1
|
Li Y, Li C, Zhu H, Chu Y. TRPV1 in Dorsal Root Ganglion Contributed to Chronic Pancreatitis Pain. J Pain Palliat Care Pharmacother 2025:1-9. [PMID: 40371900 DOI: 10.1080/15360288.2025.2500984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/24/2025] [Accepted: 04/27/2025] [Indexed: 05/16/2025]
Abstract
Chronic pancreatitis presents a formidable challenge in pain management, often leading to significant suffering and reduced quality of life for affected individuals. The intricate interplay of factors contributing to this pain, including inflammation and neural sensitization, has garnered increasing attention in recent research. Among the key players in this scenario are the transient receptor potential vanilloid 1(TRPV1) channels located in dorsal root ganglion (DRG) neurons. These channels, known for their role in pain perception, exhibit heightened sensitivity and altered expression patterns in the context of chronic pancreatitis. Sensitization of TRPV1 channels amplifies their response to various pain triggers, exacerbating the perception of discomfort. Furthermore, dysregulated expression of TRPV1 within DRG neurons contributes to the chronic pain phenotype associated with pancreatitis. Understanding the nuanced mechanisms governing TRPV1 modulation in DRG neurons promises to unlock novel therapeutic avenues for managing chronic pancreatitis pain. By targeting TRPV1 channels specifically in DRG neurons, researchers aim to develop treatments that alleviate pain while minimizing adverse effects, ultimately offering hope for improved outcomes and enhanced well-being for individuals grappling with this debilitating condition.
Collapse
Affiliation(s)
- Yali Li
- Department of Intensive Care Unit, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Chenshuai Li
- Department of Pediatrics, Tianjin Beichen Hospital of Traditional Chinese Medicine, Tianjin, China
| | - Haiyun Zhu
- Department of Intensive Care Unit, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yuru Chu
- Department of Intensive Care Unit, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
2
|
Ten Barge JA, van den Bosch GE, Slater R, van den Hoogen NJ, Reiss IKM, Simons SHP. Visceral Pain in Preterm Infants with Necrotizing Enterocolitis: Underlying Mechanisms and Implications for Treatment. Paediatr Drugs 2025; 27:201-220. [PMID: 39752054 PMCID: PMC11829917 DOI: 10.1007/s40272-024-00676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Necrotizing enterocolitis (NEC) is a relatively rare but very severe gastrointestinal disease primarily affecting very preterm infants. NEC is characterized by excessive inflammation and ischemia in the intestines, and is associated with prolonged, severe visceral pain. Despite its recognition as a highly painful disease, current pain management for NEC is often inadequate, and research on optimal analgesic therapy for these patients is lacking. Insight into the mechanisms underlying intestinal pain in infants with NEC-visceral pain-could help identify the most effective analgesics for these vulnerable patients. Therefore, this comprehensive review aims to provide an overview of visceral nociception, including transduction, transmission, modulation, and experience, and discuss the implications for analgesic therapy in preterm infants with NEC. The transmission of visceral pain differs from that of somatic pain, contributing to the diffuse nature of visceral pain. Studies evaluating the effectiveness of analgesics for treating visceral pain in infants are scarce. However, research in visceral pain models highlights agents that may be particularly effective for treating visceral pain based on their mechanisms of action. Further research is necessary to determine whether agents that have shown promise for treating visceral pain in preclinical studies and adults are effective in infants with NEC as well.
Collapse
Affiliation(s)
- Judith A Ten Barge
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Gerbrich E van den Bosch
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | - Irwin K M Reiss
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sinno H P Simons
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Borges Paes Lemes J, Panichkina A, Franco Malange K, Morado-Urbina CE, Dochnal SA, Jadhav S, Dolmat M, Pagliusi M, Navia-Pealez JM, Corr M, Miller YI, Yaksh TL. Chronic Pain Induced by Social Defeat Stress in Juvenile Mice Depends on TLR4. Cells 2025; 14:350. [PMID: 40072079 PMCID: PMC11898947 DOI: 10.3390/cells14050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
A significant portion of adolescents suffer from mental illnesses and persistent pain due to repeated stress. The components of the nervous system that link stress and pain in early life remain unclear. Prior studies in adult mice implicated the innate immune system, specifically Toll-like receptors (TLRs), as critical for inducing long-term anxiety and pain-like behaviors in social defeat stress (SDS) models. In this work, we investigated the pain and anxiety behavioral phenotypes of wild-type and TLR4-deficient juvenile mice subjected to repeated SDS and evaluated the engagement of TLR4 by measuring dimerization in the spinal cord, dorsal root ganglia, and prefrontal cortex. Male juvenile (4-week-old) mice (C57BL/6J or Tlr4-/-) underwent six social defeat sessions with adult aggressor (CD1) mice. In WT mice, SDS promotes chronic mechanical allodynia and thermal hyperalgesia assessed via von Frey testing and the Hargreaves test, respectively. In parallel, the stressed WT mice exhibited transient anxiety-like behavior and long-lasting locomotor activity reduction in the open-field test. Tlr4-/--stressed animals were resistant to the induction of pain-like behavior but had a remnant of anxious behavior, spending less time in the center of the arena. In WT SDS, there were concordant robust increases in TLR4 dimerization in dorsal root ganglia macrophages and spinal cord microglia, indicating TLR4 activation. These results suggest that the chronic pain phenotype and locomotor impairment induced by SDS in juvenile mice depends on TLR4 engagement evidenced by dimerization in immune cells of the dorsal root ganglia and spinal cord.
Collapse
Affiliation(s)
- Julia Borges Paes Lemes
- Department of Anesthesiology, University of California, San Diego, CA 92093, USA; (A.P.); (K.F.M.); (C.E.M.-U.); (S.A.D.); (S.J.); (T.L.Y.)
| | - Alisa Panichkina
- Department of Anesthesiology, University of California, San Diego, CA 92093, USA; (A.P.); (K.F.M.); (C.E.M.-U.); (S.A.D.); (S.J.); (T.L.Y.)
| | - Kaue Franco Malange
- Department of Anesthesiology, University of California, San Diego, CA 92093, USA; (A.P.); (K.F.M.); (C.E.M.-U.); (S.A.D.); (S.J.); (T.L.Y.)
| | - Carlos E. Morado-Urbina
- Department of Anesthesiology, University of California, San Diego, CA 92093, USA; (A.P.); (K.F.M.); (C.E.M.-U.); (S.A.D.); (S.J.); (T.L.Y.)
| | - Sara Anna Dochnal
- Department of Anesthesiology, University of California, San Diego, CA 92093, USA; (A.P.); (K.F.M.); (C.E.M.-U.); (S.A.D.); (S.J.); (T.L.Y.)
| | - Saee Jadhav
- Department of Anesthesiology, University of California, San Diego, CA 92093, USA; (A.P.); (K.F.M.); (C.E.M.-U.); (S.A.D.); (S.J.); (T.L.Y.)
| | - Maksim Dolmat
- Department of Chemical and Nano Engineering, University of California, San Diego, CA 92093, USA;
| | - Marco Pagliusi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Sao Paulo 14049-900, Brazil;
| | - Juliana M. Navia-Pealez
- Department of Pharmacology and Physiology, Saint Louis University, Saint Louis, MO 63104, USA;
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, CA 92093, USA; (M.C.); (Y.I.M.)
