1
|
Taïb S, Durand J, Dehais V, Boulay AC, Martin S, Blugeon C, Jourdren L, Freydier R, Cohen-Salmon M, Hazan J, Brunet I. Vascular dysfunction is at the onset of oxaliplatin-induced peripheral neuropathy symptoms in mice. Life Sci Alliance 2025; 8:e202402791. [PMID: 39578077 PMCID: PMC11584327 DOI: 10.26508/lsa.202402791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Oxaliplatin-induced peripheral neuropathy (OIPN) is an adverse side effect of this chemotherapy used for gastrointestinal cancers. The continuous pain experienced by OIPN patients often results in the reduction or discontinuation of chemotherapy, thereby affecting patient survival. Several pathogenic mechanisms involving sensory neurons were shown to participate in the occurrence of OIPN symptoms. However, the dysfunction of the blood-nerve barrier as a source of nerve alteration had not been thoroughly explored. To characterise the vascular contribution to OIPN symptoms, we undertook two comparative transcriptomic analyses of mouse purified brain and sciatic nerve blood vessels (BVs) and nerve BVs after oxaliplatin or control administration. These analyses reveal distinct molecular landscapes between brain and nerve BVs and the up-regulation of transcripts involved in vascular contraction after oxaliplatin treatment. Anatomical examination of the nerve yet shows the preservation of BV architecture in the acute OIPN mouse model, although treated mice exhibit both neuropathic symptoms and enhanced vasoconstriction reflected by hypoxia. Moreover, vasodilators significantly reduce oxaliplatin-induced neuropathic symptoms and endoneurial hypoxia, establishing the key involvement of nerve blood flow in OIPN.
Collapse
Affiliation(s)
- Sonia Taïb
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| | - Juliette Durand
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| | - Vianney Dehais
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| | - Anne-Cécile Boulay
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| | - Sabrina Martin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| | - Corinne Blugeon
- Genomic Facility, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS UMR 8197, INSERM U1024, Université PSL, Paris, France
| | - Laurent Jourdren
- Genomic Facility, Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS UMR 8197, INSERM U1024, Université PSL, Paris, France
| | - Rémi Freydier
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| | - Jamilé Hazan
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| | - Isabelle Brunet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Université PSL, Paris, France
| |
Collapse
|
2
|
Sogbein O, Paul P, Umar M, Chaari A, Batuman V, Upadhyay R. Bortezomib in cancer therapy: Mechanisms, side effects, and future proteasome inhibitors. Life Sci 2024; 358:123125. [PMID: 39413903 DOI: 10.1016/j.lfs.2024.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
The ubiquitin-proteasome pathway (UPP) regulates protein stability and normal cellular functions with the help of autocatalytic proteasome complex. Studies have linked aberrant proteasome activity to malignant cells and found that proteasome inhibitors play a significant role as therapeutic drugs for various types of cancer, specifically multiple myeloma and mantle cell lymphoma. Bortezomib, the first FDA-approved proteasome inhibitor for treating different stages of multiple myeloma, acts on cancer cells by inhibiting the 26S proteasome, modulating NF-κB, phosphorylating Bcl-2, upregulating of NOXA, blocking p53 degradation, activating caspase, generating reactive oxygen species (ROS), and inhibiting angiogenesis. However, its efficacy is limited due to side effects such as peripheral neuropathy (PN), thrombotic microangiopathy (TMA), and acute interstitial nephritis (AIN). Therefore, a better understanding of its precise mechanism of action may help mitigate these side effects. In this review, we have discussed the proposed mechanisms of action and off target effects of Bortezomib, along with the prospects of next generation potential proteasome inhibitor drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Olusola Sogbein
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Meenakshi Umar
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Vecihi Batuman
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Rohit Upadhyay
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
3
|
Haque MM, Kuppusamy P, Melemedjian OK. Glutamine Oxidation in Mouse Dorsal Root Ganglia Regulates Pain Resolution and Chronification. J Neurosci 2024; 44:e1442242024. [PMID: 39379157 PMCID: PMC11580783 DOI: 10.1523/jneurosci.1442-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Chronic pain remains a significant health challenge with limited effective treatments. This study investigates the metabolic changes underlying pain progression and resolution, uncovering a novel compensatory mechanism in sensory neurons. Using the hyperalgesic priming model in male mice, we demonstrate that nerve growth factor (NGF) initially disrupted mitochondrial pyruvate oxidation, leading to acute allodynia. Surprisingly, this metabolic disruption persisted even after the apparent resolution of allodynia. We discovered that during the resolution phase, sensory neurons exhibit increased glutamine oxidation and upregulation of the major glutamine transporter ASCT2 in dorsal root ganglia. This compensatory response plays a crucial role in pain resolution, as demonstrated by our experiments. Knockdown of ASCT2 prevents the resolution of NGF-induced allodynia and precipitates the transition to a chronic state. Furthermore, we show that the glutamine catabolite α-ketoglutarate attenuated glycolytic flux and alleviated allodynia in both acute and chronic phases of the hyperalgesic priming model. The importance of ASCT2 is further confirmed in a translational model, where its knockdown prevented the resolution of allodynia following plantar incision. These findings highlight the pivotal role of metabolic changes in pain resolution and identify ASCT2-mediated glutamine metabolism as a potential therapeutic target for chronic pain. Understanding these endogenous mechanisms that promote pain resolution can guide the development of novel interventions to prevent the transition pain from acute to chronic.
