1
|
Kustova T, Vodneva A, Tcepelevich M, Tkachenko I, Oreshina G, Zhukova MA, Golovanova I, Grigorenko EL. Psychophysiological correlates of learner-instructor interaction: A scoping review. Int J Psychophysiol 2025; 211:112556. [PMID: 40112952 DOI: 10.1016/j.ijpsycho.2025.112556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/12/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
This article reviews recent studies of real-time learner-instructor interactions and psychophysiological indicators associated with this process. The initial systematic search of the literature yielded 2,663 articles; 26 peer-reviewed articles in English were included in the final sample. The learner-instructor interpersonal relationships were studied using neuroimaging, eye movements, and peripheral physiological devices. Retrieved articles covered several phenomena accompanying learning interaction, including attention and meditation processes, mental effort, engagement, inter-brain synchronization, relationship quality, and interpersonal behavior. Some articles emphasized the link between the aforementioned processes and learning outcomes. The following psychophysiological correlates of processes underlying learning interaction were indicated. Inter-brain synchronization in the prefrontal cortex and temporal-parietal area is associated with the social component of learning interactions and positively correlates with learning outcomes. Students' engagement is accompanied by a decrease in electroencephalography occipital alpha rhythm, indicating heightened attention. Experienced teachers tend to focus their gaze on students while balancing gaze between learners and content facilitates students' attention. Students' gaze allocation toward learning-related areas indicates attention and engagement, which varies with instructional strategies. Heart rate and electrodermal activity positively correlate with learners' engagement, increasing during active educational strategies and decreasing throughout the lesson. Finally, heart rate, reflecting physiological arousal and interpersonal behavior, relates to the emotions experienced by the teacher. However, most of the registered associations require replication and further research, as at this point, their direction and magnitude are inconclusive due to, most likely, the differences in the methods and analytical strategies. Limitations and implications for future research are discussed.
Collapse
Affiliation(s)
- Tatiana Kustova
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia.
| | - Alena Vodneva
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia.
| | - Margarita Tcepelevich
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia
| | - Irina Tkachenko
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia
| | - Galina Oreshina
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia; Laboratory for Social and Cognitive Informatics, Sociology Department, HSE University, Saint Petersburg 192171, Russia
| | - Marina A Zhukova
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Irina Golovanova
- Scientific Center for Cognitive Sciences, Sirius University of Science and Technology, Sirius, Krasnodar region 354340, Russia; Department of Psychology, St Petersburg University, Saint Petersburg 199034, Russia
| | - Elena L Grigorenko
- Department of Psychology, University of Houston, HEALTH-1, 4349 Martin Luther King Boulevard, Room 373, Houston, TX 77204-6022, USA.
| |
Collapse
|
2
|
Schilbach L, Redcay E. Synchrony Across Brains. Annu Rev Psychol 2025; 76:883-911. [PMID: 39441884 DOI: 10.1146/annurev-psych-080123-101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Second-person neuroscience focuses on studying the behavioral and neuronal mechanisms of real-time social interactions within single and across interacting brains. In this review article, we describe the developments that have been undertaken to study socially interactive phenomena and the behavioral and neurobiological processes that extend across interaction partners. More specifically, we focus on the role that synchrony across brains plays in enabling and facilitating social interaction and communication and in shaping social coordination and learning, and we consider how reduced synchrony across brains may constitute a core feature of psychopathology.