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, CA 92093, USA; (M.C.); (Y.I.M.)
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA 92093, USA; (A.P.); (K.F.M.); (C.E.M.-U.); (S.A.D.); (S.J.); (T.L.Y.)
| |
Collapse
|
4
|
Liu Y, Hao S, Hao H, Zheng G, Bing J, Kang L, Li J, Zhao H, Hao H. Construction of a Novel Necroptosis-Related Signature in Rat DRG for Neuropathic Pain. J Inflamm Res 2025; 18:147-165. [PMID: 39802520 PMCID: PMC11720641 DOI: 10.2147/jir.s494286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Background Recent studies have shown necroptosis may play a role in the development of inflammation-associated pain. However, research on the correlation between necroptosis-related genes and neuropathic pain in the dorsal root ganglia (DRG) is limited. This study aims to identify a gene signature related to necroptosis in DRG that can predict neuropathic pain. Methods The mRNA expression profiles associated with neuropathic pain (GSE24982 and GSE30691) were acquired from the Gene Expression Omnibus (GEO) database. The Least Absolute Shrinkage and Selection Operator (Lasso) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) regressions were performed in GSE24982 database to constructed the necroptosis-related diferentially expressed genes (NRDEGs) signature related to neuropathic pain. Nomogram, Receiver Operating Characteristic (ROC), GSE30691 database analysis and basic experiments were used to verify the accuracy of the signature. Go and KEGG analysis, interaction network and immune infiltration were used to analyze the biological function of the signature. Results A predictive signature targeting rat DRG for neuropathic pain through a variety of methods to verify the accuracy was developed based on 3 NRDEGs (TLR4, CAPN2, RIPK3). Significantly enriched KEGG and GO pathways, drug target prediction and non-coding RNAs related to the signature holded promise for advancing our understanding of potential avenues for treatment and the mechanisms underlying neuropathic pain. Immune infiltration analysis revealed which types of immune cells related to the NRDEGs signature played an important role in the occurrence and development of neuropathic pain. Basic experiments provided crucial evidence that the 3 NRDEGs in DRG served as important regulators of neuropathic pain. Conclusion The prediction signature based on 3 key NRDEGs showed promise in predicting the presence of neuropathic pain, which may open up new avenues for the development of novel therapies for neuropathic pain.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Shikang Hao
- The First Clinical Medical School, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hongyu Hao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Guona Zheng
- Department of Pathology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Jie Bing
- Department of Pathology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Lin Kang
- Department of Pathology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Jia Li
- Outpatient Department, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Huanfen Zhao
- Department of Pathology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Han Hao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Center of Innovative Drug Research and Evaluation, Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
5
|
Li Y, Uhelski ML, North RY, Farson LB, Bankston CB, Roland GH, Fan DH, Sheffield KN, Jia A, Orlando D, Heles M, Yaksh TL, Miller YI, Kosten TA, Dougherty PM. ApoA-I binding protein (AIBP) regulates transient receptor potential vanilloid 1 (TRPV1) activity in rat dorsal root ganglion neurons by selective disruption of toll-like receptor 4 (TLR4)-lipid rafts. Brain Behav Immun 2025; 123:644-655. [PMID: 39414176 DOI: 10.1016/j.bbi.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Toll-like receptor 4 (TLR4) and the transient receptor potential vanilloid subtype 1 (TRPV1) are both upregulated and play key roles in the induction and expression of paclitaxel-related chemotherapy-induced peripheral neuropathy (CIPN). Using Apolipoprotein A-I binding protein, non-specific cholesterol depletion, TLR4 mis-sense rats and a TLR4 inhibitor, we demonstrate that co-localization of TRPV1 with TLR4 to cholesterol-rich lipid membrane rafts in nociceptors is essential for its normal activation as well as for its exaggerated activation that underlies the development and expression of CIPN. The findings suggest that TLR4-lipid rafts may have an essential role in numerous neuroinflammatory and neuropathic pain conditions. This mechanism is also generalized to female rats for the first time.
Collapse
Affiliation(s)
- Yan Li
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Megan L Uhelski
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Robert Y North
- Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, the United States of America
| | - Luke B Farson
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Christopher B Bankston
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Gavin H Roland
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Dwight H Fan
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | | | - Amy Jia
- Northwestern University, Evanston, IL 60208, the United States of America
| | - Dana Orlando
- The University of Texas Health Science Center, Houston, TX 77030, the United States of America
| | - Mario Heles
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America
| | - Tony L Yaksh
- The Department of Anesthesiology, the University of California San Diego, La Jolla, CA, 92093, the United States of America
| | - Yury I Miller
- Department of Medicine, the University of California San Diego, La Jolla, CA, 92093, the United States of America
| | - Therese A Kosten
- Department of Psychology, Health Building 1, 4349 Martin Luther King Blvd, Houston, TX 77204, the United States of America
| | - Patrick M Dougherty
- The Departments of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, the United States of America.
| |
Collapse
|
6
|
Zheng HN, Zhi YR, Su YS, Jiang JY, Zhang HZ, Cao F, Wang Y, Chi Y, Zhang Y. Dectin-1 induces TRPV1 sensitization and contributes to visceral hypersensitivity of irritable bowel syndrome in male mice. Eur J Pain 2024; 28:1811-1826. [PMID: 38953581 DOI: 10.1002/ejp.2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Visceral hypersensitivity is considered the core pathophysiological mechanism that causes abdominal pain in patients with irritable bowel syndrome (IBS). Fungal dysbiosis has been proved to contribute to visceral hypersensitivity in IBS patients. However, the underlying mechanisms for Dectin-1, a major fungal recognition receptor, in visceral hypersensitivity are poorly understood. This study aimed to explore the role of Dectin-1 in visceral hypersensitivity and elucidate the impact of Dectin-1 activity on the function of transient receptor potential vanilloid type 1 (TRPV1). METHODS Visceral hypersensitivity model was established by the intracolonic administration of 0.1 mL TNBS (130 μg/mL in 30% ethanol) in the male mice. Fluconazole and nystatin were used as fungicides. Laminarin, a Dectin-1 antagonist and gene knockout (Clec7a-/-) mice were used to interrupt the function of Dectin-1. Colorectal distension-electromyogram recording was performed to assess visceral sensitivity. Immunostaining experiment was performed to determine the localization of Dectin-1 in dorsal root ganglion (DRG) neurons. Calcium imaging study was performed to assay TRPV1-mediated calcium influx in acutely dissociated DRG neurons. RESULTS Pretreatment with fungicides, administration of laminarin or genetic deletion of Clec7a alleviated TNBS-induced visceral hypersensitivity in male mice. The expression of Dectin-1 was upregulated in the DRG and colon of TNBS-treated mice. Colocalization of Dectin-1 and TRPV1 was observed in DRG neurons. Importantly, pretreatment with curdlan, a Dectin-1 agonist, increased TRPV1-mediated calcium influx. CONCLUSIONS Dectin-1 contributes to visceral hypersensitivity in IBS or in inflammatory bowel disease in remission and activation of Dectin-1 induces TRPV1 sensitization. SIGNIFICANCE STATEMENT This work provides direct evidence for the functional regulation of TRPV1 channel by Dectin-1 activity, proposing a new mechanism underlying TRPV1 sensitization. Control of intestinal fungi might be beneficial for the treatment of refractory abdominal pain in patients with IBS or IBD in remission.