Collapse
Affiliation(s)
- Md Mamunul Haque
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201
| | - Panjamurthy Kuppusamy
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201
| | - Ohannes K Melemedjian
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201
- UM Center to Advance Chronic Pain Research, Baltimore, Maryland 21201
- UM Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland 21201
| |
Collapse
|
4
|
Haque MM, Kuppusamy P, Melemedjian OK. Disruption of mitochondrial pyruvate oxidation in dorsal root ganglia drives persistent nociceptive sensitization and causes pervasive transcriptomic alterations. Pain 2024; 165:1531-1549. [PMID: 38285538 PMCID: PMC11189764 DOI: 10.1097/j.pain.0000000000003158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 01/31/2024]
Abstract
ABSTRACT Metabolism is inextricably linked to every aspect of cellular function. In addition to energy production and biosynthesis, metabolism plays a crucial role in regulating signal transduction and gene expression. Altered metabolic states have been shown to maintain aberrant signaling and transcription, contributing to diseases like cancer, cardiovascular disease, and neurodegeneration. Metabolic gene polymorphisms and defects are also associated with chronic pain conditions, as are increased levels of nerve growth factor (NGF). However, the mechanisms by which NGF may modulate sensory neuron metabolism remain unclear. This study demonstrated that intraplantar NGF injection reprograms sensory neuron metabolism. Nerve growth factor suppressed mitochondrial pyruvate oxidation and enhanced lactate extrusion, requiring 24 hours to increase lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 (PDHK1) expression. Inhibiting these metabolic enzymes reversed NGF-mediated effects. Remarkably, directly disrupting mitochondrial pyruvate oxidation induced severe, persistent allodynia, implicating this metabolic dysfunction in chronic pain. Nanopore long-read sequencing of poly(A) mRNA uncovered extensive transcriptomic changes upon metabolic disruption, including altered gene expression, splicing, and poly(A) tail lengths. By linking metabolic disturbance of dorsal root ganglia to transcriptome reprogramming, this study enhances our understanding of the mechanisms underlying persistent nociceptive sensitization. These findings imply that impaired mitochondrial pyruvate oxidation may drive chronic pain, possibly by impacting transcriptomic regulation. Exploring these metabolite-driven mechanisms further might reveal novel therapeutic targets for intractable pain.
Collapse
Affiliation(s)
- Md Mamunul Haque
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Panjamurthy Kuppusamy
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Ohannes K. Melemedjian
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
- UM Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
5
|
Kuppusamy P, Haque MM, Traub RJ, Melemedjian OK. Targeting metabolic pathways alleviates bortezomib-induced neuropathic pain without compromising anticancer efficacy in a sex-specific manner. FRONTIERS IN PAIN RESEARCH 2024; 5:1424348. [PMID: 38979441 PMCID: PMC11228363 DOI: 10.3389/fpain.2024.1424348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of cancer treatment that significantly impacts patients' quality of life. This study investigated the effects of targeting metabolic pathways on bortezomib-induced neuropathic pain and tumor growth using a Lewis lung carcinoma (LLC) mouse model, while exploring potential sex differences. Methods Male and female C57BL/6J mice were implanted with LLC cells and treated with bortezomib alone or in combination with metformin, dichloroacetate (DCA), or oxamate. Tactile allodynia was assessed using von Frey filaments. Tumor volume and weight were measured to evaluate tumor growth. Results Metformin, DCA, and oxamate effectively attenuated bortezomib-induced neuropathic pain without compromising the anticancer efficacy of bortezomib in both male and female mice. The LLC model exhibited a paraneoplastic neuropathy-like phenotype. Significant sex differences were observed, with male mice exhibiting larger tumors compared to females. Oxamate was more effective in alleviating allodynia in males, while metformin and DCA showed greater efficacy in reducing tumor growth in females. Discussion Targeting metabolic pathways can alleviate CIPN without interfering with bortezomib's anticancer effects. The LLC model may serve as a tool for studying paraneoplastic neuropathy. Sex differences in tumor growth and response to metabolic interventions highlight the importance of considering sex as a biological variable in preclinical and clinical studies investigating cancer biology, CIPN, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Panjamurthy Kuppusamy
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Md Mamunul Haque
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Richard J. Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
| | - Ohannes K. Melemedjian
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
- UM Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
6
|
Yang Y, Zhao B, Lan H, Sun J, Wei G. Bortezomib-induced peripheral neuropathy: Clinical features, molecular basis, and therapeutic approach. Crit Rev Oncol Hematol 2024; 197:104353. [PMID: 38615869 DOI: 10.1016/j.critrevonc.2024.104353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Bortezomib is the first-line standard and most effective chemotherapeutic for multiple myeloma; however, bortezomib-induced peripheral neuropathy (BIPN) severely affects the chemotherapy regimen and has long-term impact on patients under maintenance therapy. The pathogenesis of BIPN is poorly understood, and basic research and development of BIPN management drugs are in early stages. Besides chemotherapy dose reduction and regimen modification, no recommended prevention and treatment approaches are available for BIPN apart from the International Myeloma Working Group guidelines for peripheral neuropathy in myeloma. An in-depth exploration of the pathogenesis of BIPN, development of additional therapeutic approaches, and identification of risk factors are needed. Optimizing effective and standardized BIPN treatment plans and providing more decision-making evidence for clinical diagnosis and treatment of BIPN are necessary. This article reviews the recent advances in BIPN research; provides an overview of clinical features, underlying molecular mechanisms, and therapeutic approaches; and highlights areas for future studies.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oncology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of General Surgery, Changshu No. 1 People's Hospital, Affiliated Changshu Hospital of Soochow University, Changshu, China; Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinbing Sun
- Department of General Surgery, Changshu No. 1 People's Hospital, Affiliated Changshu Hospital of Soochow University, Changshu, China.
