1
|
Liu Z, Xia Q, Wang C, Xu J, Tian K, Wang Z, Li L, Li Y, Shang H, Liu Q, Xin T. Biomimetic astrocyte cell membrane-fused nanovesicles for protecting neurovascular units in hypoxic ischemic encephalopathy. J Nanobiotechnology 2024; 22:766. [PMID: 39695691 DOI: 10.1186/s12951-024-03053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Hypoxic ischemic encephalopathy (HIE) refers to neonatal hypoxic brain injury caused by severe asphyxia during the perinatal period. With a high incidence rate and poor prognosis, HIE accounts for 2.4% of the global disease burden, imposing a heavy burden on families and society. Current clinical treatment for HIE primarily focuses on symptomatic management and supportive care. Therefore, the developments of effective treatment strategies and new drug formulations are critical for improving the prognosis of HIE patients. In order to protect the compromised neurovascular units after HIE, we prepared membrane-fused nanovesicles for delivering rapamycin and si EDN1 (TRCAM@RAPA@si EDN1). Due to the homotypic targeting feature of membrane-fused nanovesicles, we employed astrocyte membranes as synthetic materials to improve the targeting of astrocytes in brain while reducing the clearance of nanovesicles by circulatory system. Additionally, the surface of cell membrane was modified with CXCR3 receptors, enhancing the homing of nanovesicles to infarcted lesions. Lipid vesicles were modified with TK and RVG29 transmembrane peptides, enabling responsive release of internal drugs and blood-brain barrier penetration. Internally loaded rapamycin could promote protective autophagy in astrocytes, improve cellular oxidative stress, while si EDN1 could reduce the expression level of endothelin gene, thereby reducing secondary damage to neurovascular units.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, China
| | - Qian Xia
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chanyue Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jiacan Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Kangqian Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhihai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Longji Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Yuchen Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Hao Shang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Qian Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
| |
Collapse
|
2
|
Chen Q, Wang J, Xiong X, Chen J, Wang B, Yang H, Zhou J, Deng H, Gu L, Tian J. Blood-Brain Barrier-Penetrating Metal-Organic Framework Antioxidant Nanozymes for Targeted Ischemic Stroke Therapy. Adv Healthc Mater 2024:e2402376. [PMID: 39373278 DOI: 10.1002/adhm.202402376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Indexed: 10/08/2024]
Abstract
Overproduction of reactive oxygen species (ROS) during reperfusion in ischemic stroke (IS) severely impedes neuronal survival and results in high rates of morbidity and disability. The effective blood-brain barrier (BBB) penetration and brain delivery of antioxidative agents remain the biggest challenge in treating ischemic reperfusion-induced cerebrovascular and neural injury. In this study, a metal-organic framework (MOF) nanozyme (MIL-101-NH2(Fe/Cu)) with ROS scavenging activities to encapsulate neuroprotective agent rapamycin is fabricated and decorating the exterior with BBB-targeting protein ligands (transferrin), thereby realizing enhanced drug retention and controlled release within ischemic lesions for the synergistic treatment of IS. Through the receptor-mediated transcellular pathway, the transferrin-coated MOF nanoparticles achieved efficient transport across the BBB and targeted accumulation at the cerebral ischemic injury site of mice with middle cerebral artery occlusion/reperfusion (MCAO/R), wherein the nanocarrier exhibited catalytic activities of ROS decomposition into O2 and H2O2-responsive rapamycin release. By its BBB-targeting, antioxidative, anti-inflammatory, and antiapoptotic properties, the MOF nanosystem addressed multiple pathological factors of IS and realized remarkable neuroprotective effects, leading to the substantial reduction of cerebral infarction volume and accelerated recovery of nerve functions in the MCAO/R mouse model. This MOF-based nanomedicine provides valuable design principles for effective IS therapy with multi-mechanism synergies.