Collapse
Affiliation(s)
- Hao-Nan Zheng
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yu-Ru Zhi
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Yang-Shuai Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin-Yan Jiang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Hao-Zhou Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Feng Cao
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Yun Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yan Chi
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Ying Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| |
Collapse
|
7
|
Babu N, Gadepalli A, Akhilesh, Sharma D, Singh AK, Chouhan D, Agrawal S, Tiwari V. TLR-4: a promising target for chemotherapy-induced peripheral neuropathy. Mol Biol Rep 2024; 51:1099. [PMID: 39466456 DOI: 10.1007/s11033-024-10038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) affects a significant majority of cancer patients, with up to 80% experiencing this severe and dose-limiting side effect while undergoing anti-cancer treatment. CIPN can be induced by a variety of drugs commonly employed in the management of both solid tumors and hematologic cancers. The inadequacies in comprehending the pharmacological interventions associated with CIPN and the subsequent signaling pathways have significantly contributed to the disappointing outcomes of several drugs in clinical trials. Recent investigations in pain research have demonstrated a growing inclination toward addressing neuro-inflammation as a strategy for managing chronic pain conditions. Notably, toll-like receptor-4 (TLR-4) has emerged as a key player in immune system activation and is undergoing extensive research. In this review, we emphasize the potential role of TLR-4 in neuropathic pain, highlighting its promise as a target for CIPN treatment. Furthermore, we explore and analyse the intricate interplay between TLR-4, diverse immune cells, downstream pathways, and receptors within the context of CIPN. A comprehensive exploration of these interactions provides valuable insights into the central role of TLR-4 in CIPN development, paving the way for potential ground-breaking therapeutic approaches to alleviate this debilitating condition.
Collapse
Affiliation(s)
- Nagendra Babu
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Dilip Sharma
- Amity Institute of Pharmacy, Amity University of Haryana, Gurgaon, India
| | - Anurag Kumar Singh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Somesh Agrawal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
8
|
Mazor Y, Engelmayer N, Nashashibi H, Rottenfußer L, Lev S, Binshtok AM. Attenuation of Colitis-Induced Visceral Hypersensitivity and Pain by Selective Silencing of TRPV1-Expressing Fibers in Rat Colon. Inflamm Bowel Dis 2024; 30:1843-1851. [PMID: 38478397 PMCID: PMC11447070 DOI: 10.1093/ibd/izae036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 10/04/2024]
Abstract
BACKGROUND Transient receptor potential vanilloid 1 (TRPV1) cation channels, expressed on nociceptors, are well established as key contributors to abdominal pain in inflammatory bowel disease (IBD). Previous attempts at blocking these channels have been riddled with side effects. Here, we propose a novel treatment strategy, utilizing the large pore of TRPV1 channels as a drug delivery system to selectively inhibit visceral nociceptors. METHODS We induced colitis in rats using intrarectal dinitrobenzene sulfonic acid. Visceral hypersensitivity, spontaneous pain, and responsiveness of the hind paws to noxious heat stimuli were examined before and after the intrarectal application of membrane-impermeable sodium channel blocker (QX-314) alone or together with TRPV1 channel activators or blockers. RESULTS Intrarectal co-application of QX-314 with TRPV1 channel activator capsaicin significantly inhibited colitis-induced gut hypersensitivity. Furthermore, in the model of colitis, but not in naïve rats, QX-314 alone was sufficient to reverse gut hypersensitivity. The blockade of TRPV1 channels prevented this effect of QX-314. Finally, applying QX-314 alone to the inflamed gut inhibited colitis-induced ongoing pain. CONCLUSIONS Selective silencing of gut nociceptors by a membrane-impermeable sodium channel blocker entering via exogenously or endogenously activated TRPV1 channels diminishes IBD-induced gut hypersensitivity. The lack of effect on naïve rats suggests a selective analgesic effect in the inflamed gut. Our results suggest that in the colitis model, TRPV1 channels are tonically active. Furthermore, our results emphasize the role of TRPV1-expressing nociceptive fibers in colitis-induced pain. These findings provide proof of concept for using charged activity blockers for the blockade of IBD-associated abdominal pain.
Collapse
Affiliation(s)
- Yoav Mazor
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Nurit Engelmayer
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Halla Nashashibi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lisa Rottenfußer
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Hadassah School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Rodríguez-Palma EJ, Huerta de la Cruz S, Islas-Espinoza AM, Castañeda-Corral G, Granados-Soto V, Khanna R. Nociplastic pain mechanisms and toll-like receptors as promising targets for its management. Pain 2024; 165:2150-2164. [PMID: 38595206 DOI: 10.1097/j.pain.0000000000003238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/29/2024] [Indexed: 04/11/2024]
Abstract
ABSTRACT Nociplastic pain, characterized by abnormal pain processing without an identifiable organic cause, affects a significant portion of the global population. Unfortunately, current pharmacological treatments for this condition often prove ineffective, prompting the need to explore new potential targets for inducing analgesic effects in patients with nociplastic pain. In this context, toll-like receptors (TLRs), known for their role in the immune response to infections, represent promising opportunities for pharmacological intervention because they play a relevant role in both the development and maintenance of pain. Although TLRs have been extensively studied in neuropathic and inflammatory pain, their specific contributions to nociplastic pain remain less clear, demanding further investigation. This review consolidates current evidence on the connection between TLRs and nociplastic pain, with a specific focus on prevalent conditions like fibromyalgia, stress-induced pain, sleep deprivation-related pain, and irritable bowel syndrome. In addition, we explore the association between nociplastic pain and psychiatric comorbidities, proposing that modulating TLRs can potentially alleviate both pain syndromes and related psychiatric disorders. Finally, we discuss the potential sex differences in TLR signaling, considering the higher prevalence of nociplastic pain among women. Altogether, this review aims to shed light on nociplastic pain, its underlying mechanisms, and its intriguing relationship with TLR signaling pathways, ultimately framing the potential therapeutic role of TLRs in addressing this challenging condition.
Collapse
Affiliation(s)
- Erick J Rodríguez-Palma
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | - Ana M Islas-Espinoza
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Hao Y, Wu L, Wang Y, Shan D, Liu Y, Feng J, Chang Y, Wang T. LPS exacerbates TRPV4-mediated itch through the intracellular TLR4-PI3K signalling. J Cell Mol Med 2024; 28:e18509. [PMID: 38957035 PMCID: PMC11220342 DOI: 10.1111/jcmm.18509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Pruritus is often accompanied with bacterial infections, but the underlying mechanism is not fully understood. Although previous studies revealed that lipopolysaccharides (LPS) could directly activate TRPV4 channel and TRPV4 is involved in the generation of both acute itch and chronic itch, whether and how LPS affects TRPV4-mediated itch sensation remains unclear. Here, we showed that LPS-mediated TRPV4 sensitization exacerbated GSK101-induced scratching behaviour in mice. Moreover, this effect was compromised in TLR4-knockout mice, suggesting LPS acted through a TLR4-dependent mechanism. Mechanistically, LPS enhanced GSK101-evoked calcium influx in mouse ear skin cells and HEK293T cells transfected with TRPV4. Further, LPS sensitized TRPV4 channel through the intracellular TLR4-PI3K-AKT signalling. In summary, our study found a modulatory role of LPS in TRPV4 function and highlighted the TLR4-TRPV4 interaction in itch signal amplification.
