1
|
Zhu S, Zhang M, Qu Z, Xu S, Peng J, Jiang F. Moscatilin alleviates oxidative stress and inflammatory response of Müller cells in diabetic retinopathy through suppressing the p38 mitogen-activated protein kinase/c-Jun N-terminal kinase and nuclear factor kappa-B signaling pathways. J Cell Commun Signal 2025; 19:e12059. [PMID: 39975983 PMCID: PMC11837732 DOI: 10.1002/ccs3.12059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/01/2024] [Accepted: 11/28/2024] [Indexed: 02/21/2025] Open
Abstract
Diabetic retinopathy (DR), as the main ophthalmic complication of diabetes mellitus, is a major eye disorder contributing to blindness. Oxidative stress and inflammation in retinal Müller cells participate in the pathogenesis of DR. This work aims to study the biological role of moscatilin in the progression of DR and the underlying mechanism. High glucose (HG)-stimulated mouse primary retinal Müller cells and high-fat diet + streptozotocin (STZ)-induced DR mouse models were constructed as in vitro and in vivo models, respectively. The effects of moscatilin treatment on oxidative stress and inflammation in HG-stimulated Müller cells and DR mice were evaluated by detecting intracellular reactive oxygen species production, malondialdehyde levels, superoxide dismutase and catalase activities, glutathione/oxidized glutathione ratio, as well as proinflammatory cytokine levels through CM-H2DCFDA staining, commercial kits, and enzyme-linked immunosorbent assay. Dual immunofluorescence staining of glial fibrillary acidic protein and vimentin was used to evaluate the development of Müller cells in mouse retinas. The activity of p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinase (JNK) and nuclear factor kappa-B (NF-κB) signaling pathway was assessed through western blotting and immunofluorescence staining. Moscatilin pretreatment prevented HG-induced decrease in Müller cell viability. Moscatilin mitigated oxidative stress, inflammation, and extracellular matrix remodeling in HG-stimulated Müller cells and DR mice. Mechanically, moscatilin reduced the levels of receptor for advanced glycation end products, phosphorylated I-kappa-B-alpha, p-p65 NF-κB, p-p38 MAPK, and p-JNK in both HG-stimulated Müller cells and DR mice. Moscatilin plays an antioxidant and anti-inflammatory role in DR by inhibiting the p38 MAPK/JNK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Suhua Zhu
- Department of PharmacyXuzhou No.1 People's HospitalXuzhouJiangsuChina
| | - Man Zhang
- Department of PharmacyXuzhou No.1 People's HospitalXuzhouJiangsuChina
| | - Zhen Qu
- Department of PharmacyXuzhou No.1 People's HospitalXuzhouJiangsuChina
| | - Shengqiu Xu
- Department of PharmacyXuzhou No.1 People's HospitalXuzhouJiangsuChina
| | - Jie Peng
- Department of PharmacyYancheng No.1 People's HospitalYanchengJiangsuChina
| | - Fanjing Jiang
- Department of PharmacyXuzhou No.1 People's HospitalXuzhouJiangsuChina
| |
Collapse
|
2
|
Zhang T, Zhu M, Ma J, Liu Z, Zhang Z, Chen M, Zhao Y, Li H, Wang S, Wei X, Zhang W, Yang X, Little PJ, Kamato D, Hu H, Duan Y, Zhang B, Xiao J, Xu S, Chen Y. Moscatilin inhibits vascular calcification by activating IL13RA2-dependent inhibition of STAT3 and attenuating the WNT3/β-catenin signalling pathway. J Adv Res 2025; 68:445-457. [PMID: 38432393 PMCID: PMC11785559 DOI: 10.1016/j.jare.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Vascular calcification, a devastating vascular complication accompanying atherosclerotic cardiovascular disease and chronic kidney disease, increases the incidence of adverse cardiovascular events and compromises the efficacy of vascular interventions. However, effective therapeutic drugs and treatments to delay or prevent vascular calcification are lacking. OBJECTIVES This study was designed to test the therapeutic effects and mechanism of Moscatilin (also known as dendrophenol) from Dendrobium huoshanense (an eminent traditional Chinese medicine) in suppressing vascular calcification in vitro, ex vivo and in vivo. METHODS Male C57BL/6J mice (25-week-old) were subjected to nicotine and vitamin D3 (VD3) treatment to induce vascular calcification. In vitro, we established the cellular model of osteogenesis of human aortic smooth muscle cells (HASMCs) under phosphate conditions. RESULTS By utilizing an in-house drug screening strategy, we identified Moscatilin as a new naturally-occurring chemical entity to reduce HASMC calcium accumulation. The protective effects of Moscatilin against vascular calcification were verified in cultured HASMCs. Unbiased transcriptional profiling analysis and cellular thermal shift assay suggested that Moscatilin suppresses vascular calcification via binding to interleukin 13 receptor subunit A2 (IL13RA2) and augmenting its expression. Furthermore, IL13RA2 was reduced during HASMC osteogenesis, thus promoting the secretion of inflammatory factors via STAT3. We further validated the participation of Moscatilin-inhibited vascular calcification by the classical WNT/β-catenin pathway, among which WNT3 played a key role in this process. Moscatilin mitigated the crosstalk between WNT3/β-catenin and IL13RA2/STAT3 to reduce osteogenic differentiation of HASMCs. CONCLUSION This study supports the potential of Moscatilin as a new naturally-occurring candidate drug for treating vascular calcification via regulating the IL13RA2/STAT3 and WNT3/β-catenin signalling pathways.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengmeng Zhu