| | - Guoli Wei
- Department of Oncology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
7
|
Wang W, Ma X, Du W, Lin R, Li Z, Jiang W, Wang LY, Worley PF, Xu T. Small G-Protein Rheb Gates Mammalian Target of Rapamycin Signaling to Regulate Morphine Tolerance in Mice. Anesthesiology 2024; 140:786-802. [PMID: 38147625 DOI: 10.1097/aln.0000000000004885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
BACKGROUND Analgesic tolerance due to long-term use of morphine remains a challenge for pain management. Morphine acts on μ-opioid receptors and downstream of the phosphatidylinositol 3-kinase signaling pathway to activate the mammalian target of rapamycin (mTOR) pathway. Rheb is an important regulator of growth and cell-cycle progression in the central nervous system owing to its critical role in the activation of mTOR. The hypothesis was that signaling via the GTP-binding protein Rheb in the dorsal horn of the spinal cord is involved in morphine-induced tolerance. METHODS Male and female wild-type C57BL/6J mice or transgenic mice (6 to 8 weeks old) were injected intrathecally with saline or morphine twice daily at 12-h intervals for 5 consecutive days to establish a tolerance model. Analgesia was assessed 60 min later using the tail-flick assay. After 5 days, the spine was harvested for Western blot or immunofluorescence analysis. RESULTS Chronic morphine administration resulted in the upregulation of spinal Rheb by 4.27 ± 0.195-fold (P = 0.0036, n = 6), in turn activating mTOR by targeting rapamycin complex 1 (mTORC1). Genetic overexpression of Rheb impaired morphine analgesia, resulting in a tail-flick latency of 4.65 ± 1.10 s (P < 0.0001, n = 7) in Rheb knock-in mice compared to 10 s in control mice (10 ± 0 s). Additionally, Rheb overexpression in spinal excitatory neurons led to mTORC1 signaling overactivation. Genetic knockout of Rheb or inhibition of mTORC1 signaling by rapamycin potentiated morphine-induced tolerance (maximum possible effect, 52.60 ± 9.56% in the morphine + rapamycin group vs. 16.60 ± 8.54% in the morphine group; P < 0.0001). Moreover, activation of endogenous adenosine 5'-monophosphate-activated protein kinase inhibited Rheb upregulation and retarded the development of morphine-dependent tolerance (maximum possible effect, 39.51 ± 7.40% in morphine + metformin group vs. 15.58 ± 5.79% in morphine group; P < 0.0001). CONCLUSIONS This study suggests spinal Rheb as a key molecular factor for regulating mammalian target of rapamycin signaling. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Wenying Wang
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaqing Ma
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Raozhou Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhongping Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wei Jiang
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Yang Wang
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada; and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tao Xu
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China; and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Alsalem M, Ellaithy A, Bloukh S, Haddad M, Saleh T. Targeting therapy-induced senescence as a novel strategy to combat chemotherapy-induced peripheral neuropathy. Support Care Cancer 2024; 32:85. [PMID: 38177894 DOI: 10.1007/s00520-023-08287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a treatment-limiting adverse effect of anticancer therapy that complicates the lifestyle of many cancer survivors. There is currently no gold-standard for the assessment or management of CIPN. Subsequently, understanding the underlying mechanisms that lead to the development of CIPN is essential for finding better pharmacological therapy. Therapy-induced senescence (TIS) is a form of senescence that is triggered in malignant and non-malignant cells in response to the exposure to chemotherapy. Recent evidence has also suggested that TIS develops in the dorsal root ganglia of rodent models of CIPN. Interestingly, several components of the senescent phenotype are commensurate with the currently established primary processes implicated in the pathogenesis of CIPN including mitochondrial dysfunction, oxidative stress, and neuroinflammation. In this article, we review the literature that supports the hypothesis that TIS could serve as a holistic mechanism leading to CIPN, and we propose the potential for investigating senotherapeutics as means to mitigate CIPN in cancer survivors.
Collapse
Affiliation(s)
- Mohammad Alsalem
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Amr Ellaithy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah Bloukh
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mansour Haddad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
9
|
Shi T, Zhu J, Zhang X, Mao X. The Role of Hypoxia and Cancer Stem Cells in Development of Glioblastoma. Cancers (Basel) 2023; 15:cancers15092613. [PMID: 37174078 PMCID: PMC10177528 DOI: 10.3390/cancers15092613] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma multiform (GBM) is recognized as the most malignant brain tumor with a high level of hypoxia, containing a small population of glioblastoma stem like cells (GSCs). These GSCs have the capacity of self-renewal, proliferation, invasion and recapitulating the parent tumor, and are major causes of radio-and chemoresistance of GBM. Upregulated expression of hypoxia inducible factors (HIFs) in hypoxia fundamentally contributes to maintenance and progression of GSCs. Therefore, we thoroughly reviewed the currently acknowledged roles of hypoxia-associated GSCs in development of GBM. In detail, we recapitulated general features of GBM, especially GSC-related features, and delineated essential responses resulted from interactions between GSC and hypoxia, including hypoxia-induced signatures, genes and pathways, and hypoxia-regulated metabolic alterations. Five hypothesized GSC niches are discussed and integrated into one comprehensive concept: hypoxic peri-arteriolar niche of GSCs. Autophagy, another protective mechanism against chemotherapy, is also closely related to hypoxia and is a potential therapeutic target for GBM. In addition, potential causes of therapeutic resistance (chemo-, radio-, surgical-, immuno-), and chemotherapeutic agents which can improve the therapeutic effects of chemo-, radio-, or immunotherapy are introduced and discussed. At last, as a potential approach to reverse the hypoxic microenvironment in GBM, hyperbaric oxygen therapy (HBOT) might be an adjuvant therapy to chemo-and radiotherapy after surgery. In conclusion, we focus on demonstrating the important role of hypoxia on development of GBM, especially by affecting the function of GSCs. Important advantages have been made to understand the complicated responses induced by hypoxia in GBM. Further exploration of targeting hypoxia and GSCs can help to develop novel therapeutic strategies to improve the survival of GBM patients.