Collapse
Affiliation(s)
- Yanping Hao
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Yangpu Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Liyan Wu
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuhui Wang
- Department of Anesthesiology, Plastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dongmei Shan
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yifei Liu
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Jing Feng
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Chang
- Yangpu Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic BiologyZhaotong UniversityZhaotongYunnanChina
- Yunnan Engineering Research Center of Green Planting and Processing of GastrodiaZhaotong UniversityZhaotongYunnanChina
| |
Collapse
|
11
|
Leech T, Peiris M. Mucosal neuroimmune mechanisms in gastro-oesophageal reflux disease (GORD) pathogenesis. J Gastroenterol 2024; 59:165-178. [PMID: 38221552 PMCID: PMC10904498 DOI: 10.1007/s00535-023-02065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Gastro-oesophageal reflux disease (GORD) is a chronic condition characterised by visceral pain in the distal oesophagus. The current first-line treatment for GORD is proton pump inhibitors (PPIs), however, PPIs are ineffective in a large cohort of patients and long-term use may have adverse effects. Emerging evidence suggests that nerve fibre number and location are likely to play interrelated roles in nociception in the oesophagus of GORD patients. Simultaneously, alterations in cells of the oesophageal mucosa, namely epithelial cells, mast cells, dendritic cells, and T lymphocytes, have been a focus of GORD research for several years. The oesophagus of GORD patients exhibits both macro- and micro-inflammation as a response to chronic acidic reflux at the epithelium. In other conditions of the GI tract, such as IBS and IBD, well-characterised bidirectional processes between immune cells and mucosal nerve fibres contribute to pathogenesis and symptom generation. Sensory alterations in these conditions such as nerve fibre outgrowth and hypersensitivity can be driven by inflammatory processes, which promote visceral pain signalling. This review will examine what is currently known of the molecular pathways linking inflammation and sensory perception leading to the development of GORD symptoms and explore potentially relevant mechanisms in other GI regions which may indicate new areas in GORD research.
Collapse
Affiliation(s)
- Tom Leech
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
12
|
Jiang Y, Shen L, Wang B. Non-electrophysiological techniques targeting transient receptor potential (TRP) gene of gastrointestinal tract. Int J Biol Macromol 2024; 262:129551. [PMID: 38367416 DOI: 10.1016/j.ijbiomac.2024.129551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
Transient receptor potential (TRP) channels are cation channels related to a wide range of physical and chemical stimuli, they are expressed all along the gastrointestinal system, and a myriad of diseases are often associated with aberrant expression or mutation of the TRP gene, suggesting that TRPs are promising targets for drug therapy. Therefore, a better understanding of the information of TRPs in health and disease could facilitate the development of effective drugs for the treatment of gastrointestinal diseases like IBD. But there are very few generalizations about the experimental techniques studied in this field. In view of the promise of TRP as a therapeutic target, we discuss experimental methods that can be used for TRPs including their distribution, function and interaction with other proteins, as well as some promising emerging technologies to provide experimental methods for future studies.
Collapse
Affiliation(s)
- Yuting Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
13
|
Michot B, Casey SM, Lee CS, Erdogan O, Basu H, Chiu I, Gibbs JL. Lipopolysaccharide-Induced TRPA1 Upregulation in Trigeminal Neurons is Dependent on TLR4 and Vesicular Exocytosis. J Neurosci 2023; 43:6731-6744. [PMID: 37643860 PMCID: PMC10552941 DOI: 10.1523/jneurosci.0162-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Pain from bacterial infection was believed to be the consequence of inflammation induced by bacterial products. However recent studies have shown that bacterial products can directly activate sensory neurons and induce pain. The mechanisms by which bacteria induce pain are poorly understood, but toll-like receptor (TLR)4 and transient receptor potential A1 (TRPA1) receptors are likely important integrators of pain signaling induced by bacteria. Using male and female mice we show that sensory neuron activation by bacterial lipopolysaccharides (LPS) is mediated by both TRPA1 and TLR4 and involves the mobilization of extracellular and intracellular calcium. We also show that LPS induces neuronal sensitization in a process dependent on TLR4 receptors. Moreover, we show that TLR4 and TRPA1 are both involved in sensory neurons response to LPS stimulation. Activation of TLR4 in a subset of sensory neurons induces TRPA1 upregulation at the cell membrane through vesicular exocytosis, contributing to the initiation of neuronal sensitization and pain. Collectively these data highlight the importance of sensory neurons to pathogen detection, and their activation by bacterial products like LPS as potentially important to early immune and nociceptive responses.SIGNIFICANCE STATEMENT Bacterial infections are often painful and the recent discovery that bacteria can directly stimulate sensory neurons leading to pain sensation and modulation of immune system have highlighted the importance of nervous system in the response to bacterial infection. Here, we showed that lipopolysaccharide, a major bacterial by-product, requires both toll-like receptor (TLR)4 and transient receptor potential A1 (TRPA1) receptors for neuronal activation and acute spontaneous pain, but only TLR4 mediates sensory neurons sensitization. Moreover, we showed for the first time that TLR4 sensitize sensory neurons through a rapid upregulation of TRPA1 via vesicular exocytosis. Our data highlight the importance of sensory neurons to pathogen detection and suggests that TLR4 would be a potential therapeutic target to modulate early stage of bacteria-induced pain and immune response.
Collapse
Affiliation(s)
- Benoit Michot
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| | - Sharon M Casey
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| | - Caroline S Lee
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| | - Ozge Erdogan
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, Massachusetts 02215
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, Massachusetts 02215
| | - Jennifer L Gibbs
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts 02115
- Department of Endodontics, New York University College of Dentistry, New York, New York 10010
| |
Collapse
|
14
|
Navia-Pelaez JM, Lemes JBP, Gonzalez L, Delay L, dos Santos Aggum Capettini L, Lu JW, Dos Santos GG, Gregus AM, Dougherty PM, Yaksh TL, Miller YI. AIBP regulates TRPV1 activation in chemotherapy-induced peripheral neuropathy by controlling lipid raft dynamics and proximity to TLR4 in dorsal root ganglion neurons. Pain 2023; 164:e274-e285. [PMID: 36719418 PMCID: PMC10182209 DOI: 10.1097/j.pain.0000000000002834] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/21/2022] [Indexed: 02/01/2023]
Abstract
ABSTRACT Nociceptive afferent signaling evoked by inflammation and nerve injury is mediated by the opening of ligand-gated and voltage-gated receptors or channels localized to cholesterol-rich lipid raft membrane domains. Dorsal root ganglion (DRG) nociceptors express high levels of toll-like receptor 4 (TLR4), which also localize to lipid rafts. Genetic deletion or pharmacologic blocking of TLR4 diminishes pain associated with chemotherapy-induced peripheral neuropathy (CIPN). In DRGs of mice with paclitaxel-induced CIPN, we analyzed DRG neuronal lipid rafts, expression of TLR4, activation of transient receptor potential cation channel subfamily V member 1 (TRPV1), and TLR4-TRPV1 interaction. Using proximity ligation assay, flow cytometry, and whole-mount DRG microscopy, we found that CIPN increased DRG neuronal lipid rafts and TLR4 expression. These effects were reversed by intrathecal injection of apolipoprotein A-I binding protein (AIBP), a protein that binds to TLR4 and specifically targets cholesterol depletion from TLR4-expressing cells. Chemotherapy-induced peripheral neuropathy increased TRPV1 phosphorylation, localization to neuronal lipid rafts, and proximity to TLR4. These effects were also reversed by AIBP treatment. Regulation of TRPV1-TLR4 interactions and their associated lipid rafts by AIBP covaried with the enduring reversal of mechanical allodynia otherwise observed in CIPN. In addition, AIBP reduced intracellular calcium in response to the TRPV1 agonist capsaicin, which was increased in DRG neurons from paclitaxel-treated mice and in the naïve mouse DRG neurons incubated in vitro with paclitaxel. Together, these results suggest that the assembly of nociceptive and inflammatory receptors in the environment of lipid rafts regulates nociceptive signaling in DRG neurons and that AIBP can control lipid raft-associated nociceptive processing.