Collapse
Affiliation(s)
- Leonhard Schilbach
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf / Kliniken der Heinrich-Heine-Universität, Düsseldorf, Germany;
- Department of Psychiatry and Psychotherapy, Clinic of the Ludwig-Maximilians-University, Munich, Germany
| | - Elizabeth Redcay
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Pan Y, Sequestro M, Golkar A, Olsson A. Handholding reduces the recovery of threat memories and magnifies prefrontal hemodynamic responses. Behav Res Ther 2024; 183:104641. [PMID: 39366088 DOI: 10.1016/j.brat.2024.104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Human touch is a powerful means of social and affective regulation, promoting safety behaviors. Yet, despite its importance across human contexts, it remains unknown how touch can promote the learning of new safety memories and what neural processes underlie such effects. The current study used measures of peripheral physiology and brain activity to examine the effects of interpersonal touch during safety learning (extinction) on the recovery of previously learned threat. We observed that handholding during extinction significantly reduced threat recovery, which was reflected in enhanced prefrontal hemodynamic responses. This effect was absent when learners were instructed to hold a rubber ball, independent of the presence of their partners. Our findings indicate that social touch contributes to safety learning, potentially influencing threat memories via prefrontal circuitry.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
| | - Matteo Sequestro
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Armita Golkar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Andreas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Zheng Z, Wang J. Interbrain neural correlates of self and other integration in joint statistical learning. NPJ SCIENCE OF LEARNING 2024; 9:68. [PMID: 39567522 PMCID: PMC11579319 DOI: 10.1038/s41539-024-00280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
While statistical learning is often studied individually, its collective representation through self-other integration remains unclear. This study examines dynamic self-other integration and its multi-brain mechanism using simultaneous recordings from dyads. Participants (N = 112) each repeatedly responded to half of a fixed stimulus sequence with either an active partner (joint context) or a passive observer (baseline context). Significant individual statistical learning was evident in the joint context, characterized by decreased reaction time (RT) and intra-brain neural responses, followed by a quadratic trend (i.e., first increasing and then decreasing) upon insertion of an interference sequence. More importantly, Brain-to-Brain Coupling (BtBC) in the theta band also showed learning and modulation-related trends, with its slope negatively and positively correlating with the slopes of RT and intra-brain functional connectivity, respectively. These results highlight the dynamic nature of self-other integration in joint statistical learning, with statistical regularities implicitly and spontaneously modulating this process. Notably, the BtBC serves as a key neural correlate underlying the dynamics of self-other integration.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China
- Zhejiang Philosophy and Social Science Laboratory for the Mental Health and Crisis Intervention of Children and Adolescents, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Jun Wang
- School of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China.
- Zhejiang Philosophy and Social Science Laboratory for the Mental Health and Crisis Intervention of Children and Adolescents, Zhejiang Normal University, Jinhua, People's Republic of China.
| |
Collapse
|
5
|
Dewitte M. Sexual Synchrony During Partnered Sex. JOURNAL OF SEX RESEARCH 2024; 61:1316-1327. [PMID: 39172100 DOI: 10.1080/00224499.2024.2390671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
There is growing interest in understanding how sexual arousal unfolds between partners, and how this may change over the course of a relationship and in the face of sexual distress. To capture the variable, dynamic, and dyadic nature of sexual responding, this paper introduces the concept of sexual synchrony, defined as the temporal, reciprocal, and coordinated interchange between partners' subjective and genital sexual arousal. Sexual synchrony is a key mechanism for understanding how partners experience and adapt their sexual arousal responses as they evolve over time. Its relevance lies in examining the mechanisms that may disrupt and facilitate synchrony and exploring how it may contribute to sexual well-being by enabling partners to mutually regulate their sexual arousal within and across sexual interactions. The paper also discusses how sexual synchrony may evolve throughout relationship development and its potential role in sexual problems, offering valuable insights into improving sexual relationships. Suggestions are provided for future research, together with a discussion of the methodological and statistical issues involved when examining sexual dynamics. Understanding how partners jointly regulate their sexual responses allows the development of dyadic models of sexual arousal which will inform treatments for improving couples' (sexual) well-being. The study of sexual synchrony also exemplifies the importance of translational research that is relevant across disciplinary borders.