Collapse
Affiliation(s)
- Qing Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jin Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Junyang Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bo Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Haixia Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Tian
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
3
|
Beard DJ, Brown LS, Morris GP, Couch Y, Adriaanse BA, Karali CS, Schneider AM, Howells DW, Redzic ZB, Sutherland BA, Buchan AM. Rapamycin Treatment Reduces Brain Pericyte Constriction in Ischemic Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01298-x. [PMID: 39331260 DOI: 10.1007/s12975-024-01298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The contraction and subsequent death of brain pericytes may play a role in microvascular no-reflow following the reopening of an occluded artery during ischemic stroke. Mammalian target of rapamycin (mTOR) inhibition has been shown to reduce motility/contractility of various cancer cell lines and reduce neuronal cell death in stroke. However, the effects of mTOR inhibition on brain pericyte contraction and death during ischemia have not yet been investigated. Cultured pericytes exposed to simulated ischemia for 12 h in vitro contracted after less than 1 h, which was about 7 h prior to cell death. Rapamycin significantly reduced the rate of pericyte contraction during ischemia; however, it did not have a significant effect on pericyte viability at any time point. Rapamycin appeared to reduce pericyte contraction through a mechanism that is independent of changes in intracellular calcium. Using a mouse model of middle cerebral artery occlusion, we showed that rapamycin significantly increased the diameter of capillaries underneath pericytes and increased the number of open capillaries 30 min following recanalisation. Our findings suggest that rapamycin may be a useful adjuvant therapeutic to reduce pericyte contraction and improve cerebral reperfusion post-stroke.
Collapse
Affiliation(s)
- Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
| | - Lachlan S Brown
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Gary P Morris
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan A Adriaanse
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Anna M Schneider
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - David W Howells
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Zoran B Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia.
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Meijer WC, Gorter JA. Role of blood-brain barrier dysfunction in the development of poststroke epilepsy. Epilepsia 2024; 65:2519-2536. [PMID: 39101543 DOI: 10.1111/epi.18072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Stroke is a major contributor to mortality and morbidity worldwide and the most common cause of epilepsy in the elderly in high income nations. In recent years, it has become increasingly evident that both ischemic and hemorrhagic strokes induce dysfunction of the blood-brain barrier (BBB), and that this impairment can contribute to epileptogenesis. Nevertheless, studies directly comparing BBB dysfunction and poststroke epilepsy (PSE) are largely absent. Therefore, this review summarizes the role of BBB dysfunction in the development of PSE in animal models and clinical studies. There are multiple mechanisms whereby stroke induces BBB dysfunction, including increased transcytosis, tight junction dysfunction, spreading depolarizations, astrocyte and pericyte loss, reactive astrocytosis, angiogenesis, matrix metalloproteinase activation, neuroinflammation, adenosine triphosphate depletion, oxidative stress, and finally cell death. The degree to which these effects occur is dependent on the severity of the ischemia, whereby cell death is a more prominent mechanism of BBB disruption in regions of critical ischemia. BBB dysfunction can contribute to epileptogenesis by increasing the risk of hemorrhagic transformation, increasing stroke size and the amount of cerebral vasogenic edema, extravasation of excitatory compounds, and increasing neuroinflammation. Furthermore, albumin extravasation after BBB dysfunction contributes to epileptogenesis primarily via increased transforming growth factor β signaling. Finally, seizures themselves induce BBB dysfunction, thereby contributing to epileptogenesis in a cyclical manner. In repairing this BBB dysfunction, pericyte migration via platelet-derived growth factor β signaling is indispensable and required for reconstruction of the BBB, whereby astrocytes also play a role. Although animal stroke models have their limitations, they provide valuable insights into the development of potential therapeutics designed to restore the BBB after stroke, with the ultimate goal of improving outcomes and minimizing the occurrence of PSE. In pursuit of this goal, rapamycin, statins, losartan, semaglutide, and metformin show promise, whereby modulation of pericyte migration could also be beneficial.
Collapse
Affiliation(s)
- Wouter C Meijer
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Zhang Y, Li D, Gao H, Zhao H, Zhang S, Li T. Rapamycin Alleviates Neuronal Injury and Modulates Microglial Activation After Cerebral Ischemia. Mol Neurobiol 2024; 61:5699-5717. [PMID: 38224443 DOI: 10.1007/s12035-023-03904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Neurons and microglia are sensitive to cerebral microcirculation and their responses play a crucial part in the pathological processes, while they are also the main target cells of many drugs used to treat brain diseases. Rapamycin exhibits beneficial effects in many diseases; however, whether it can affect neuronal injury or alter the microglial activation after global cerebral ischemia remains unclear. In this study, we performed global cerebral ischemia combined with rapamycin treatment in CX3CR1GFP/+ mice and explored the effects of rapamycin on neuronal deficit and microglial activation. Our results showed that rapamycin reduced neuronal loss, neurodegeneration, and ultrastructural damage after ischemia by histological staining and transmission electron microscopy (TEM). Interestingly, rapamycin suppressed de-ramification and proliferation of microglia and reduced the density of microglia. Immunofluorescence staining indicated that rapamycin skewed microglial polarization toward an anti-inflammatory state. Furthermore, rapamycin as well suppressed the activation of astrocytes. Meanwhile, quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed a significant reduction of pro-inflammatory factors as well as an elevation of anti-inflammatory factors upon rapamycin treatment. As a result of these effects, behavioral tests showed that rapamycin significantly alleviated the brain injury after stroke. Together, our study suggested that rapamycin attenuated neuronal injury, altered microglial activation state, and provided a more beneficial immune microenvironment for the brain, which could be used as a promising therapeutic approach to treat ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Donghai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Hao Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China.