Collapse
Affiliation(s)
- Tingyu Shi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Tangdu Hospital, Fourth Military Medical University, Xi'an 710024, China
| | - Jun Zhu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinggang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
10
|
Serageldin MA, Kassem AB, El-Kerm Y, Helmy MW, El-Mas MM, El-Bassiouny NA. The Effect of Metformin on Chemotherapy-Induced Toxicities in Non-diabetic Breast Cancer Patients: A Randomised Controlled Study. Drug Saf 2023; 46:587-599. [PMID: 37131014 DOI: 10.1007/s40264-023-01305-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND OBJECTIVE Breast cancer patients treated with adriamycin-cyclophosphamide plus paclitaxel (AC-T) are often challenged with serious adverse effects for which no effective therapies are available. Here, we investigated whether metformin, an antidiabetic drug with additional pleiotropic effects could favourably offset AC-T induced toxicities. PATIENTS AND METHODS Seventy non-diabetic breast cancer patients were randomised to receive either AC-T (adriamycin 60 mg/m2 + cyclophosphamide 600 mg/m2 × 4 cycles Q21 days, followed by weekly paclitaxel 80 mg/m2 × 12 cycles) alone or AC-T plus metformin (1700 mg/day). Patients were assessed regularly after each cycle to record the incidence and severity of adverse events based on the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE), version 5.0. Moreover, baseline echocardiography and ultrasonography were done and repeated after the end of neoadjuvant therapy. RESULTS Addition of metformin to AC-T resulted in significantly less incidence and severity of peripheral neuropathy, oral mucositis, and fatigue (p < 0.05) compared to control arm. Moreover, the left ventricular ejection fraction (LVEF%) in the control arm dropped from a mean of 66.69 ± 4.57 to 62.2 ± 5.22% (p = 0.0004) versus a preserved cardiac function in the metformin arm (64.87 ± 4.84 to 65.94 ± 3.44%, p = 0.2667). Furthermore, fatty liver incidence was significantly lower in metformin compared with control arm (8.33% vs 51.85%, p = 0.001). By contrast, haematological disturbances caused by AC-T were preserved after concurrent metformin administration (p > 0.05). CONCLUSION Metformin offers a therapeutic opportunity for controlling toxicities caused by neoadjuvant chemotherapy in non-diabetic breast cancer patients. TRIAL REGISTRATION This randomised controlled trial was registered on November 20, 2019 in ClinicalTrials.gov under registration number: NCT04170465.
Collapse
Affiliation(s)
- Manar A Serageldin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Amira B Kassem
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Yasser El-Kerm
- Oncology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Noha A El-Bassiouny
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
11
|
Bui BP, Nguyen PL, Lee K, Cho J. Hypoxia-Inducible Factor-1: A Novel Therapeutic Target for the Management of Cancer, Drug Resistance, and Cancer-Related Pain. Cancers (Basel) 2022; 14:cancers14246054. [PMID: 36551540 PMCID: PMC9775408 DOI: 10.3390/cancers14246054] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor that regulates the transcription of many genes that are responsible for the adaptation and survival of tumor cells in hypoxic environments. Over the past few decades, tremendous efforts have been made to comprehensively understand the role of HIF-1 in tumor progression. Based on the pivotal roles of HIF-1 in tumor biology, many HIF-1 inhibitors interrupting expression, stabilization, DNA binding properties, or transcriptional activity have been identified as potential therapeutic agents for various cancers, yet none of these inhibitors have yet been successfully translated into clinically available cancer treatments. In this review, we briefly introduce the regulation of the HIF-1 pathway and summarize its roles in tumor cell proliferation, angiogenesis, and metastasis. In addition, we explore the implications of HIF-1 in the development of drug resistance and cancer-related pain: the most commonly encountered obstacles during conventional anticancer therapies. Finally, the current status of HIF-1 inhibitors in clinical trials and their perspectives are highlighted, along with their modes of action. This review provides new insights into novel anticancer drug development targeting HIF-1. HIF-1 inhibitors may be promising combinational therapeutic interventions to improve the efficacy of current cancer treatments and reduce drug resistance and cancer-related pain.
Collapse
|
12
|
Cellular Mechanisms Mediating the Antinociceptive Effect of Botulinum Toxin A in a Rodent Model of Trigeminal Irritation by a Foreign Body. THE JOURNAL OF PAIN 2022; 23:2070-2079. [PMID: 36087907 DOI: 10.1016/j.jpain.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/04/2023]
Abstract
Although numerous studies have described botulinum toxin type A (BTX-A) efficacy against trigeminal neuralgia (TN), the underlying cellular mechanisms remain unclear. We have investigated cellular mechanisms that mediate the antinociceptive effect of BTX-A in a rodent model of TN produced by compression of the trigeminal nerve root (TNR). Anesthetized male Sprague-Dawley rats were fixed in a stereotaxic instrument and compression of the TNR was then achieved with a 4% agar solution. This model produced a significant mechanical allodynia and increased the expression of hypoxia-inducible factor (HIF)-1α and cytokines levels including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the trigeminal ganglion (TG) by postoperative day (POD) 7. Single or double treatments with a high BTX-A dose (3 U/kg) led to significantly prolonged antinociceptive effects. Furthermore, a single treatment with BTX-A (3 U/kg) significantly suppressed the upregulation of HIF-1α expression and IL-1β, IL-6, and TNF-α concentrations in the TG. Intraganglionic injection of PX-12, a HIF-1α inhibitor, led to significant anti-allodynic effects and lowered the IL-1β, IL-6, and TNF-α levels in the TG. These findings indicate that the antinociceptive effect of BTX-A is mediated via HIF-1α associated cytokines modulation in the TG and is therefore a potentially relevant treatment strategy for TN. PERSPECTIVE: The antinociceptive properties of BTX-A in a rat model of trigeminal neuralgia are mediated through the regulation of the HIF-1α associated cytokine pathway in the trigeminal ganglion. BTX-A is therefore a potentially effective treatment strategy for trigeminal neuralgia.