Collapse
Affiliation(s)
- Marieke Dewitte
- Department of Clinical Psychological Science, Maastricht University
| |
Collapse
|
6
|
Li Y, Su C, Pan Y. Spontaneous movement synchrony as an exogenous source for interbrain synchronization in cooperative learning. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230155. [PMID: 39155721 PMCID: PMC11391278 DOI: 10.1098/rstb.2023.0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 08/20/2024] Open
Abstract
Learning through cooperation with conspecifics-'cooperative learning'-is critical to cultural evolution and survival. Recent progress has established that interbrain synchronization (IBS) between individuals predicts success in cooperative learning. However, the likely sources of IBS during learning interactions remain poorly understood. To address this dearth of knowledge, we tested whether movement synchrony serves as an exogenous factor that drives IBS, taking an embodiment perspective. We formed dyads of individuals with varying levels of prior knowledge (high-high (HH), high-low (HL), low-low (LL) dyads) and instructed them to collaboratively analyse an ancient Chinese poem. During the task, we simultaneously recorded their brain activity using functional near-infrared spectroscopy and filmed the entire experiment to parse interpersonal movement synchrony using the computer-vision motion energy analysis. Interestingly, the homogeneous groups (HH and/or LL) exhibited stronger movement synchrony and IBS compared with the heterogeneous group. Importantly, mediation analysis revealed that spontaneous and synchronized body movements between individuals contribute to IBS, hence facilitating learning. This study therefore fills a critical gap in our understanding of how interpersonal transmission of information between individual brains, associated with behavioural entrainment, shapes social learning. This article is part of the theme issue 'Minds in movement: embodied cognition in the age of artificial intelligence'.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Psychology and Behavioral Sciences, Zhejiang University , Hangzhou 310058, People's Republic of China
| | - Chang Su
- Department of Psychology and Behavioral Sciences, Zhejiang University , Hangzhou 310058, People's Republic of China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University , Hangzhou 310058, People's Republic of China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University , Hangzhou 310058, People's Republic of China
| |
Collapse
|
7
|
Zhou X, Wong PCM. Hyperscanning to explore social interaction among autistic minds. Neurosci Biobehav Rev 2024; 163:105773. [PMID: 38889594 DOI: 10.1016/j.neubiorev.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Hyperscanning - the monitoring of brain activity of two or more people simultaneously - has emerged to be a popular tool for assessing neural features of social interaction. This perspective article focuses on hyperscanning studies that use functional near-infrared spectroscopy (fNIRS), a technique that is very conducive to studies requiring naturalistic paradigms. In particular, we are interested in neural features that are related to social interaction deficits among individuals with autism spectrum disorders (ASD). This population has received relatively little attention in research using neuroimaging hyperscanning techniques, compared to neurotypical individuals. The study is outlined as follows. First, we summarize the findings about brain-behavior connections related to autism from previously published fNIRS hyperscanning studies. Then, we propose a preliminary theoretical framework of inter-brain coherence (IBC) with testable hypotheses concerning this population. Finally, we provide two examples of areas of inquiry in which studies could be particularly relevant for social-emotional/behavioral development for autistic children, focusing on intergenerational relationships in family units and learning in classroom settings in mainstream schools.
Collapse
Affiliation(s)
- Xin Zhou
- Brain and Mind Institute, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Patrick C M Wong
- Brain and Mind Institute, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Linguistics and Modern Languages, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
8
|
Chen D, Xia T, Yao Z, Zhang L, Hu X. Modulating social learning-induced evaluation updating during human sleep. NPJ SCIENCE OF LEARNING 2024; 9:43. [PMID: 38971834 PMCID: PMC11227583 DOI: 10.1038/s41539-024-00255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
People often change their evaluations upon learning about their peers' evaluations, i.e., social learning. Given sleep's vital role in consolidating daytime experiences, sleep may facilitate social learning, thereby further changing people's evaluations. Combining a social learning task and the sleep-based targeted memory reactivation technique, we asked whether social learning-induced evaluation updating can be modulated during sleep. After participants had indicated their initial evaluation of snacks, they learned about their peers' evaluations while hearing the snacks' spoken names. During the post-learning non-rapid-eye-movement sleep, we re-played half of the snack names (i.e., cued snack) to reactivate the associated peers' evaluations. Upon waking up, we found that the social learning-induced evaluation updating further enlarged for both cued and uncued snacks. Examining sleep electroencephalogram (EEG) activity revealed that cue-elicited delta-theta EEG power and the overnight N2 sleep spindle density predicted post-sleep evaluation updating for cued but not for uncued snacks. These findings underscore the role of sleep-mediated memory reactivation and the associated neural activity in supporting social learning-induced evaluation updating.