Collapse
Affiliation(s)
| | - Julia Borges Paes Lemes
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Leonardo Gonzalez
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lauriane Delay
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | | | - Jenny W. Lu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia, USA
| | - Patrick M. Dougherty
- Departments of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Alcohol-Induced Headache with Neuroinflammation: Recent Progress. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ethanol and other congeners in alcoholic beverages and foods are known triggers of alcohol-induced headaches (AIHs). Recent studies implicate AIHs as an important underlying factor for neuroinflammation. Studies show the relationship between alcoholic beverages, AIH agents, neuroinflammation, and the pathway they elicit. However, studies elucidating specific AIH agents’ pathways are scarce. Works reviewing their pathways can give invaluable insights into specific substances’ patterns and how they can be controlled. Hence, we reviewed the current understanding of how AIH agents in alcoholic beverages affect neuroinflammation and their specific roles. Ethanol upregulates transient receptor potential cation channel subfamily V member 1 (TRPV1) and Toll-like receptor 4 (TLR4) expression levels; both receptors trigger a neuroinflammation response that promotes AIH manifestation—the most common cause of AIHs. Other congeners such as histamine, 5-HT, and condensed tannins also upregulate TRPV1 and TLR4, neuroinflammatory conditions, and AIHs. Data elucidating AIH agents, associating pathways, and fermentation parameters can help reduce or eliminate AIH inducers and create healthier beverages.
Collapse
|
16
|
Liu X, Gong R, Peng L, Zhao J. Toll-like receptor 4 signaling pathway in sensory neurons mediates remifentanil-induced postoperative hyperalgesia via transient receptor potential ankyrin 1. Mol Pain 2023; 19:17448069231158290. [PMID: 36733260 PMCID: PMC9926008 DOI: 10.1177/17448069231158290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background: Remifentanil-induced postoperative hyperalgesia (RIH) refers to a state of hyperalgesia or aggravated pre-existing pain after remifentanil exposure. There has been considerable interest in understanding and preventing RIH. However, the mechanisms responsible for RIH are still not completely understood. Toll-like receptor 4 (TLR4), a classic innate immune receptor, has been detected in sensory neurons and participates in various nociceptive conditions, whereas its role in RIH remains unclear. Transient receptor potential ankyrin 1 (TRPA1) always serves as a nociceptive channel, whereas its role in RIH has not yet been investigated. This study aimed to determine whether the TLR4 signaling pathway in sensory neurons engaged in the development of RIH and the possible involvement of TRPA1 during this process. Methods: A rat model of remifentanil-induced postoperative hyperalgesia (RIH) was established, which presented decreased paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL). The mRNA and protein expression levels of TLR4, phosphorylated NF-κB, and TRPA1 in the dorsal root ganglion (DRG) from RIH model were analyzed by real-time PCR, western blot, and immunofluorescence. The TLR4 antagonist TAK-242 and the TRPA1 antagonist HC-030031 were applied to determine the role of sensory neuron TLR4 signaling and TRPA1 in RIH. Results: Compared with control, PWMT and PWTL were significantly decreased in RIH model. Moreover, the mRNA and protein expression of TLR4 and TRPA1 in DRG were upregulated after remifentanil exposure together with increased NF-κB phosphorylation. TLR4 antagonist TAK-242 mitigated mechanical pain in RIH together with downregulated expression of TLR4, phosphorylated NF-κB, and TRPA1 in DRG neurons. In addition, TRPA1 antagonist HC-030031 also alleviated mechanical pain and decreased TRPA1 expression in RIH without affecting TLR4 signaling in DRG. Conclusions: Taken together, these results suggested that activation of TLR4 signaling pathway engaged in the development of RIH by regulating TRPA1 in DRG neurons. Blocking TLR4 and TRPA1 might serve as a promising therapeutic strategy for RIH.
Collapse
Affiliation(s)
- Xiaowen Liu
- Department of Anesthesiology,
China-Japan Friendship Hospital,
Beijing, China
| | - Ruisong Gong
- Department of Anesthesiology,
Peking
Union Medical College Hospital,
Beijing, China
| | - Liang Peng
- Beijing Key Laboratory for
Immune-Mediated Inflammatory Diseases, Institute of Medical Science,
China-Japan Friendship Hospital,
Beijing, China
| | - Jing Zhao
- Department of Anesthesiology,
China-Japan Friendship Hospital,
Beijing, China,Jing Zhao, Department of Anesthesiology,
China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Beijing 100029,
China.
| |
Collapse
|
17
|
Wang Y, Hao Y, Jin J, Yi Z, Liu Y, Zhou H, Zhao G, Wen L, Dong H, Zhang Y, Zhang M, Jia Y, Han L, Xu H, Wang T, Feng J. TRPV4 is not the molecular sensor for bacterial lipopolysaccharides-induced calcium signaling. Cell Immunol 2023; 383:104651. [PMID: 36493524 DOI: 10.1016/j.cellimm.2022.104651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Lipopolysaccharides (LPS) is one of the most potent pathogen-associated signals for the immune system of vertebrates. In addition to the canonical pathway of LPS detection mediated by toll-like receptor 4 (TLR4) signaling pathway, TRP channel-mediated pathways endow sensory neurons and epithelial cells with the ability to detect and react to bacterial endotoxins. Previous work revealed that LPS triggers TRPV4-dependent calcium influx in urothelial cells (UCs) and mouse tracheobronchial epithelial cells (mTEC). In marked contrast, here we show that most subtypes of LPS could not directly activate TRPV4 channel. Although LPS from Salmonella enterica serotype Minnesota evoked a [Ca2+]i response in freshly isolated human bronchial epithelial cells (ECs), freshly isolated mouse ear skin single-cell suspensions, or HEK293T cells transiently transfected with mTRPV4, this activation occurred in a TRPV4-independent manner. Additionally, LPS from either E. coli strains or Salmonella enterica serotype Minnesota did not evoke significant difference in inflammation and pain hyperalgesia between wild type and TRPV4 deficient mice. In summary, our results demonstrate that in vitro and in vivo effects induced by LPS are independent of TRPV4, thus providing a clarity to the questioned role of LPS in TRPV4 activation.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Scicences and Peking Union Medical College, Beijing, China
| | - Yanping Hao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinhua Jin
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Scicences and Peking Union Medical College, Beijing, China
| | - Zhihua Yi
- Medical College of Nanchang University, School of Nursing, Nanchang, China
| | - Yifei Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huan Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guodun Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Wen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huiqing Dong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Menghui Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, Henan University, Kaifeng, China
| | - Yuxin Jia
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine (China), Shanghai, China
| | - Lei Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Heng Xu
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine (China), Shanghai, China
| | - Ting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jing Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; School of Pharmacy, Henan University, Kaifeng, China.