Collapse
|
13
|
Cao XJ, Wu R, Qian HY, Chen X, Zhu HY, Xu GY, Sun YZ, Zhang PA. Metformin attenuates diabetic neuropathic pain via AMPK/NF-κB signaling pathway in dorsal root ganglion of diabetic rats. Brain Res 2021; 1772:147663. [PMID: 34555415 DOI: 10.1016/j.brainres.2021.147663] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Neuropathic pain is a common complication of diabetes mellitus with poorly relieved by conventional analgesics. Metformin, a first-line drug for type 2 diabetes, reduces blood glucose by activating adenosine monophosphate protein kinase (AMPK) signalling system. However, the effect of Metformin on diabetic neuropathic pain is still unknown. In the present study, we showed that Metformin was capable of attenuating diabetes induced mechanical allodynia, and the analgesia effect could be blocked by Compound C (an AMPK inhibitor). Importantly, Metformin enhanced the phosphorylation level of AMPK in L4-6 DRGs of diabetic rats but not affect the expression of total AMPK. Intrathecal injection of AICAR (an AMPK agonist) could activate AMPK and alleviate the mechanical allodynia of diabetic rats. Additionally, phosphorylated AMPK and NF-κB was co-localized in small and medium neurons of L4-6 DRGs. Interestingly, the regulation of NF-κB in diabetic rats was obviously reduced when AMPK was activated by AICAR. Notably, Metformin could decrease NF-κB expression in L4-6 DRGs of diabetic rats, but the decrease was blocked by Compound C. In conclusion, Metformin alleviates diabetic mechanical allodynia via activation of AMPK signaling pathway in L4-6 DRGs of diabetic rats, which might be mediated by the downregulation of NF-κB, and this providing certain basis for Metformin to become a potential drug in the clinical treatment of diabetic neuropathic pain.
Collapse
Affiliation(s)
- Xiao-Jun Cao
- Department of Endocrine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215123, PR China
| | - Rui Wu
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215123, PR China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, PR China
| | - He-Ya Qian
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215123, PR China
| | - Xiang Chen
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215123, PR China
| | - Hong-Yan Zhu
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215123, PR China
| | - Guang-Yin Xu
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215123, PR China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, PR China
| | - Ye-Zi Sun
- Department of Endocrine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215123, PR China.
| | - Ping-An Zhang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou 215123, PR China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
14
|
Geisler S. Vincristine- and bortezomib-induced neuropathies - from bedside to bench and back. Exp Neurol 2021; 336:113519. [PMID: 33129841 PMCID: PMC11160556 DOI: 10.1016/j.expneurol.2020.113519] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Vincristine and bortezomib are effective chemotherapeutics widely used to treat hematological cancers. Vincristine blocks tubulin polymerization, whereas bortezomib is a proteasome inhibitor. Despite different mechanisms of action, the main non-hematological side effect of both is peripheral neuropathy that can last long after treatment has ended and cause permanent disability. Many different cellular and animal models of various aspects of vincristine and bortezomib-induced neuropathies have been generated to investigate underlying molecular mechanisms and serve as platforms to develop new therapeutics. These models revealed that bortezomib induces several transcriptional programs in dorsal root ganglia that result in the activation of different neuroinflammatory pathways and secondary central sensitization. In contrast, vincristine has direct toxic effects on the axon, which are accompanied by changes similar to those observed after nerve cut. Axon degeneration following both vincristine and bortezomib is mediated by a phylogenetically ancient, genetically encoded axon destruction program that leads to the activation of the Toll-like receptor adaptor SARM1 (sterile alpha and TIR motif containing protein 1) and local decrease of nicotinamide dinucleotide (NAD+). Here, I describe current in vitro and in vivo models of vincristine- and bortezomib induced neuropathies, present discoveries resulting from these models in the context of clinical findings and discuss how increased understanding of molecular mechanisms underlying different aspects of neuropathies can be translated to effective treatments to prevent, attenuate or reverse vincristine- and bortezomib-induced neuropathies. Such treatments could improve the quality of life of patients both during and after cancer therapy and, accordingly, have enormous societal impact.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, MO, USA.
| |
Collapse
|
15
|
Yamamoto S, Egashira N. Pathological Mechanisms of Bortezomib-Induced Peripheral Neuropathy. Int J Mol Sci 2021; 22:ijms22020888. [PMID: 33477371 PMCID: PMC7830235 DOI: 10.3390/ijms22020888] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Bortezomib, a first-generation proteasome inhibitor widely used in chemotherapy for hematologic malignancy, has effective anti-cancer activity but often causes severe peripheral neuropathy. Although bortezomib-induced peripheral neuropathy (BIPN) is a dose-limiting toxicity, there are no recommended therapeutics for its prevention or treatment. One of the most critical problems is a lack of knowledge about pathological mechanisms of BIPN. Here, we summarize the known mechanisms of BIPN based on preclinical evidence, including morphological abnormalities, involvement of non-neuronal cells, oxidative stress, and alterations of transcriptional programs in both the peripheral and central nervous systems. Moreover, we describe the necessity of advancing studies that identify the potential efficacy of approved drugs on the basis of pathological mechanisms, as this is a convincing strategy for rapid translation to patients with cancer and BIPN.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo 162-8655, Japan;
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
- Correspondence: ; Tel.: +81-92-642-5920
| |
Collapse
|
16
|
Zhang R, He Y, Yao L, Chen J, Zhu S, Rao X, Tang P, You J, Hua G, Zhang L, Ju F, Wu L. Metformin chlorination byproducts in drinking water exhibit marked toxicities of a potential health concern. ENVIRONMENT INTERNATIONAL 2021; 146:106244. [PMID: 33157379 DOI: 10.1016/j.envint.2020.106244] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Metformin (MET), a worldwide used drug for type 2 diabetes, has been found with the largest amount by weight among all drugs in aquatic environment, including the drinking water systems where this emerging micropollutant is inevitably transformed during chlorination process. Whether MET chlorination byproducts Y (C4H6ClN5) and C (C4H6ClN3) exist in drinking water remains unknown. Although MET has health-promoting properties, whether or how its chlorination byproducts affect health is still uncharacterized. Here we reveal that MET and byproduct C are present in worldwide drinking water with the highest doses detected for MET and C as 1203.5 ng/L and 9.7 ng/L respectively. Under simulated chlorination conditions, we also demonstrate that both byproducts can be increasingly produced with increment of MET concentration, suggesting a hidden threat on the safety and sustainability of global water supply. Through systematic evaluations, we demonstrate that MET chlorination byproducts Y and C exhibit toxicities instead of genotoxicity to live worms and human HepG2 cells at millimolar doses. Moreover, both byproducts are harmful to mice and particularly Y at 250 ng/L destroys the mouse small intestine integrity. Unprecedentedly, we unveil boiling and activated carbon adsorption as effective alternative solutions that may be in urgent demand globally for removing these byproducts from drinking water.