| | - Ting Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
6
|
Villa-González M, Rubio M, Martín-López G, Mallavibarrena PR, Vallés-Saiz L, Vivien D, Wandosell F, Pérez-Álvarez MJ. Pharmacological inhibition of mTORC1 reduces neural death and damage volume after MCAO by modulating microglial reactivity. Biol Direct 2024; 19:26. [PMID: 38582839 PMCID: PMC10999095 DOI: 10.1186/s13062-024-00470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
Ischemic stroke is a sudden and acute disease characterized by neuronal death, increment of reactive gliosis (reactive microglia and astrocytes), and a severe inflammatory process. Neuroinflammation is an early event after cerebral ischemia, with microglia playing a leading role. Reactive microglia involve functional and morphological changes that drive a wide variety of phenotypes. In this context, deciphering the molecular mechanisms underlying such reactive microglial is essential to devise strategies to protect neurons and maintain certain brain functions affected by early neuroinflammation after ischemia. Here, we studied the role of mammalian target of rapamycin (mTOR) activity in the microglial response using a murine model of cerebral ischemia in the acute phase. We also determined the therapeutic relevance of the pharmacological administration of rapamycin, a mTOR inhibitor, before and after ischemic injury. Our data show that rapamycin, administered before or after brain ischemia induction, reduced the volume of brain damage and neuronal loss by attenuating the microglial response. Therefore, our findings indicate that the pharmacological inhibition of mTORC1 in the acute phase of ischemia may provide an alternative strategy to reduce neuronal damage through attenuation of the associated neuroinflammation.
Collapse
Affiliation(s)
- Mario Villa-González
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marina Rubio
- Physiopathology and Imaging of Neurological Disorders, Normandie University, UNICAEN, UMR-S U1237, INSERM, Institut Blood and Brain @ CaenNormandie, GIP Cyceron, Caen, France
| | - Gerardo Martín-López
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula R Mallavibarrena
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders, Normandie University, UNICAEN, UMR-S U1237, INSERM, Institut Blood and Brain @ CaenNormandie, GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie Hospital (CHU), Caen, France
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
- Centro de Investigaciones Biológicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Maria José Pérez-Álvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto Universitario de Biología Molecular (IUBM-UAM), Madrid, Spain.
| |
Collapse
|
7
|
Pluta R. The Dual Role of Autophagy in Postischemic Brain Neurodegeneration of Alzheimer's Disease Proteinopathy. Int J Mol Sci 2023; 24:13793. [PMID: 37762096 PMCID: PMC10530906 DOI: 10.3390/ijms241813793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy is a self-defense and self-degrading intracellular system involved in the recycling and elimination of the payload of cytoplasmic redundant components, aggregated or misfolded proteins and intracellular pathogens to maintain cell homeostasis and physiological function. Autophagy is activated in response to metabolic stress or starvation to maintain homeostasis in cells by updating organelles and dysfunctional proteins. In neurodegenerative diseases, such as cerebral ischemia, autophagy is disturbed, e.g., as a result of the pathological accumulation of proteins associated with Alzheimer's disease and their structural changes. Postischemic brain neurodegeneration, such as Alzheimer's disease, is characterized by the accumulation of amyloid and tau protein. After cerebral ischemia, autophagy was found to be activated in neuronal, glial and vascular cells. Some studies have shown the protective properties of autophagy in postischemic brain, while other studies have shown completely opposite properties. Thus, autophagy is now presented as a double-edged sword with possible therapeutic potential in brain ischemia. The exact role and regulatory pathways of autophagy that are involved in cerebral ischemia have not been conclusively elucidated. This review aims to provide a comprehensive look at the advances in the study of autophagy behavior in neuronal, glial and vascular cells for ischemic brain injury. In addition, the importance of autophagy in neurodegeneration after cerebral ischemia has been highlighted. The review also presents the possibility of modulating the autophagy machinery through various compounds on the development of neurodegeneration after cerebral ischemia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