| |
Collapse
|
18
|
Electroacupuncture Zusanli (ST36) Relieves Somatic Pain in Colitis Rats by Inhibiting Dorsal Root Ganglion Sympathetic-Sensory Coupling and Neurogenic Inflammation. Neural Plast 2023; 2023:9303419. [PMID: 36910013 PMCID: PMC9998159 DOI: 10.1155/2023/9303419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/09/2022] [Accepted: 12/09/2022] [Indexed: 03/06/2023] Open
Abstract
Referred somatic pain triggered by hyperalgesia is common in patients with inflammatory bowel disease (IBD). It was reported that sprouting of sympathetic nerve fibers into the dorsal root ganglion (DGR) and neurogenic inflammation were related to neuropathic pain, the excitability of neurons, and afferents. The purpose of the study was to explore the potential and mechanism of electroacupuncture (EA) at Zusanli (ST36) for the intervention of colon inflammation and hyperalgesia. Sprague-Dawley (SD) was randomly divided into four groups, including control, model, EA, and sham-EA. Our results showed EA treatment significantly attenuated dextran sulfate sodium- (DSS-) induced colorectal lesions and inflammatory cytokine secretion, such as TNF-α, IL-1β, PGE2, and IL-6. EA also inhibited mechanical and thermal pain hypersensitivities of colitis rats. Importantly, EA effectively abrogated the promotion effect of DSS on ipsilateral lumbar 6 (L6) DRG sympathetic-sensory coupling, manifested as the sprouting of tyrosine hydroxylase- (TH-) positive sympathetic fibers into sensory neurons and colocalization of and calcitonin gene-related peptide (CGRP). Furthermore, EA at Zusanli (ST36) activated neurogenic inflammation, characterized by decreased expression of substance P (SP), hyaluronic acid (HA), bradykinin (BK), and prostacyclin (PGI2) in colitis rat skin tissues corresponding to the L6 DRG. Mechanically, EA treatment reduced the activation of the TRPV1/CGRP, ERK, and TLR4 signaling pathways in L6 DRG of colitis rats. Taken together, we presumed that EA treatment improved colon inflammation and hyperalgesia, potentially by suppressing the sprouting of sympathetic nerve fibers into the L6 DGR and neurogenic inflammation via deactivating the TRPV1/CGRP, ERK, and TLR4 signaling pathways.
Collapse
|
19
|
Yamakita S, Fujita D, Sudo K, Ishikawa D, Kushimoto K, Horii Y, Amaya F. Activation of neurons and satellite glial cells in the DRG produces morphine-induced hyperalgesia. Mol Pain 2023; 19:17448069231181973. [PMID: 37254240 PMCID: PMC10291868 DOI: 10.1177/17448069231181973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/01/2023] Open
Abstract
Activation of neurons and glial cells in the dorsal root ganglion is one of the key mechanisms for the development of hyperalgesia. The aim of the present study was to examine the role of neuroglial activity in the development of opioid-induced hyperalgesia. Male rats were treated with morphine daily for 3 days. The resultant phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in the dorsal root ganglion was analyzed by immunohistochemistry and Western blotting. Pain hypersensitivity was analyzed using behavioral studies. The amount of cytokine expression in the dorsal root ganglion was also analyzed. Repeated morphine treatment induced hyperalgesia and marked induction of phosphorylated ERK1/2 in the neurons and satellite glial cells on day 3. An opioid receptor antagonist, toll like receptor-4 inhibitor, MAP/ERK kinase (MEK) inhibitor and gap junction inhibitor inhibited morphine-induced hyperalgesia and ERK1/2 phosphorylation. Morphine treatment induced alteration of cytokine expression, which was inhibited by the opioid receptor antagonist, toll like receptor-4 inhibitor, MEK inhibitor and gap junction inhibitor. Dexamethasone inhibited morphine-induced hyperalgesia and ERK1/2 phosphorylation after morphine treatment. The peripherally restricted opioid receptor antagonist, methylnaltrexone, inhibited hyperalgesia and ERK1/2 phosphorylation. Morphine activates ERK1/2 in neurons and satellite glial cells in the dorsal root ganglion via the opioid receptor and toll like receptor-4. ERK1/2 phosphorylation is gap junction-dependent and is associated with the alteration of cytokine expression. Inhibition of neuroinflammation by activation of neurons and glia might be a promising target to prevent opioid-induced hyperalgesia.
Collapse
Affiliation(s)
- Shunsuke Yamakita
- Department of Anesthesiology, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Fujita
- Department of Anesthesiology, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuki Sudo
- Department of Anesthesiology, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daiki Ishikawa
- Department of Anesthesiology, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kohsuke Kushimoto
- Department of Anesthesiology, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiko Horii
- Department of Anesthesiology, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
- Research Unit for the Neurobiology of Pain, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumimasa Amaya
- Research Unit for the Neurobiology of Pain, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Pain Management and Palliative Care Medicine, institution-id-type="Ringgold" />Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Emerging roles of toll-like receptor 4 in chemotherapy-induced neurotoxicity. Neurotoxicology 2022; 93:112-127. [PMID: 36152729 DOI: 10.1016/j.neuro.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Chemotherapy-induced neurotoxicity is one of the most prevalent side effects in cancer patients and survivors. Cognitive decline and peripheral neuropathy are the most common chemotherapy-induced neurotoxic symptoms. These symptoms lead not only to the limiting of the dose of chemotherapy given to cancer patients, but also have an impact on the quality of life of cancer survivors. Although the exact mechanisms involved in chemotherapy-induced neurotoxicity are still unclear, neuroinflammation is widely regarded as being one of the major causes involved in chemotherapy-induced neurotoxicity. It is known that Toll-like receptor 4 (TLR4) plays a critical role in the inflammatory process, and it has been recently reported that it is associated with chemotherapy-induced neurotoxicity. In this review, we summarize and discuss all available evidence regarding the activation of the TLR4 signaling pathway in various models of chemotherapy-induced neurotoxicity. This review also emphasizes the evidence pertinent to TLR4 inhibition on chemotherapy-induced neurotoxicity in rodent studies. Understanding the role of the TLR4 signaling pathway behind chemotherapy-induced neurotoxicity is crucial for improving treatments and ensuring the long-term survival of cancer patients.