Collapse
Affiliation(s)
- Runshuai Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yuanzhen He
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
| | - Luxia Yao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jie Chen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Shihao Zhu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xinxin Rao
- Institute of Radiation Medicine and Fudan University Shanghai Cancer Center, Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Peiyuan Tang
- Institute of Radiation Medicine and Fudan University Shanghai Cancer Center, Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Jia You
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Guoqiang Hua
- Institute of Radiation Medicine and Fudan University Shanghai Cancer Center, Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Lu Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
| | - Feng Ju
- School of Engineering, Westlake University, Hangzhou, Zhejiang, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China.
| | - Lianfeng Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
17
|
An Investigation of the Molecular Mechanisms Underlying the Analgesic Effect of Jakyak-Gamcho Decoction: A Network Pharmacology Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6628641. [PMID: 33343676 PMCID: PMC7732394 DOI: 10.1155/2020/6628641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Herbal drugs have drawn substantial interest as effective analgesic agents; however, their therapeutic mechanisms remain to be fully understood. To address this question, we performed a network pharmacology study to explore the system-level mechanisms that underlie the analgesic activity of Jakyak-Gamcho decoction (JGd; Shaoyao-Gancao-Tang in Chinese and Shakuyaku-Kanzo-To in Japanese), an herbal prescription consisting of Paeonia lactiflora Pallas and Glycyrrhiza uralensis Fischer. Based on comprehensive information regarding the pharmacological and chemical properties of the herbal constituents of JGd, we identified 57 active chemical compounds and their 70 pain-associated targets. The JGd targets were determined to be involved in the regulation of diverse biological activities as follows: calcium- and cytokine-mediated signalings, calcium ion concentration and homeostasis, cellular behaviors of muscle and neuronal cells, inflammatory response, and response to chemical, cytokine, drug, and oxidative stress. The targets were further enriched in various pain-associated signalings, including the PI3K-Akt, estrogen, ErbB, neurotrophin, neuroactive ligand-receptor interaction, HIF-1, serotonergic synapse, JAK-STAT, and cAMP pathways. Thus, these data provide a systematic basis to understand the molecular mechanisms underlying the analgesic activity of herbal drugs.
Collapse
|
18
|
Demaré S, Kothari A, Calcutt NA, Fernyhough P. Metformin as a potential therapeutic for neurological disease: mobilizing AMPK to repair the nervous system. Expert Rev Neurother 2020; 21:45-63. [PMID: 33161784 PMCID: PMC9482886 DOI: 10.1080/14737175.2021.1847645] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Metformin is currently first line therapy for type 2 diabetes (T2D). The mechanism of action of metformin involves activation of AMP-activated protein kinase (AMPK) to enhance mitochondrial function (for example, biogenesis, refurbishment and dynamics) and autophagy. Many neurodegenerative diseases of the central and peripheral nervous systems arise from metabolic failure and toxic protein aggregation where activated AMPK could prove protective. Areas covered: The authors review literature on metformin treatment in Parkinson’s disease, Huntington’s disease and other neurological diseases of the CNS along with neuroprotective effects of AMPK activation and suppression of the mammalian target of rapamycin (mTOR) pathway on peripheral neuropathy and neuropathic pain. The authors compare the efficacy of metformin with the actions of resveratrol. Expert opinion: Metformin, through activation of AMPK and autophagy, can enhance neuronal bioenergetics, promote nerve repair and reduce toxic protein aggregates in neurological diseases. A long history of safe use in humans should encourage development of metformin and other AMPK activators in preclinical and clinical research. Future studies in animal models of neurological disease should strive to further dissect in a mechanistic manner the pathways downstream from metformin-dependent AMPK activation, and to further investigate mTOR dependent and independent signaling pathways driving neuroprotection.
Collapse
Affiliation(s)
- Sarah Demaré
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| | - Asha Kothari
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego , La Jolla, CA, USA
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre , Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, University of Manitoba , Winnipeg, MB, Canada
| |
Collapse
|
19
|
Baeza-Flores GDC, Guzmán-Priego CG, Parra-Flores LI, Murbartián J, Torres-López JE, Granados-Soto V. Metformin: A Prospective Alternative for the Treatment of Chronic Pain. Front Pharmacol 2020; 11:558474. [PMID: 33178015 PMCID: PMC7538784 DOI: 10.3389/fphar.2020.558474] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Metformin (biguanide) is a drug widely used for the treatment of type 2 diabetes. This drug has been used for 60 years as a highly effective antihyperglycemic agent. The search for the mechanism of action of metformin has produced an enormous amount of research to explain its effects on gluconeogenesis, protein metabolism, fatty acid oxidation, oxidative stress, glucose uptake, autophagy and pain, among others. It was only up the end of the 1990s and beginning of this century that some of its mechanisms were revealed. Metformin induces its beneficial effects in diabetes through the activation of a master switch kinase named AMP-activated protein kinase (AMPK). Two upstream kinases account for the physiological activation of AMPK: liver kinase B1 and calcium/calmodulin-dependent protein kinase kinase 2. Once activated, AMPK inhibits the mechanistic target of rapamycin complex 1 (mTORC1), which in turn avoids the phosphorylation of p70 ribosomal protein S6 kinase 1 and phosphatidylinositol 3-kinase/protein kinase B signaling pathways and reduces cap-dependent translation initiation. Since metformin is a disease-modifying drug in type 2 diabetes, which reduces the mTORC1 signaling to induce its effects on neuronal plasticity, it was proposed that these mechanisms could also explain the antinociceptive effect of this drug in several models of chronic pain. These studies have highlighted the efficacy of this drug in chronic pain, such as that from neuropathy, insulin resistance, diabetic neuropathy, and fibromyalgia-type pain. Mounting evidence indicates that chronic pain may induce anxiety, depression and cognitive impairment in rodents and humans. Interestingly, metformin is able to reverse some of these consequences of pathological pain in rodents. The purpose of this review was to analyze the current evidence about the effects of metformin in chronic pain and three of its comorbidities (anxiety, depression and cognitive impairment).
