Here, we showed that the 20 to 75 mGy dose range corresponds to a maximum amount of ATM monomers diffusing into the nucleus, while no DNA double-strand breaks is produced by radiation. These ATM monomers are suggested to help in recognizing and repairing spontaneous DNA breaks accumulated in cells and contribute to reductions in genomic instability and aging. The RIANS model also permitted the biological interpretation of hypersensitivity to low doses (HRS)-another low-dose phenomenon. Hence, for the first time to our knowledge, hormesis, AR, and HRS can be explained using the same unified molecular model.
Collapse
Affiliation(s)
- Clément Devic
- Institut National de la Santé et de la Recherche Médicale (INSERM), UA8 Unit "Radiations: Defense, Health and Environment," Centre Léon-Bérard, Lyon, France.,Fibermetrix Company, Strasbourg, France
| | - Mélanie L Ferlazzo
- Institut National de la Santé et de la Recherche Médicale (INSERM), UA8 Unit "Radiations: Defense, Health and Environment," Centre Léon-Bérard, Lyon, France
| | - Elise Berthel
- Institut National de la Santé et de la Recherche Médicale (INSERM), UA8 Unit "Radiations: Defense, Health and Environment," Centre Léon-Bérard, Lyon, France
| | - Nicolas Foray
- Institut National de la Santé et de la Recherche Médicale (INSERM), UA8 Unit "Radiations: Defense, Health and Environment," Centre Léon-Bérard, Lyon, France
| |
Collapse
|
10
|
Belmans N, Gilles L, Vermeesen R, Virag P, Hedesiu M, Salmon B, Baatout S, Lucas S, Lambrichts I, Jacobs R, Moreels M. Quantification of DNA Double Strand Breaks and Oxidation Response in Children and Adults Undergoing Dental CBCT Scan. Sci Rep 2020; 10:2113. [PMID: 32034200 PMCID: PMC7005754 DOI: 10.1038/s41598-020-58746-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/03/2020] [Indexed: 01/22/2023] Open
Abstract
Assessing the possible biological effects of exposure to low doses of ionizing radiation (IR) is one of the prime challenges in radiation protection, especially in medical imaging. Today, radiobiological data on cone beam CT (CBCT) related biological effects are scarce. In children and adults, the induction of DNA double strand breaks (DSBs) in buccal mucosa cells and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and antioxidant capacity in saliva samples after CBCT examination were examined. No DNA DSBs induction was observed in children nor adults. In children only, an increase in 8-oxo-dG levels was observed 30 minutes after CBCT. At the same time an increase in antioxidant capacity was observed in children, whereas a decrease was observed in adults. Our data indicate that children and adults react differently to IR doses associated with CBCT. Fully understanding these differences could lead to an optimal use of CBCT in different age categories as well as improved radiation protection guidelines.
Collapse
Affiliation(s)
- Niels Belmans
- Morphology Group, Biomedical Research Institute, Hasselt University, Agoralaan Building C, Diepenbeek, Belgium
- Belgian Nuclear Research Centre, Radiobiology Unit, SCK•CEN, Mol, Belgium
| | - Liese Gilles
- Morphology Group, Biomedical Research Institute, Hasselt University, Agoralaan Building C, Diepenbeek, Belgium
| | - Randy Vermeesen
- Belgian Nuclear Research Centre, Radiobiology Unit, SCK•CEN, Mol, Belgium
| | - Piroska Virag
- Institute of Oncology "Prof. dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Mihaela Hedesiu
- 'Iuliu Hatieganu' University of Medicine and Pharmacy, Department of Oral and Maxillofacial Radiology, Cluj-Napoca, Romania
| | - Benjamin Salmon
- Paris Descartes University - Sorbonne Paris Cité, EA 2496 - Orofacial Pathologies, Imaging and Biotherapies Lab and Dental Medicine Department, Bretonneau Hospital, HUPNVS, AP-HP, Paris, France
| | - Sarah Baatout
- Belgian Nuclear Research Centre, Radiobiology Unit, SCK•CEN, Mol, Belgium
| | - Stéphane Lucas
- Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Ivo Lambrichts
- Morphology Group, Biomedical Research Institute, Hasselt University, Agoralaan Building C, Diepenbeek, Belgium
| | - Reinhilde Jacobs
- Katholieke Universiteit Leuven, Department of Imaging and Pathology, OMFS-IMPATH Research group, and University Hospitals, Oral and Maxillofacial Surgery, Dentomaxillofacial Imaging Center, Kapucijnenvoer 7, Leuven, Belgium
- Karolinska Institutet, Department Dental Medicine, Huddinge, Sweden
| | - Marjan Moreels
- Belgian Nuclear Research Centre, Radiobiology Unit, SCK•CEN, Mol, Belgium.