Collapse
Affiliation(s)
- Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
21
|
Zhu Y, Duan S, Wang M, Deng Z, Li J. Neuroimmune Interaction: A Widespread Mutual Regulation and the Weapons for Barrier Organs. Front Cell Dev Biol 2022; 10:906755. [PMID: 35646918 PMCID: PMC9130600 DOI: 10.3389/fcell.2022.906755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Since the embryo, the nervous system and immune system have been interacting to regulate each other’s development and working together to resist harmful stimuli. However, oversensitive neural response and uncontrolled immune attack are major causes of various diseases, especially in barrier organs, while neural-immune interaction makes it worse. As the first defense line, the barrier organs give a guarantee to maintain homeostasis in external environment. And the dense nerve innervation and abundant immune cell population in barrier organs facilitate the neuroimmune interaction, which is the physiological basis of multiple neuroimmune-related diseases. Neuroimmune-related diseases often have complex mechanisms and require a combination of drugs, posing challenges in finding etiology and treatment. Therefore, it is of great significance to illustrate the specific mechanism and exact way of neuro-immune interaction. In this review, we first described the mutual regulation of the two principal systems and then focused on neuro-immune interaction in the barrier organs, including intestinal tract, lungs and skin, to clarify the mechanisms and provide ideas for clinical etiology exploration and treatment.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Shixin Duan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Mei Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhili Deng, ; Ji Li,
| |
Collapse
|
22
|
Mustafa S, Evans S, Barry B, Barratt D, Wang Y, Lin C, Wang X, Hutchinson MR. Toll-Like Receptor 4 in Pain: Bridging Molecules-to-Cells-to-Systems. Handb Exp Pharmacol 2022; 276:239-273. [PMID: 35434749 DOI: 10.1007/164_2022_587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pain impacts the lives of billions of people around the world - both directly and indirectly. It is complex and transcends beyond an unpleasant sensory experience to encompass emotional experiences. To date, there are no successful treatments for sufferers of chronic pain. Although opioids do not provide any benefit to chronic pain sufferers, they are still prescribed, often resulting in more complications such as hyperalgesia and dependence. In order to develop effective and safe medications to manage, and perhaps even treat pain, it is important to evaluate novel contributors to pain pathologies. As such, in this chapter we review the role of Toll-like receptor 4, a receptor of the innate immune system, that continues to gain substantial attention in the field of pain research. Positioned in the nexus of the neuro and immune systems, TLR4 may provide one of the missing pieces in understanding the complexities of pain. Here we consider how TLR4 enables a mechanistical understanding of pain as a multidimensional biopsychosocial state from molecules to cells to systems and back again.
Collapse
Affiliation(s)
- Sanam Mustafa
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia.
| | - Samuel Evans
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Benjamin Barry
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Daniel Barratt
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Mark R Hutchinson
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
23
|
Qian HY, Zhou F, Wu R, Cao XJ, Zhu T, Yuan HD, Chen YN, Zhang PA. Metformin Attenuates Bone Cancer Pain by Reducing TRPV1 and ASIC3 Expression. Front Pharmacol 2021; 12:713944. [PMID: 34421611 PMCID: PMC8371459 DOI: 10.3389/fphar.2021.713944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Bone cancer pain (BCP) is a common pathologic pain associated with destruction of bone and pathological reconstruction of nervous system. Current treatment strategies in clinical is inadequate and have unacceptable side effects due to the unclear pathology mechanism. In the present study, we showed that transplantation of Walker 256 cells aggravated mechanical allodynia of BCP rats (**p < 0.01 vs. Sham), and the expression of ASIC3 (Acid-sensitive ion channel 3) and TRPV1 was obviously enhanced in L4-6 dorsal root ganglions (DRGs) of BCP rats (**p < 0.01 vs. Sham). ASIC3 and TRPV1 was mainly expressed in CGRP and IB4 positive neurons of L4-6 DRGs. While, TRPV1 but not ASIC3 was markedly upregulated in L4-6 spinal dorsal horn (SDH) of BCP rats (**p < 0.01 vs. Sham). Importantly, intrathecal injection of CPZ (a TRPV1 inhibitor) or Amiloride (an ASICs antagonist) markedly increased the paw withdraw threshold (PWT) of BCP rats response to Von Frey filaments (**p < 0.01 vs. BCP + NS). What’s more, intraperitoneally injection of Metformin or Vinorelbine markedly elevated the PWT of BCP rats, but reduced the expression of TRPV1 and ASIC3 in L4-6 DRGs and decreased the TRPV1 expression in SDH (*p < 0.05, **p < 0.01 vs. BCP + NS). Collectively, these results suggest an effective analgesic effect of Metformin on mechanical allodynia of BCP rats, which may be mediated by the downregulation of ASIC3 and TRPV1.
Collapse
Affiliation(s)
- He-Ya Qian
- Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China.,Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Fang Zhou
- Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Rui Wu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Xiao-Jun Cao
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Tao Zhu
- Department of Laboratory, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Hao-Dong Yuan
- Department of Laboratory, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Ya-Nan Chen
- Department of Oncology, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Ping-An Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
24
|
Simultaneous hyperbaric oxygen therapy during systemic chemotherapy reverses chemotherapy-induced peripheral neuropathy by inhibiting TLR4 and TRPV1 activation in the central and peripheral nervous system. Support Care Cancer 2021; 29:6841-6850. [PMID: 34003380 DOI: 10.1007/s00520-021-06269-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Chemotherapy-induced peripheral neuropathy (CIPN) is considered one of the most common sequelae in patients with cancer who experience consistent abnormal sensations or pain symptoms during or after paclitaxel (PAC) chemotherapy. Transient receptor potential vanilloid 1 (TRPV1) and toll-like receptor 4 (TLR4) have been reported to interact in the nervous system in patients with CIPN. The antinociceptive effects of hyperbaric oxygen therapy (HBOT) on CIPN was demonstrated in this study through behavior tests. Using a CIPN rat model, we examined the effects of simultaneous HBOT (SHBOT) administration during chemotherapy and discovered that SHBOT achieved better reversal effects than chemotherapy alone. MATERIALS AND METHODS Twenty-four rats were randomly allocated to four groups: control, PAC, SHBOT, and HBOT after PAC groups. Behavior tests were performed to evaluate mechanical allodynia and thermal hyperalgesia status. Tissues from the spinal cord and dorsal root ganglions were collected, and TLR4 and TRPV1 expression and microglial activation were investigated through immunofluorescence (IF) staining. RESULTS The mechanical and thermal behavior tests revealed that HBOT intervention during PAC treatment led to the early alleviation of CIPN symptoms and inhibited CIPN deterioration. IF staining revealed that TLR4, TRPV1, and microglial activation were all upregulated in PAC-injected rats and exhibited early and significant downregulation in SHBOT-treated rats. CONCLUSION This study is the first to demonstrate that the use of SHBOT during PAC treatment has potential for the early suppression of CIPN initiation and deterioration, indicating that it can alleviate CIPN symptoms and may reverse CIPN in patients undergoing systemic chemotherapy.
Collapse
|
25
|
Yu J, Du J, Fang J, Liu Y, Xiang X, Liang Y, Shao X, Fang J. The interaction between P2X3 and TRPV1 in the dorsal root ganglia of adult rats with different pathological pains. Mol Pain 2021; 17:17448069211011315. [PMID: 33906494 PMCID: PMC8108079 DOI: 10.1177/17448069211011315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peripheral inflammatory and neuropathic pain are closely related to the activation of purinergic receptor P2X ligand-gated ion channel 3 (P2X3) and transient receptor potential vanilloid 1 (TRPV1), but the interaction between P2X3 and TRPV1 in different types of pathological pain has rarely been reported. In this study, complete Freund’s adjuvant (CFA)-induced inflammatory pain and spared nerve injury (SNI)-induced neuropathic pain models were established in adult rats. The interactions between P2X3 and TRPV1 in the dorsal root ganglion were observed by pharmacological, co-immunoprecipitation, immunofluorescence and whole-cell patch-clamp recording assays. TRPV1 was shown to promote the induction of spontaneous pain caused by P2X3 in the SNI model, but the induction of spontaneous pain behaviour by TRPV1 was not completely dependent on P2X3 in vivo. In both the CFA and SNI models, the activation of peripheral P2X3 enhanced the effect of TRPV1 on spontaneous pain, while the inhibition of peripheral TRPV1 reduced the induction of spontaneous pain by P2X3 in the CFA model. TRPV1 and P2X3 had inhibitory effects on each other in the inflammatory pain model. During neuropathic pain, P2X3 facilitated the function of TRPV1, while TRPV1 had an inhibitory effect on P2X3. These results suggest that the mutual effects of P2X3 and TRPV1 differ in cases of inflammatory and neuropathic pain in rats.