Collapse
Affiliation(s)
- Guadalupe Del Carmen Baeza-Flores
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Crystell Guadalupe Guzmán-Priego
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Leonor Ivonne Parra-Flores
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Jorge Elías Torres-López
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico.,Departamento de Anestesiología, Hospital Regional de Alta Especialidad "Dr. Juan Graham Casasús", Villahermosa, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| |
Collapse
|
20
|
The Actions and Mechanisms of P2X7R and p38 MAPK Activation in Mediating Bortezomib-Induced Neuropathic Pain. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8143754. [PMID: 32733956 PMCID: PMC7376423 DOI: 10.1155/2020/8143754] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/12/2020] [Accepted: 06/13/2020] [Indexed: 01/12/2023]
Abstract
The proteasome inhibitor bortezomib (BTZ) is a potent first-line anticancer drug for multiple myeloma; nonetheless, it induced peripheral neuropathy. It has been suggested that many cytokines may play a role in mediating neuropathic pain, but the underlying molecular mechanism is not fully understood. Recent studies have shown that neuropathic pain is closely related to the purinergic ligand-gated ion channel 7 receptor (P2X7R), one of the P2X receptors, which is richly expressed in glial cells. P2X7-p38 pathway is correlated with microglia- and satellite glial cell- (SGC-) mediated neuropathic pain. However, the association of P2X7R and p38MAPK in mediating BTZ-induced neuropathic pain remains unclear. In this study, the relationship between P2X7R activation and p38 phosphorylation in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) in the development and maintenance of BTZ-induced neuropathic pain was elucidated. The results showed that BTZ increased mechanical thresholds in rats, accompanied with upregulation of P2X7R expression and p38MAPK phosphorylation, indicating that P2X7R and p38MAPK are key molecules in the development and maintenance of BTZ-induced neuropathic pain. Inhibiting p38MAPK phosphorylation with SB203580 resulted in downregulation of P2X7R expression levels. Inhibition of P2X7R with Brilliant Blue G (BBG) reversed neuropathic pain might decrease through the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 via inhibiting p38MAPK phosphorylation. The P2X7R/p38MAPK signaling pathway in SGCs of DRG and microglia of SDH might be a potential pharmacological target behind this mechanism as an opportunity to relieve BTZ-induced neuropathic pain.
Collapse
|
21
|
Kober KM, Schumacher M, Conley YP, Topp K, Mazor M, Hammer MJ, Paul SM, Levine JD, Miaskowski C. Signaling pathways and gene co-expression modules associated with cytoskeleton and axon morphology in breast cancer survivors with chronic paclitaxel-induced peripheral neuropathy. Mol Pain 2020; 15:1744806919878088. [PMID: 31486345 PMCID: PMC6755139 DOI: 10.1177/1744806919878088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The major dose-limiting toxicity of paclitaxel, one of the most commonly used
drugs to treat breast cancer, is peripheral neuropathy (paclitaxel-induced
peripheral neuropathy). Paclitaxel-induced peripheral neuropathy, which
persists into survivorship, has a negative impact on patient’s mood,
functional status, and quality of life. Currently, no interventions are
available to treat paclitaxel-induced peripheral neuropathy. A critical
barrier to the development of efficacious interventions is the lack of
understanding of the mechanisms that underlie paclitaxel-induced peripheral
neuropathy. While data from preclinical studies suggest that disrupting
cytoskeleton- and axon morphology-related processes are a potential
mechanism for paclitaxel-induced peripheral neuropathy, clinical evidence is
limited. The purpose of this study in breast cancer survivors was to
evaluate whether differential gene expression and co-expression patterns in
these pathways are associated with paclitaxel-induced peripheral
neuropathy. Methods Signaling pathways and gene co-expression modules associated with
cytoskeleton and axon morphology were identified between survivors who
received paclitaxel and did (n = 25) or did not (n = 25) develop
paclitaxel-induced peripheral neuropathy. Results Pathway impact analysis identified four significantly perturbed cytoskeleton-
and axon morphology-related signaling pathways. Weighted gene co-expression
network analysis identified three co-expression modules. One module was
associated with paclitaxel-induced peripheral neuropathy group membership.
Functional analysis found that this module was associated with four
signaling pathways and two ontology annotations related to cytoskeleton and
axon morphology. Conclusions This study, which is the first to apply systems biology approaches using
circulating whole blood RNA-seq data in a sample of breast cancer survivors
with and without chronic paclitaxel-induced peripheral neuropathy, provides
molecular evidence that cytoskeleton- and axon morphology-related mechanisms
identified in preclinical models of various types of neuropathic pain
including chemotherapy-induced peripheral neuropathy are found in breast
cancer survivors and suggests pathways and a module of genes for validation
and as potential therapeutic targets.
Collapse
Affiliation(s)
- Kord M Kober
- School of Nursing, University of California, San Francisco, CA, USA
| | - Mark Schumacher
- School of Medicine, University of California, San Francisco, CA, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimberly Topp
- School of Medicine, University of California, San Francisco, CA, USA
| | - Melissa Mazor
- School of Nursing, University of California, San Francisco, CA, USA
| | - Marilynn J Hammer
- Icahn School of Medicine, Mount Sinai Medical Center, New York, NY, USA
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, CA, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
22
|
Tang BL. Could metformin be therapeutically useful in Huntington's disease? Rev Neurosci 2020; 31:297-317. [PMID: 31751298 DOI: 10.1515/revneuro-2019-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggest that dimethylbiguanide (metformin), a first-line drug for type 2 diabetes mellitus, could be neuroprotective in a range of brain pathologies, which include neurodegenerative diseases and brain injury. However, there are also contraindications that associate metformin treatment with cognitive impairment as well as adverse outcomes in Alzheimer's disease and Parkinson's disease animal models. Recently, a beneficial effect of metformin in animal models of Huntington's disease (HD) has been strengthened by multiple reports. In this brief review, the findings associated with the effects of metformin in attenuating neurodegenerative diseases are discussed, focusing on HD-associated pathology and the potential underlying mechanisms highlighted by these studies. The mechanism of action of metformin is complex, and its therapeutic efficacy is therefore expected to be dependent on the disease context. The key metabolic pathways that are effectively affected by metformin, such as AMP-activated protein kinase activation, may be altered in the later decades of the human lifespan. In this regard, metformin may nonetheless be therapeutically useful for neurological diseases with early pathological onsets, such as HD.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 119077, Singapore
| |
Collapse
|
23
|
Gordon-Williams R, Farquhar-Smith P. Recent advances in understanding chemotherapy-induced peripheral neuropathy. F1000Res 2020; 9. [PMID: 32201575 PMCID: PMC7076330 DOI: 10.12688/f1000research.21625.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common cause of pain and poor quality of life for those undergoing treatment for cancer and those surviving cancer. Many advances have been made in the pre-clinical science; despite this, these findings have not been translated into novel preventative measures and treatments for CIPN. This review aims to give an update on the pre-clinical science, preventative measures, assessment and treatment of CIPN.