| |
Collapse
|
11
|
Dong S, Qian W, Liu T, Liu H, Du J, Zhao H, Gao F, Cai J. Repeated 0.2-Gy γ-Ray Irradiation Attenuates the Inflammatory Process and Endotoxin Damage Induced by Lipopolysaccharides. Dose Response 2019; 17:1559325819836355. [PMID: 31258453 PMCID: PMC6590103 DOI: 10.1177/1559325819836355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022] Open
Abstract
Endotoxin damage is an acute, multi-organ disease, the most typical symptoms of which are liver injury and inflammatory cytokine storm. Endotoxin tolerance is described as the pretreatment of lipopolysaccharides (LPS) before the toxin invasion, which is consistent with the adaptive response induced by low-dose radiation (LDR). In this study, we verified that LDR could resist the endotoxin damage by suppressing the increase of inflammatory cytokines, including interleukin 6, tumor necrosis factor, and NO, to improve the survival and relieve the inflammatory cell infiltration, in which low dose of LPS performed consistently with LDR.
Collapse
Affiliation(s)
- Suhe Dong
- Faculty of Naval Medicine, Department of Radiation Medicine, Second Military Medical University, Shanghai, China
| | - Wen Qian
- Faculty of Naval Medicine, Department of Radiation Medicine, Second Military Medical University, Shanghai, China
| | - Tingting Liu
- Faculty of Naval Medicine, Department of Radiation Medicine, Second Military Medical University, Shanghai, China
| | - Hu Liu
- Faculty of Naval Medicine, Department of Radiation Medicine, Second Military Medical University, Shanghai, China
| | - Jicong Du
- Faculty of Naval Medicine, Department of Radiation Medicine, Second Military Medical University, Shanghai, China
| | - Hainan Zhao
- Faculty of Naval Medicine, Department of Radiation Medicine, Second Military Medical University, Shanghai, China
| | - Fu Gao
- Faculty of Naval Medicine, Department of Radiation Medicine, Second Military Medical University, Shanghai, China
| | - Jianming Cai
- Faculty of Naval Medicine, Department of Radiation Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Ramadan R, Vromans E, Anang DC, Decrock E, Mysara M, Monsieurs P, Baatout S, Leybaert L, Aerts A. Single and fractionated ionizing radiation induce alterations in endothelial connexin expression and channel function. Sci Rep 2019; 9:4643. [PMID: 31217426 PMCID: PMC6584668 DOI: 10.1038/s41598-019-39317-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is an effective treatment for most tumor types. However, emerging evidence indicates an increased risk for atherosclerosis after ionizing radiation exposure, initiated by endothelial cell dysfunction. Interestingly, endothelial cells express connexin (Cx) proteins that are reported to exert proatherogenic as well as atheroprotective effects. Furthermore, Cxs form channels, gap junctions and hemichannels, that are involved in bystander signaling that leads to indirect radiation effects in non-exposed cells. We here aimed to investigate the consequences of endothelial cell irradiation on Cx expression and channel function. Telomerase immortalized human Coronary Artery/Microvascular Endothelial cells were exposed to single and fractionated X-rays. Several biological endpoints were investigated at different time points after exposure: Cx gene and protein expression, gap junctional dye coupling and hemichannel function. We demonstrate that single and fractionated irradiation induce upregulation of proatherogenic Cx43 and downregulation of atheroprotective Cx40 gene and protein levels in a dose-dependent manner. Single and fractionated irradiation furthermore increased gap junctional communication and induced hemichannel opening. Our findings indicate alterations in Cx expression that are typically observed in endothelial cells covering atherosclerotic plaques. The observed radiation-induced increase in Cx channel function may promote bystander signaling thereby exacerbating endothelial cell damage and atherogenesis.