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jialing Ma
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhenghong Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhidan Zhang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meijie Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yaping Zhao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huaxin Li
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shengnan Wang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoning Wei
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wenwen Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Xiaoxiao Yang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Danielle Kamato
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Hao Hu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
3
|
Wei X, Wang D, Xu Z, Liu J, Zhu Q, Chen Q, Tang H, Xu W. Research progress on the regulatory and pharmacological mechanism of chemical components of Dendrobium. Heliyon 2024; 10:e37541. [PMID: 39328574 PMCID: PMC11425140 DOI: 10.1016/j.heliyon.2024.e37541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dendrobium is a precious Chinese herbal medicine, which belongs to the genus Orchidaceae. Ancient records and modern pharmacological research show that Dendrobium has pharmacological effects such as anti-tumor, antioxidant regulating immunity and blood glucose, and anti-aging. Dendrobium contains polysaccharides, alkaloids, bibenzyl, sesquiterpenes, phenanthrene, polyphenols and other types of chemicals. Its pharmacological activity is closely related to these chemical components. For example, dendrobium extracts can achieve anti-tumor effects by inhibiting tumor cell proliferation and metastasis, promoting cell apoptosis and ferroptosis, or increasing cell sensitivity to chemotherapy drugs. It enhances immunity by regulating immune cell activity or cytokine release. In addition, it can alleviate neurodegenerative diseases by protecting nerve cells from apoptotic damage. In recent years, research reports on biologically active compounds in Dendrobium have shown a blowout growth, which makes us realize that it is meaningful to continuously update the research progress on the components and pharmacological regulatory mechanism of this traditional Chinese medicine. By classifying the collected chemical components according to different chemical structures and summarizing their pharmacological mechanisms, we investigated the current research progress of Dendrobium and provide a more comprehensive scientific foundation for the further development and clinical transformation of Dendrobium in the future.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Anhui Province, Suzhou, 234011, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, PR China
| |
Collapse
|
4
|
Guan L, Zhang S, Song P, Xia Y, Zheng X, Li W. Novel bibenzyl compound Ae exhibits anti-agiogenic activity in HUVECs in vitro and zebrafish in vivo. Bioorg Med Chem 2024; 111:117866. [PMID: 39096785 DOI: 10.1016/j.bmc.2024.117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
The inhibition of angiogenesis has been considered as an attractive method for the discovery of potential anti-cancer drugs. Herein, we report our new synthesized bibenzyl compound Ae had potent anti-angiogenic activity(the lowest effective concentration is to 0.62-1.25 μM) in zebrafish in vivo and showed a concentration-dependent inhibition of inter-segmental blood vessels (ISVs) compared to control. Further, Ae exhibited the obvious inhibitory activity of proliferation, migration, invasion and tube formation in HUVEC cells in vitro. Moreover, qRT-PCR analysis revealed that the anti-angiogenic activity of compound Ae is connected with the ang-2, tek in ANGPT-TEK pathway and the kdr, kdrl signaling axle in VEGF-VEGFR pathway. Molecular docking studies revealed that compound Ae had an interaction with the angiopoietin-2 receptor(TEK) and VEGFR2. Additionally, analysis of the ADMET prediction data indicated that compound Ae possessed favorable physicochemical properties, drug-likeness, and synthetic accessibility. In conclusion, compound Ae had remarkable anti-angiogenic activity and could be served as an candidate for cancer therapy.