Collapse
Affiliation(s)
- Jie Yu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Acupuncture and Massage, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingjun Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuaner Xiang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Shaoyao-Gancao Decoction Relieves Visceral Hyperalgesia in TNBS-Induced Postinflammatory Irritable Bowel Syndrome via Inactivating Transient Receptor Potential Vanilloid Type 1 and Reducing Serotonin Synthesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7830280. [PMID: 33123210 PMCID: PMC7584960 DOI: 10.1155/2020/7830280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Postinflammatory irritable bowel syndrome (PI-IBS) is a common functional gastrointestinal disorder, which is characterized by abdominal pain, low-grade inflammation, and visceral hypersensitivity. Shaoyao-Gancao decoction (SGD) has been used to improve the clinical symptoms of abdominal spasmodic pain accompanying acute gastroenteritis, but the underlying therapeutic mechanism has not been fully elucidated. In the present study, a rat model of PI-IBS was established via rectal administration of TNBS. Rats were scored daily for 28 days using disease activity index (DAI). Abdominal withdrawal reflex (AWR) was used to measure the pain threshold. After SGD (6.25, 12.5, and 25 g/kg/d) treatment for 14 days, rat colonic tissue was collected for histopathological grading, enterochromaffin (EC) cell count, and 5-HT content measurement. RT-qPCR and western blot analyses were employed to detect the gene and protein level of tryptophan hydroxylase (TPH), serotonin reuptake transporter (SERT), and transient receptor potential vanilloid 1 (TRPV1). To further validate the effect of SGD on TRPV1, another experiment was performed in cells. The results revealed that visceral hyperalgesia, reflected by increased DAI, AWR, pathological injury score, 5-HT content, and EC cell count in PI-IBS rats, was significantly ameliorated by SGD. In cells, SGD markedly inhibited the expression and function of TRPV1. Moreover, the expression levels of TPH were also repressed by SGD. The findings of the present study indicated that the therapeutic effect of SGD on visceral hyperalgesia may be closely associated with the regulatory role of TRPV1 and 5-HT signaling pathways.
Collapse
|
27
|
Chen Y, Mu J, Zhu M, Mukherjee A, Zhang H. Transient Receptor Potential Channels and Inflammatory Bowel Disease. Front Immunol 2020; 11:180. [PMID: 32153564 PMCID: PMC7044176 DOI: 10.3389/fimmu.2020.00180] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023] Open
Abstract
The transient receptor potential (TRP) cation channels are present in abundance across the gastrointestinal (GI) tract, serving as detectors for a variety of stimuli and secondary transducers for G-protein coupled receptors. The activation of TRP channels triggers neurogenic inflammation with related neuropeptides and initiates immune reactions by extra-neuronally regulating immune cells, contributing to the GI homeostasis. However, under pathological conditions, such as inflammatory bowel disease (IBD), TRP channels are involved in intestinal inflammation. An increasing number of human and animal studies have indicated that TRP channels are correlated to the visceral hypersensitivity (VHS) and immune pathogenesis in IBD, leading to an exacerbation or amelioration of the VHS or intestinal inflammation. Thus, TRP channels are a promising target for novel therapeutic methods for IBD. In this review, we comprehensively summarize the functions of TRP channels, especially their potential roles in immunity and IBD. Additionally, we discuss the contradictory findings of prior studies and offer new insights with regard to future research.
Collapse
Affiliation(s)
- Yiding Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Jingxi Mu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Min Zhu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Saloman JL, Cohen JA, Kaplan DH. Intimate neuro-immune interactions: breaking barriers between systems to make meaningful progress. Curr Opin Neurobiol 2019; 62:60-67. [PMID: 31841783 DOI: 10.1016/j.conb.2019.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
The nervous system is often viewed as an isolated system that integrates information from the environment and host. Recently, there has been a renewed focus exploring the concept that the nervous system also communicates across biological systems. Specifically, several high profile studies have recently highlighted the importance of neuro-immune communication in the context of homeostasis, central nervous system disorders, host defense and injury. Here, we discuss the history of shared mechanisms and interconnectedness of the nervous, immune and epithelial compartments. In light of these overlapping mechanisms, it is perhaps unsurprising that neuro-immune-epithelial signaling plays a key role in regulating diverse biological phenomena. In this review, we explore recent breakthroughs in understanding neuro-immune signaling to highlight the importance of interdisciplinary approaches to biomedical research and the future development of novel therapeutics.
Collapse
Affiliation(s)
- Jami L Saloman
- Department of Medicine, Division of Gastroenterology, Hepatology, & Nutrition, Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jonathan A Cohen
- Department of Dermatology, Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel H Kaplan
- Department of Dermatology, Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
29
|
Electroacupuncture Alleviates Paclitaxel-Induced Peripheral Neuropathic Pain in Rats via Suppressing TLR4 Signaling and TRPV1 Upregulation in Sensory Neurons. Int J Mol Sci 2019; 20:ijms20235917. [PMID: 31775332 PMCID: PMC6929119 DOI: 10.3390/ijms20235917] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Paclitaxel-induced peripheral neuropathy is a common adverse effect during paclitaxel treatment resulting in sensory abnormalities and neuropathic pain during chemotherapy and in cancer survivors. Conventional therapies are usually ineffective and possess adverse effects. Here, we examined the effects of electroacupuncture (EA) on a rat model of paclitaxel-induced neuropathic pain and related mechanisms. EA robustly and persistently alleviated paclitaxel-induced pain hypersensitivities. Mechanistically, TLR4 (Toll-Like Receptor 4) and downstream signaling MyD88 (Myeloid Differentiation Primary Response 88) and TRPV1 (Transient Receptor Potential Vallinoid 1) were upregulated in dorsal root ganglion (DRGs) of paclitaxel-treated rats, whereas EA reduced their overexpression. Ca2+ imaging further indicated that TRPV1 channel activity was enhanced in DRG neurons of paclitaxel-treated rats whereas EA suppressed the enhanced TRPV1 channel activity. Pharmacological blocking of TRPV1 mimics the analgesic effects of EA on the pain hypersensitivities, whereas capsaicin reversed EA’s effect. Spinal astrocytes and microglia were activated in paclitaxel-treated rats, whereas EA reduced the activation. These results demonstrated that EA alleviates paclitaxel-induced peripheral neuropathic pain via mechanisms possibly involving suppressing TLR4 signaling and TRPV1 upregulation in DRG neurons, which further result in reduced spinal glia activation. Our work supports EA as a potential alternative therapy for paclitaxel-induced neuropathic pain.
Collapse
|