Collapse
Affiliation(s)
- Raghda Ramadan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
- Department of Basic and Applied Medical Sciences, Physiology group, Ghent University, Ghent, Belgium
| | - Els Vromans
- Centre for Environmental Health Sciences, Hasselt University, Hasselt, Belgium
| | - Dornatien Chuo Anang
- Biomedical Research Institute and transnational university of Limburg, Hasselt University, Hasselt, Belgium
| | - Elke Decrock
- Department of Basic and Applied Medical Sciences, Physiology group, Ghent University, Ghent, Belgium
| | - Mohamed Mysara
- Microbiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
| | - Pieter Monsieurs
- Microbiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Physiology group, Ghent University, Ghent, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium.
| |
Collapse
|
13
|
Xu J, Liu D, Xiao S, Meng X, Zhao D, Jiang X, Jiang X, Cai L, Jiang H. Low-Dose Radiation Prevents Chemotherapy-Induced Cardiotoxicity. CURRENT STEM CELL REPORTS 2019; 5:82-91. [DOI: 10.1007/s40778-019-00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Guéguen Y, Bontemps A, Ebrahimian TG. Adaptive responses to low doses of radiation or chemicals: their cellular and molecular mechanisms. Cell Mol Life Sci 2019; 76:1255-1273. [PMID: 30535789 PMCID: PMC11105647 DOI: 10.1007/s00018-018-2987-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
Abstract
This article reviews the current knowledge on the mechanisms of adaptive response to low doses of ionizing radiation or chemical exposure. A better knowledge of these mechanisms is needed to improve our understanding of health risks at low levels of environmental or occupational exposure and their involvement in cancer or non-cancer diseases. This response is orchestrated through a multifaceted cellular program involving the concerted action of diverse stress response pathways. These evolutionary highly conserved defense mechanisms determine the cellular response to chemical and physical aggression. They include DNA damage repair (p53, ATM, PARP pathways), antioxidant response (Nrf2 pathway), immune/inflammatory response (NF-κB pathway), cell survival/death pathway (apoptosis), endoplasmic response to stress (UPR response), and other cytoprotective processes including autophagy, cell cycle regulation, and the unfolded protein response. The coordinated action of these processes induced by low-dose radiation or chemicals produces biological effects that are currently estimated with the linear non-threshold model. These effects are controversial. They are difficult to detect because of their low magnitude, the scarcity of events in humans, and the difficulty of corroborating associations over the long term. Improving our understanding of these biological consequences should help humans and their environment by enabling better risk estimates, the revision of radiation protection standards, and possible therapeutic advances.
Collapse
Affiliation(s)
- Yann Guéguen
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France.
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRSI, Fontenay-aux-Roses, France.
| | - Alice Bontemps
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| | - Teni G Ebrahimian
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
15
|
The LNT model for cancer induction is not supported by radiobiological data. Chem Biol Interact 2019; 301:34-53. [PMID: 30763552 DOI: 10.1016/j.cbi.2019.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The hallmarks of cancer have been the focus of much research and have influenced the development of risk models for radiation-induced cancer. However, natural defenses against cancer, which constitute the hallmarks of cancer prevention, have largely been neglected in developing cancer risk models. These natural defenses are enhanced by low doses and dose rates of ionizing radiation, which has aided in the continuation of human life over many generations. Our natural defenses operate at the molecular, cellular, tissue, and whole-body levels and include epigenetically regulated (epiregulated) DNA damage repair and antioxidant production, selective p53-independent apoptosis of aberrant cells (e.g. neoplastically transformed and tumor cells), suppression of cancer-promoting inflammation, and anticancer immunity (both innate and adaptive components). This publication reviews the scientific bases for the indicated cancer-preventing natural defenses and evaluates their implication for assessing cancer risk after exposure to low radiation doses and dose rates. Based on the extensive radiobiological evidence reviewed, it is concluded that the linear-no-threshold (LNT) model (which ignores natural defenses against cancer), as it relates to cancer risk from ionizing radiation, is highly implausible. Plausible models include dose-threshold and hormetic models. More research is needed to establish when a given model (threshold, hormetic, or other) applies to a given low-dose-radiation exposure scenario.
Collapse
|