Collapse
Affiliation(s)
- Li Guan
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Shengjie Zhang
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Pengfei Song
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanxin Xia
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Xinle Zheng
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Weize Li
- College of Pharmacy, Xi'an Medical University, Xi'an 710021, China.
| |
Collapse
|
5
|
Silva-Reis R, Silva VLM, Cardoso SM, Michalak I, Püsküllüoğlu M, Calina D, Sharifi-Rad J. Moscatilin, a potential therapeutic agent for cancer treatment: insights into molecular mechanisms and clinical prospects. Med Oncol 2024; 41:228. [PMID: 39153137 DOI: 10.1007/s12032-024-02467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Moscatilin, a bibenzyl derivative from the Dendrobium genus, has been traditionally used in Chinese medicine. Recent studies suggest its potential as a powerful anticancer agent due to its diverse pharmacological properties.This review aims to consolidate current research on moscatilin's anticancer mechanisms, structure-activity relationships, and therapeutic potential to assess its viability for clinical use. A literature search was performed in PubMed/MedLine, Scopus, and Web of Science.The search focused on "cancer," "moscatilin," "anticancer," "bioactivity," "dendrobium," and "pharmacological properties." Relevant studies on molecular mechanisms, preclinical and clinical efficacy, and bioavailability were reviewed. Moscatilin exhibits significant anticancer effects in lung, breast, colorectal, and pancreatic cancers. It induces apoptosis via the JNK/SAPK pathway, inhibits cell proliferation, and suppresses metastasis. Structure-activity relationship studies reveal that phenolic groups and a two-carbon bridge are crucial for its efficacy. Additionally, moscatilin shows good bioavailability and a favorable safety profile, with low toxicity to healthy cells. Moscatilin demonstrates considerable potential as an anticancer agent, targeting multiple cancer progression pathways. Further clinical trials are essential to confirm its therapeutic efficacy and safety in humans.
Collapse
Affiliation(s)
- Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
- CITAB Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, Wroclaw, Poland
| | - Mirosława Püsküllüoğlu
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Garncarska 11, Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
| |
Collapse
|
6
|
Aljeldah MM. Evaluation of the anticancer and antibacterial activities of moscatilin. Heliyon 2024; 10:e31131. [PMID: 38818150 PMCID: PMC11137398 DOI: 10.1016/j.heliyon.2024.e31131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Orchids (Dendrobium sp.) have been the subject of extensive research due to their ubiquitous pharmacological, antimicrobial, and anticancer properties. Moscatilin is a bibenzyl secondary metabolite enriched in orchids that exhibits anticancer and antimicrobial properties through mechanisms that have not yet been fully elucidated. The current study aimed to assess the in vitro anticancer and antibacterial potential of moscatilin. The in vitro anti-proliferative effects of moscatilin against breast cancer-MCF-7 and liver-HepG2 cells were assessed using the dimethylthiazol-diphenyltetrazolium bromide assay. Selected six pro-apoptotic (caspase-3, 8, 9, p53, p21 & Bax) and two anti-apoptotic (Bcl-xL & Bcl-2) gene markers were assessed via qPCR and tested antibacterial activity against various bacterial strains using disc diffusion and broth dilution methods. Moscatilin decreased the cellular viabilities of HepG2 and MCF-7 cancer cells, with anti-proliferation rates of 66 % (IC50 51 ± 5.18 μM) and 58 % (IC50 57 ± 4.18 μM), respectively. This effect was selectively observed in cancer cells, and the impact of moscatilin on non-cancerous MCF-12 cells was marginal. Moreover, moscatilin-treated cells exhibited higher mRNA levels of caspase-3,8, 9, Bax, p53, and p21, whereas lower levels of Bcl-2 and Bcl-xL, two anti-apoptotic markers, were observed. Furthermore, moscatilin exhibited varying degrees of antibacterial activity against the bacterial strains investigated. Notably, the highest antibacterial potentials were observed against Staphylococcus epidermidis and Klebsiella pneumonia, while the lowest inhibitory activity was observed in Escherichia coli and Pseudomonas aeruginosa. Overall, these findings demonstrated that moscatilin exerts potent anticancer effects via apoptosis and has antimicrobial properties against Gram-negative and Gram-positive bacteria that are clinically relevant. These findings highlight the potential of moscatilin as a natural therapeutic candidate for the treatment of cancer and clinically important bacterial pathogens.