Collapse
Affiliation(s)
- Richard Gordon-Williams
- Department of Pain Medicine, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Paul Farquhar-Smith
- Department of Pain Medicine, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
24
|
Kober KM, Lee MC, Olshen A, Conley YP, Sirota M, Keiser M, Hammer MJ, Abrams G, Schumacher M, Levine JD, Miaskowski C. Differential methylation and expression of genes in the hypoxia-inducible factor 1 signaling pathway are associated with paclitaxel-induced peripheral neuropathy in breast cancer survivors and with preclinical models of chemotherapy-induced neuropathic pain. Mol Pain 2020; 16:1744806920936502. [PMID: 32586194 PMCID: PMC7322824 DOI: 10.1177/1744806920936502] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Paclitaxel is an important chemotherapeutic agent for the treatment of breast cancer. Paclitaxel-induced peripheral neuropathy (PIPN) is a major dose-limiting toxicity that can persist into survivorship. While not all survivors develop PIPN, for those who do, it has a substantial negative impact on their functional status and quality of life. No interventions are available to treat PIPN. In our previous studies, we identified that the HIF-1 signaling pathway (H1SP) was perturbed between breast cancer survivors with and without PIPN. Preclinical studies suggest that the H1SP is involved in the development of bortezomib-induced and diabetic peripheral neuropathy, and sciatic nerve injury. The purpose of this study was to identify H1SP genes that have both differential methylation and differential gene expression between breast cancer survivors with and without PIPN. METHODS A multi-staged integrated analysis was performed. In peripheral blood, methylation was assayed using microarray and gene expression was assayed using RNA-seq. Candidate genes in the H1SP having both differentially methylation and differential expression were identified between survivors who received paclitaxel and did (n = 25) and did not (n = 25) develop PIPN. Then, candidate genes were evaluated for differential methylation and differential expression in public data sets of preclinical models of PIPN and sciatic nerve injury. RESULTS Eight candidate genes were identified as both differential methylation and differential expression in survivors. Of the eight homologs identified, one was found to be differential expression in both PIPN and "normal" mice dorsal root ganglia; three were differential methylation in sciatic nerve injury versus sham rats in both pre-frontal cortex and T-cells; and two were differential methylation in sciatic nerve injury versus sham rats in the pre-frontal cortex. CONCLUSIONS This study is the first to evaluate for methylation in cancer survivors with chronic PIPN. The findings provide evidence that the expression of H1SP genes associated with chronic PIPN in cancer survivors may be regulated by epigenetic mechanisms and suggests genes for validation as potential therapeutic targets.
Collapse
Affiliation(s)
- Kord M Kober
- School of Nursing, University of
California, San Francisco, CA, USA
- Helen Diller Family Comprehensive
Cancer Center, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences
Institute, University of California, San Francisco, CA, USA
| | - Man-Cheung Lee
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Adam Olshen
- Helen Diller Family Comprehensive
Cancer Center, University of California, San Francisco, CA, USA
- Department of Epidemiology and
Biostatistics, University of California, San Francisco, CA, USA
| | - Yvette P Conley
- School of Nursing,
University
of Pittsburgh, Pittsburgh, PA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences
Institute, University of California, San Francisco, CA, USA
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Michael Keiser
- Bakar Computational Health Sciences
Institute, University of California, San Francisco, CA, USA
- School of Medicine, University of
California, San Francisco, CA, USA
- Institute for Neurodegenerative
Diseases, University of California, San Francisco, CA, USA
| | - Marilyn J Hammer
- Phyllis F. Cantor Center,
Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gary Abrams
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Mark Schumacher
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Jon D Levine
- School of Medicine, University of
California, San Francisco, CA, USA
| | - Christine Miaskowski
- School of Nursing, University of
California, San Francisco, CA, USA
- Helen Diller Family Comprehensive
Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
25
|
Pollard KJ, Sharma AD, Moore MJ. Neural microphysiological systems for in vitro modeling of peripheral nervous system disorders. ACTA ACUST UNITED AC 2019. [DOI: 10.2217/bem-2019-0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PNS disease pathology is diverse and underappreciated. Peripheral neuropathy may result in sensory, motor or autonomic nerve dysfunction and can be induced by metabolic dysfunction, inflammatory dysfunction, cytotoxic pharmaceuticals, rare hereditary disorders or may be idiopathic. Current preclinical PNS disease research relies heavily on the use of rodent models. In vivo methods are effective but too time-consuming and expensive for high-throughput experimentation. Conventional in vitro methods can be performed with high throughput but lack the biological complexity necessary to directly model in vivo nerve structure and function. In this review, we survey in vitro PNS model systems and propose that 3D-bioengineered microphysiological nerve tissue can improve in vitro–in vivo extrapolation and expand the capabilities of in vitro PNS disease modeling.
Collapse
Affiliation(s)
- Kevin J Pollard
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | | | - Michael J Moore
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
- AxoSim, Inc., New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|