Collapse
Affiliation(s)
- Danni Chen
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Tao Xia
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Lingqi Zhang
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China.
| |
Collapse
|
9
|
Silfwerbrand L, Koike Y, Nyström P, Gingnell M. Directed causal effect with PCMCI in hyperscanning EEG time series. Front Neurosci 2024; 18:1305918. [PMID: 38686325 PMCID: PMC11057377 DOI: 10.3389/fnins.2024.1305918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Social activities are likely to cause effects or reactivity in the brains of the people involved in collaborative social situations. This study assesses a new method, Tigramite, for time domain analysis of directed causality between the prefrontal cortex (PFC) of persons in such situations. An experimental situation using hyperscanning EEG was applied while individuals led and followed each other in finger-tapping rhythms. This structured task has a long duration and a high likelihood of inter-brain causal reactions in the prefrontal cortices. Tigramite is a graph-based causal discovery method to identify directed causal relationships in observational time series. Tigramite was used to analyze directed causal connections within and between the PFC. Significantly directed causality within and between brains could be detected during the social interactions. This is the first empirical evidence the Tigramite can reveal inter- and intra-brain-directed causal effects in hyperscanning EEG time series. The findings are promising for further studies of causality in neural networks during social activities using Tigramite on EEG in the time domain.
Collapse
Affiliation(s)
- Lykke Silfwerbrand
- Department of Medical Sciences, Psychiatry, Akademiska Sjukhuset, Uppsala, Sweden
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasuharu Koike
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Pär Nyström
- Department of Psychology, Developmental Psychology, Uppsala University, Uppsala, Sweden
| | - Malin Gingnell
- Department of Medical Sciences, Psychiatry, Akademiska Sjukhuset, Uppsala, Sweden
- Department of Psychology, Division of Emotion Psychology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Takeuchi N. A dual-brain therapeutic approach using noninvasive brain stimulation based on two-person neuroscience: A perspective review. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5118-5137. [PMID: 38872529 DOI: 10.3934/mbe.2024226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Our actions and decisions in everyday life are heavily influenced by social interactions, which are dynamic feedback loops involving actions, reactions, and internal cognitive processes between individual agents. Social interactions induce interpersonal synchrony, which occurs at different biobehavioral levels and comprises behavioral, physiological, and neurological activities. Hyperscanning-a neuroimaging technique that simultaneously measures the activity of multiple brain regions-has provided a powerful second-person neuroscience tool for investigating the phase alignment of neural processes during interactive social behavior. Neural synchronization, revealed by hyperscanning, is a phenomenon called inter-brain synchrony- a process that purportedly facilitates social interactions by prompting appropriate anticipation of and responses to each other's social behaviors during ongoing shared interactions. In this review, I explored the therapeutic dual-brain approach using noninvasive brain stimulation to target inter-brain synchrony based on second-person neuroscience to modulate social interaction. Artificially inducing synchrony between the brains is a potential adjunct technique to physiotherapy, psychotherapy, and pain treatment- which are strongly influenced by the social interaction between the therapist and patient. Dual-brain approaches to personalize stimulation parameters must consider temporal, spatial, and oscillatory factors. Multiple data fusion analysis, the assessment of inter-brain plasticity, a closed-loop system, and a brain-to-brain interface can support personalized stimulation.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
11
|
Cheng X, Wang S, Guo B, Wang Q, Hu Y, Pan Y. How self-disclosure of negative experiences shapes prosociality? Soc Cogn Affect Neurosci 2024; 19:nsae003. [PMID: 38324732 PMCID: PMC10868127 DOI: 10.1093/scan/nsae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/15/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
People frequently share their negative experiences and feelings with others. Little is known, however, about the social outcomes of sharing negative experiences and the underlying neural mechanisms. We addressed this dearth of knowledge by leveraging functional near-infrared spectroscopy (fNIRS) hyperscanning: while dyad participants took turns to share their own (self-disclosure group) or a stranger's (non-disclosure group) negative and neutral experiences, their respective brain activity was recorded simultaneously by fNIRS. We observed that sharing negative (relative to neutral) experiences enhanced greater mutual prosociality, emotional empathy and interpersonal neural synchronization (INS) at the left superior frontal cortex in the self-disclosure group compared to the non-disclosure group. Importantly, mediation analyses further revealed that in the self-disclosure (but not non-disclosure) group, the increased emotional empathy and INS elicited by sharing negative experiences relative to sharing neutral experiences promoted the enhanced prosociality through increasing interpersonal liking. These results indicate that self-disclosure of negative experiences can promote prosocial behaviors via social dynamics (defined as social affective and cognitive factors, including empathy and liking) and shared neural responses. Our findings suggest that when people express negative sentiments, they incline to follow up with positive actions.