Collapse
Affiliation(s)
- Mohammed Mubarak Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, 31991, Saudi Arabia
| |
Collapse
|
7
|
Huang P, Zhang X, Prabhu JS, Pandey V. Therapeutic vulnerabilities in triple negative breast cancer: Stem-like traits explored within molecular classification. Biomed Pharmacother 2024; 174:116584. [PMID: 38613998 DOI: 10.1016/j.biopha.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive type of breast cancer (BC). Despite advances in the clinical management of TNBC, recurrence-related mortality remains a challenge. The stem-like phenotype of TNBC plays a significant role in the persistence of minimal disease residue after therapy. Individuals exhibiting stem-like characteristics are particularly prone to inducing malignant relapse accompanied by strong resistance. Therefore, stem-like traits have been broadly proposed as therapeutic vulnerabilities to treat TNBC and reduce recurrence. However, heterogeneity within TNBC often generally restricts the stability of the therapeutic efficacy. To understand the heterogeneity and manage TNBC more precisely, multiple TNBC subtyping categories have been reported, providing the basis for profile-according therapeutic regimens. To provide more insight into targeting stem-like traits to ablate TNBC and reduce recurrence in the context of heterogeneity, this paper reviewed the molecular subtyping of TNBC, identified the consensus subtypes with distinct stem-like phenotypes, characterized the stemness hierarchy of TNBC, outlined the biological models for stem-like TNBC subtypes, summarized the therapeutic vulnerabilities in stem-like traits of the subtypes, and proposed potential therapeutic regimens targeting stem-like characteristics to improve TNBC prognosis.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
8
|
Pulya S, Himaja A, Paul M, Adhikari N, Banerjee S, Routholla G, Biswas S, Jha T, Ghosh B. Selective HDAC3 Inhibitors with Potent In Vivo Antitumor Efficacy against Triple-Negative Breast Cancer. J Med Chem 2023; 66:12033-12058. [PMID: 37660352 DOI: 10.1021/acs.jmedchem.3c00614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
HDAC3 modulation shows promise for breast cancer, including triple-negative cases. Novel pyrazino-hydrazide-based HDAC3 inhibitors were designed and synthesized. Lead compound 4i exhibited potent HDAC3 inhibition (IC50 = 14 nM) with at least 121-fold selectivity. It demonstrated strong cytotoxicity against triple-negative breast cancer cells (IC50: 0.55 μM for 4T1, 0.74 μM for MDA-MB-231) with least normal cell toxicity. Metabolically stable 4i displayed a superior pharmacokinetic profile. A dose-dependent therapeutic efficacy of 4i was observed in a tumor-bearing mouse model. The biomarker analysis with tumor tissues displayed enhanced acetylation on Ac-H3K9, Ac-H3K27, and Ac-H4K12 compared to Ac-tubulin and Ac-SMC3 indicating HDAC3 selectivity of 4i in vivo. The immunoblotting study with tumor tissue showed upregulation of apoptotic proteins caspase-3, caspase-7, and cytochrome c and the downregulation of proliferation markers Bcl-2, CD44, EGFR, and Ki-67. Compound 4i represents a promising candidate for targeted breast cancer therapy, particularly for cases with triple-negative breast cancer.
Collapse
Affiliation(s)
- Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Ambati Himaja
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Ganesh Routholla
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, West Bengal 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
9
|
Yang W, Chen D, Ji Q, Zheng J, Ma Y, Sun H, Zhang Q, Zhang J, He Y, Song T. Molecular mechanisms underlying the anticancer property of Dendrobium in various systems of the human body: A review. Biomed Pharmacother 2023; 165:115223. [PMID: 37523984 DOI: 10.1016/j.biopha.2023.115223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023] Open
Abstract
Dendrobium, which belongs to the family of Orchidaceae, is a highly valuable traditional Chinese medicine commonly used in China. It exerts pharmacological activities such as antitumor and hypoglycemia effects, and its main components are alkaloids, polysaccharides, and terpenoids, among others. In recent years, research on the clinical application of Dendrobium in antitumor therapy has gained increasing attention. Accumulating evidence suggests that the active components of Dendrobium possess significant inhibitory effects on the viability of cancer cells as evident from in vivo and in vitro experiments, which indicates that Dendrobium exerts significant anticancer effect in treating and preventing cancer development, inhibiting the underlying potential molecular mechanisms, including suppression of cancer cell growth and proliferation, epithelial-mesenchymal transition (EMT), apoptosis induction, tumor angiogenesis, and reinforcement of cisplatin (DDP) -induced apoptosis. We herein present a review that summarizes the research progress of the application of Dendrobium in cancer therapy and its molecular mechanisms. This review describes the positive aspects of the active ingredients of Dendrobium in the treatment of cancers in various systems of the human body, their inhibitory effects on tumor survival and tumor microenvironment, and their potential mechanisms. Additionally, this review proposes future application prospects of Dendrobium in cancer therapy to promote further research and future extensive clinical applications of Dendrobium in cancer therapy.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jishan Zheng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yunyan Ma
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Hongqin Sun
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Qian Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
10
|
Gogoi P, Sen S. Orchids of Dibru-Saikhowa: A Systematic Review on Their Traditional Use, Pharmacological Activity and Phytochemistry. Curr Top Med Chem 2023; 23:2277-2299. [PMID: 37649298 DOI: 10.2174/1568026623666230830125205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Dibru-Saikhowa National Park and Biosphere Reserve (DSNPBR), Assam, India, is a part of biodiversity hotspots and a store house of many orchid species. This systematic review was conducted to document the medicinal importante of orchids available in DSNPBR and to analyse their importance in drug discovery. METHODS This systematic review was conducted using the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. Scientific databases were used to search relevant literature to document ethnomedicinal uses, pharmacological activity and phytochemistry of orchid species available in DSNPBR. RESULTS We have analysed 84 articles to document relevant information on 52 orchid species available in DSNPBR. Dendrobium (n = 13) is the top genus. Different orchid species available in DSNPBR were used traditionally in India, Nepal, Bangladesh, and China to cure gastrointestinal disorders, disease-associated pain and inflammation, skin diseases, wound, arthritis, menstrual pain, tuberculosis etc. The pre-clinical investigations confirmed that extract/fraction/isolated compounds of orchids possess antirheumatic, anticancer, antitumor, anti-inflammatory, antidiabetic, antimicrobial, nephroprotective and neuroprotective activities through different mechanisms. Biomolecules isolated from orchid species like Dendrobium nobile alkaloids, polysaccharides have shown a potential to be developed as future drug molecules. Many phytochemicals isolated have demonstrated in vitro anticancer activities. The lack of clinical data in support of the therapeutic effectiveness of orchids is a major limitation. CONCLUSION Orchids found in DSNPBR hold great significance in traditional culture for their medicinal properties and have been effectively studied for their bioactivities. Nevertheless, to confirm their effectiveness as therapeutics, conducting methodical research, examining their molecular mechanisms, and performing toxicity tests are necessary.
Collapse
Affiliation(s)
- Pal Gogoi
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, 781026, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, 781026, India
| |
Collapse
|
11
|
Rahbari R, Rasmi Y, Khadem-Ansari MH, Abdi M. The role of histone deacetylase 3 in breast cancer. Med Oncol 2022; 39:84. [PMID: 35578147 DOI: 10.1007/s12032-022-01681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/05/2022] [Indexed: 11/25/2022]
Abstract
It has been recently revealed that Histone Deacetylase (HDAC) 3, a unique member of the HDACs family, can trigger and progress cancers by alternation in genes expression and proteins activity. Epigenetic modifications by HDACs have been studied well in various cancer cells. Recent studies have focused on the HDAC enzymes as a possible target in cancer therapy. There are significant documents on upregulation of HDAC3 in breast cancer (BC) cells which suggest an oncogenic role for this enzyme. Interestingly, some studies showed that HDAC3 inhibition could be considered as a promising target in breast cancer therapy, and thus far, several inhibitors from different nature have been introduced. In this review, we discussed the function and highlight the existing inhibitors of HDAC3 in BC pathogenesis and therapy.
Collapse
Affiliation(s)
- Rezgar Rahbari
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
12
|
Orchidaceae-Derived Anticancer Agents: A Review. Cancers (Basel) 2022; 14:cancers14030754. [PMID: 35159021 PMCID: PMC8833831 DOI: 10.3390/cancers14030754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Orchids are commonly used in folk medicine for the treatment of infections and tumors but little is known about the actual chemical composition of these plants and their anticancer properties. In this paper, the most recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. According to the published data, numerous species of orchids contain potential antitumor chemicals. Still, a relatively insignificant number of species of orchids have been tested for their bioactive properties and most of those studies were on Asian taxa. Broader research, ’including American and African species, as well as the correct identification of samples, is essential for evaluating the usefulness of orchids as a plant family with huge anticancer potential. Abstract Species of orchids, which belong to the largest family of flowering plants, are commonly used in folk medicine for the treatment of infections and tumors. However, little is known about the actual chemical composition of these plants and their anticancer properties. In this paper, the most recent literature on orchid-derived bioactive substances with anticancer properties is reviewed. For the assessment, previous papers on the anticancer activity of Orchidaceae published since 2015 were considered. The papers were found by exploring electronic databases. According to the available data, many species of orchids contain potential antitumor chemicals. The bioactive substances in a relatively insignificant number of orchids are identified, and most studies are on Asian taxa. Broader research on American and African species and the correct identification of samples included in the experiments are essential for evaluating the usefulness of orchids as a plant family with vast anticancer potential.
Collapse
|