Collapse
Affiliation(s)
- Xiaojun Cheng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Shuqi Wang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Bing Guo
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Qiao Wang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Yinying Hu
- School of Psychology, Shanghai Normal University, Shanghai 200234, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Xie S, Liu J, Hu Y, Liu W, Ma C, Jin S, Zhang L, Kang Y, Ding Y, Zhang X, Hu Z, Cheng W, Yang Z. A normative model of brain responses to social scenarios reflects the maturity of children and adolescents' social-emotional abilities. Soc Cogn Affect Neurosci 2023; 18:nsad062. [PMID: 37930841 PMCID: PMC10649363 DOI: 10.1093/scan/nsad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/19/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
The rapid brain maturation in childhood and adolescence accompanies the development of socio-emotional functioning. However, it is unclear how the maturation of the neural activity drives the development of socio-emotional functioning and individual differences. This study aimed to reflect the age dependence of inter-individual differences in brain responses to socio-emotional scenarios and to develop naturalistic imaging indicators to assess the maturity of socio-emotional ability at the individual level. Using three independent naturalistic imaging datasets containing healthy participants (n = 111, 21 and 122), we found and validated that age-modulated inter-individual concordance of brain responses to socio-emotional movies in specific brain regions. The similarity of an individual's brain response to the average response of older participants was defined as response typicality, which predicted an individual's emotion regulation strategies in adolescence and theory of mind (ToM) in childhood. Its predictive power was not superseded by age, sex, cognitive performance or executive function. We further showed that the movie's valence and arousal ratings grounded the response typicality. The findings highlight that forming typical brain response patterns may be a neural phenotype underlying the maturation of socio-emotional ability. The proposed response typicality represents a neuroimaging approach to measure individuals' maturity of cognitive reappraisal and ToM.
Collapse
Affiliation(s)
- Shuqi Xie
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jingjing Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Changminghao Ma
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Shuyu Jin
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lei Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yinzhi Kang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yue Ding
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaochen Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhishan Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
- Department of Psychological Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100035, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100054, China
| |
Collapse
|
13
|
Lu K, Pan Y. A collective neuroscience lens on intergroup conflict. Trends Cogn Sci 2023; 27:985-986. [PMID: 37696689 DOI: 10.1016/j.tics.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
How do team leaders and followers synchronize their behaviors and brains to effectively manage intergroup conflicts? Zhang and colleagues offered a collective neurobehavioral narrative that delves into the intricacies of intergroup conflict. Their results underscore the importance of leaders' group-oriented actions, along with leader-follower synchronization, in intergroup conflict resolution.
Collapse
Affiliation(s)
- Kelong Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Pan Y, Vinding MC, Zhang L, Lundqvist D, Olsson A. A Brain-To-Brain Mechanism for Social Transmission of Threat Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304037. [PMID: 37544901 PMCID: PMC10558655 DOI: 10.1002/advs.202304037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 08/08/2023]
Abstract
Survival and adaptation in environments require swift and efficacious learning about what is dangerous. Across species, much of such threat learning is acquired socially, e.g., through the observation of others' ("demonstrators'") defensive behaviors. However, the specific neural mechanisms responsible for the integration of information shared between demonstrators and observers remain largely unknown. This dearth of knowledge is addressed by performing magnetoencephalography (MEG) neuroimaging in demonstrator-observer dyads. A set of stimuli are first shown to a demonstrator whose defensive responses are filmed and later presented to an observer, while neuronal activity is recorded sequentially from both individuals who never interacted directly. These results show that brain-to-brain coupling (BtBC) in the fronto-limbic circuit (including insula, ventromedial, and dorsolateral prefrontal cortex) within demonstrator-observer dyads predict subsequent expressions of learning in the observer. Importantly, the predictive power of BtBC magnifies when a threat is imminent to the demonstrator. Furthermore, BtBC depends on how observers perceive their social status relative to the demonstrator, likely driven by shared attention and emotion, as bolstered by dyadic pupillary coupling. Taken together, this study describes a brain-to-brain mechanism for social threat learning, involving BtBC, which reflects social relationships and predicts adaptive, learned behaviors.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhou310058China
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| | - Mikkel C. Vinding
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital ‐ Amager and HvidovreCopenhagen2650Denmark
| | - Lei Zhang
- Centre for Human Brain HealthSchool of PsychologyUniversity of BirminghamBirminghamB15 2TTUK
- Institute for Mental HealthSchool of PsychologyUniversity of BirminghamBirminghamB15 2TTUK
- SocialCognitive and Affective Neuroscience UnitDepartment of CognitionEmotionand Methods in PsychologyFaculty of PsychologyUniversity of ViennaVienna1010Austria
| | - Daniel Lundqvist
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| | - Andreas Olsson
- Department of Clinical NeuroscienceKarolinska InstitutetStockholm17165Sweden
| |
Collapse
|
15
|
Pan Y, Wen Y, Jin J, Chen J. The interpersonal computational psychiatry of social coordination in schizophrenia. Lancet Psychiatry 2023; 10:801-808. [PMID: 37478889 DOI: 10.1016/s2215-0366(23)00146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 07/23/2023]
Abstract
Impairments in social coordination form a core dimension of various psychiatric disorders, including schizophrenia. Advances in interpersonal and computational psychiatry support a major change in studying social coordination in schizophrenia. Although these developments provided novel perspectives to study how interpersonal activities shape coordination and to examine computational mechanisms, direct attempts to integrate the two methodologies have been sparse. Here, we propose an interpersonal computational framework that (1) leverages the active inference framework to model aberrant social coordination processes in schizophrenia and (2) incorporates dynamical system models to dissect intrapersonal and interpersonal synchronisation to inform a statistical model based on active inference. We discuss how this interpersonal computational psychiatry framework can elucidate the aberrant processes leading to psychopathology, with schizophrenia as an example, and highlight how it might aid clinical intervention and practice. Finally, we discuss challenges and opportunities for using the framework in studying social coordination impairments.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yalan Wen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Jingwen Jin
- Department of Psychology, The University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China; Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| |
Collapse
|
16
|
Lu K, Pan Y. Toward an Interpersonal Neuroscience in Technologically Assisted (Virtual) Interactions. J Neurosci 2023; 43:3787-3788. [PMID: 37225427 PMCID: PMC10217989 DOI: 10.1523/jneurosci.0417-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 05/26/2023] Open
Affiliation(s)
- Kelong Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China, 325035
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China, 200062
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden, 17165
| |
Collapse
|
17
|
Davidesco I, Laurent E, Valk H, West T, Milne C, Poeppel D, Dikker S. The Temporal Dynamics of Brain-to-Brain Synchrony Between Students and Teachers Predict Learning Outcomes. Psychol Sci 2023; 34:633-643. [PMID: 37053267 DOI: 10.1177/09567976231163872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Much of human learning happens through interaction with other people, but little is known about how this process is reflected in the brains of students and teachers. Here, we concurrently recorded electroencephalography (EEG) data from nine groups, each of which contained four students and a teacher. All participants were young adults from the northeast United States. Alpha-band (8-12 Hz) brain-to-brain synchrony between students predicted both immediate and delayed posttest performance. Further, brain-to-brain synchrony was higher in specific lecture segments associated with questions that students answered correctly. Brain-to-brain synchrony between students and teachers predicted learning outcomes at an approximately 300-ms lag in the students' brain activity relative to the teacher's brain activity, which is consistent with the time course of spoken-language comprehension. These findings provide key new evidence for the importance of collecting brain data simultaneously from groups of learners in ecologically valid settings.
Collapse
Affiliation(s)
- Ido Davidesco
- Department of Educational Psychology, University of Connecticut
| | | | | | - Tessa West
- Department of Psychology, New York University
| | | | - David Poeppel
- Department of Psychology, New York University
- Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
| | | |
Collapse
|
18
|
Mundy P. Research on social attention in autism and the challenges of the research domain criteria (RDoC) framework. Autism Res 2023; 16:697-712. [PMID: 36932883 DOI: 10.1002/aur.2910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/22/2023] [Indexed: 03/19/2023]
Abstract
The fuzzy nature of categories of psychopathology, such as autism, leads to significant research challenges. Alternatively, focusing research on the study of a common set of important and well-defined psychological constructs across psychiatric conditions may make the fundamental etiological processes of psychopathology easier to discern and treat (Cuthbert, 2022). The development of the research domain criteria (RDoC) framework is designed to guide this new research approach (Insel et al., 2010). However, progress in research may be expected to continually refine and reorganize the understanding of the specifics of these mental processes (Cuthbert & Insel, 2013). Moreover, knowledge gleaned from the study of both normative and atypical development can be mutually informative in the evolution of our understanding of these fundamental processes. A case in point is the study of social attention. This Autism 101 commentary provides an educational summary of research over the last few decades indicates that social attention is major construct in the study of human social-cognitive development, autism and other forms of psychopathology. The commentary also describes how this research can inform the Social Process dimension of the RDoC framework.
Collapse
Affiliation(s)
- Peter Mundy
- School of Education, Department of Psychiatry and the MIND Institute, University of California at Davis, Davis, California, USA
| |
Collapse
|
19
|
Pan Y, Cheng X, Hu Y. Three heads are better than one: cooperative learning brains wire together when a consensus is reached. Cereb Cortex 2023; 33:1155-1169. [PMID: 35348653 DOI: 10.1093/cercor/bhac127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 11/14/2022] Open
Abstract
Theories of human learning converge on the view that individuals working together learn better than do those working independently. Little is known, however, about the neural mechanisms of learning through cooperation. We addressed this research gap by leveraging functional near-infrared spectroscopy to record the brain activity of triad members in a group simultaneously. Triads were instructed to analyze an ancient Chinese poem either cooperatively or independently. Four main findings emerged. First, we observed significant within-group neural synchronization (GNS) in the left superior temporal cortex, supramarginal gyrus, and postcentral gyrus during cooperative learning compared with independent learning. Second, the enhancement of GNS in triads was amplified when a consensus was reached (vs. elaboration or argument) during cooperative learning. Third, GNS was predictive of learning outcome at an early stage (156-170 s after learning was initiated). Fourth, social factors such as social closeness (e.g. how much learners liked one other) were reflected in GNS and co-varied with learning engagement. These results provide neuroscientific support for Piaget's theory of cognitive development and favor the notion that successful learning through cooperation involves dynamic consensus-building, which is captured in neural patterns shared across learners in a group.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, 310063 Hangzhou, China.,Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, 200062 Shanghai, China
| | - Xiaojun Cheng
- School of Psychology, Shenzhen University, 518060 Shenzhen, China
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, 200062 Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, 200031 Shanghai, China
| |
Collapse
|
20
|
Pan Y, Wen Y, Wang Y, Schilbach L, Chen J. Interpersonal coordination in schizophrenia: a concise update on paradigms, computations, and neuroimaging findings. PSYCHORADIOLOGY 2023; 3:kkad002. [PMID: 38666124 PMCID: PMC10917372 DOI: 10.1093/psyrad/kkad002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 04/28/2024]
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yalan Wen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yajie Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Leonhard Schilbach
- Department of General Psychiatry 2 and Neuroimaging Section, LVR-Klinikum Düsseldorf, Düsseldorf 40629, Germany
- Medical Faculty, Ludwig-Maximilians University, Munich 80539, Germany
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| |
Collapse
|
21
|
Mundy P, Bullen J. The Bidirectional Social-Cognitive Mechanisms of the Social-Attention Symptoms of Autism. Front Psychiatry 2022; 12:752274. [PMID: 35173636 PMCID: PMC8841840 DOI: 10.3389/fpsyt.2021.752274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Differences in social attention development begin to be apparent in the 6th to 12th month of development in children with Autism Spectrum Disorder (ASD) and theoretically reflect important elements of its neurodevelopmental endophenotype. This paper examines alternative conceptual views of these early social attention symptoms and hypotheses about the mechanisms involved in their development. One model emphasizes mechanism involved in the spontaneous allocation of attention to faces, or social orienting. Alternatively, another model emphasizes mechanisms involved in the coordination of attention with other people, or joint attention, and the socially bi-directional nature of its development. This model raises the possibility that atypical responses of children to the attention or the gaze of a social partner directed toward themselves may be as important in the development of social attention symptoms as differences in the development of social orienting. Another model holds that symptoms of social attention may be important to early development, but may not impact older individuals with ASD. The alterative model is that the social attention symptoms in infancy (social orienting and joint attention), and social cognitive symptoms in childhood and adulthood share common neurodevelopmental substrates. Therefore, differences in early social attention and later social cognition constitute a developmentally continuous axis of symptom presentation in ASD. However, symptoms in older individuals may be best measured with in vivo measures of efficiency of social attention and social cognition in social interactions rather than the accuracy of response on analog tests used in measures with younger children. Finally, a third model suggests that the social attention symptoms may not truly be a symptom of ASD. Rather, they may be best conceptualized as stemming from differences domain general attention and motivation mechanisms. The alternative argued for here that infant social attention symptoms meet all the criteria of a unique dimension of the phenotype of ASD and the bi-directional phenomena involved in social attention cannot be fully explained in terms of domain general aspects of attention development.
Collapse
Affiliation(s)
- Peter Mundy
- Department of Learning and Mind Sciences, School of Education, University of California, Davis, Davis, CA, United States
- Department of Psychiatry and Behavioral Science and The MIND Institute, UC Davis School of Medicine, Sacramento, CA, United States
| | - Jenifer Bullen
- Department of Human Development, School of Human Ecology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
22
|
Takeuchi N. Perspectives on Rehabilitation Using Non-invasive Brain Stimulation Based on Second-Person Neuroscience of Teaching-Learning Interactions. Front Psychol 2022; 12:789637. [PMID: 35069374 PMCID: PMC8769209 DOI: 10.3389/fpsyg.2021.789637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Recent advances in second-person neuroscience have allowed the underlying neural mechanisms involved in teaching-learning interactions to be better understood. Teaching is not merely a one-way transfer of information from teacher to student; it is a complex interaction that requires metacognitive and mentalizing skills to understand others’ intentions and integrate information regarding oneself and others. Physiotherapy involving therapists instructing patients on how to improve their motor skills is a clinical field in which teaching-learning interactions play a central role. Accumulating evidence suggests that non-invasive brain stimulation (NIBS) modulates cognitive functions; however, NIBS approaches to teaching-learning interactions are yet to be utilized in rehabilitation. In this review, I evaluate the present research into NIBS and its role in enhancing metacognitive and mentalizing abilities; I then review hyperscanning studies of teaching-learning interactions and explore the potential clinical applications of NIBS in rehabilitation. Dual-brain stimulation using NIBS has been developed based on findings of brain-to-brain synchrony in hyperscanning studies, and it is delivered simultaneously to two individuals to increase inter-brain synchronized oscillations at the stimulated frequency. Artificial induction of brain-to-brain synchrony has the potential to promote instruction-based learning. The brain-to-brain interface, which induces inter-brain synchronization by adjusting the patient’s brain activity, using NIBS, to the therapist’s brain activity, could have a positive effect on both therapist-patient interactions and rehabilitation outcomes. NIBS based on second-person neuroscience has the potential to serve as a useful addition to the current neuroscientific methods used in complementary interventions for rehabilitation.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences, Akita, Japan
| |
Collapse
|
23
|
Integration of social status and trust through interpersonal brain synchronization. Neuroimage 2021; 246:118777. [PMID: 34864151 DOI: 10.1016/j.neuroimage.2021.118777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Trust can be a dynamic social process, during which the social identity of the interacting agents (e.g., an investor and a trustee) can bias trust outcomes. Here, we investigated how social status modulates trust and the neural mechanisms underlying this process. An investor and a trustee performed a 10-round repeated trust game while their brain activity was being simultaneously recorded using functional near-infrared spectroscopy. The social status (either high or low) of both investors and trustees was manipulated via a math competition task. The behavioral results showed that in the initial round, individuals invested more in low-status partners. However, the investment ratio increased faster as the number of rounds increased during trust interaction when individuals were paired with a high-status partner. This increasing trend was particularly prominent in the low (investor)-high (trustee) status group. Moreover, the low-high group showed increased investor-trustee brain synchronization in the right temporoparietal junction as the number of rounds increased, while brain activation in the right dorsolateral prefrontal cortex of the investor decreased as the number of rounds increased. Both interpersonal brain synchronization and brain activation predicted investment performance at the early stage; furthermore, two-brain data provided earlier predictions than did single-brain data. These effects were detectable in the investment phase in the low-high group only; no comparable effects were observed in the repayment phase or other groups. Overall, this study demonstrated a multi-brain mechanism for the integration of social status and trust.
Collapse
|