8
|
Melanis K, Stefanou MI, Themistoklis KM, Papasilekas T. mTOR pathway - a potential therapeutic target in stroke. Ther Adv Neurol Disord 2023; 16:17562864231187770. [PMID: 37576547 PMCID: PMC10413897 DOI: 10.1177/17562864231187770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Stroke is ranked as the second leading cause of death worldwide and a major cause of long-term disability. A potential therapeutic target that could offer favorable outcomes in stroke is the mammalian target of rapamycin (mTOR) pathway. mTOR is a serine/threonine kinase that composes two protein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), and is regulated by other proteins such as the tuberous sclerosis complex. Through a significant number of signaling pathways, the mTOR pathway can modulate the processes of post-ischemic inflammation and autophagy, both of which play an integral part in the pathophysiological cascade of stroke. Promoting or inhibiting such processes under ischemic conditions can lead to apoptosis or instead sustained viability of neurons. The purpose of this review is to examine the pathophysiological role of mTOR in acute ischemic stroke, while highlighting promising neuroprotective agents such as hamartin for therapeutic modulation of this pathway. The therapeutic potential of mTOR is also discussed, with emphasis on implicated molecules and pathway steps that warrant further elucidation in order for their neuroprotective properties to be efficiently tested in future clinical trials.
Collapse
Affiliation(s)
- Konstantinos Melanis
- Second Department of Neurology, School of Medicine and ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Rimini 1 Chaidari, Athens 12462, Greece
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, School of Medicine and ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos M. Themistoklis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Neurosurgery, ‘Korgialenio, Benakio, H.R.C’. General Hospital of Athens, Athens, Greece
| | - Themistoklis Papasilekas
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Neurosurgery, ‘Korgialenio, Benakio, H.R.C’. General Hospital of Athens, Athens, Greece
| |
Collapse
|
9
|
Lushnikova I, Kostiuchenko O, Kowalczyk M, Skibo G. mTOR/α-ketoglutarate signaling: impact on brain cell homeostasis under ischemic conditions. Front Cell Neurosci 2023; 17:1132114. [PMID: 37252190 PMCID: PMC10213632 DOI: 10.3389/fncel.2023.1132114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
The multifunctional molecules mechanistic target of rapamycin (mTOR) and α-ketoglutarate (αKG) are crucial players in the regulatory mechanisms that maintain cell homeostasis in an ever-changing environment. Cerebral ischemia is associated primarily with oxygen-glucose deficiency (OGD) due to circulatory disorders. Upon exceeding a threshold of resistance to OGD, essential pathways of cellular metabolism can be disrupted, leading to damage of brain cells up to the loss of function and death. This mini-review focuses on the role of mTOR and αKG signaling in the metabolic homeostasis of brain cells under OGD conditions. Integral mechanisms concerning the relative cell resistance to OGD and the molecular basis of αKG-mediated neuroprotection are discussed. The study of molecular events associated with cerebral ischemia and endogenous neuroprotection is relevant for improving the effectiveness of therapeutic strategies.
Collapse
Affiliation(s)
- Iryna Lushnikova
- Department of Cytology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Olha Kostiuchenko
- Department of Cytology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Kowalczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Galyna Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
10
|
Wang H, Liu Y, Guo Z, Cui M, Pang P, Yang J, Wu C. Enhancement of oligodendrocyte autophagy alleviates white matter injury and cognitive impairment induced by chronic cerebral hypoperfusion in rats. Acta Pharm Sin B 2023; 13:2107-2123. [DOI: 10.1016/j.apsb.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/23/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
|
11
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
12
|
Park SK, Cho JM, Mookherjee S, Pires PW, Symons JD. Recent Insights Concerning Autophagy and Endothelial Cell Nitric Oxide Generation. CURRENT OPINION IN PHYSIOLOGY 2022; 30:100614. [PMID: 40109953 PMCID: PMC11922555 DOI: 10.1016/j.cophys.2022.100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although endothelial cell (EC) dysfunction contributes to the etiology of more diseases than any other tissue in the body, EC metabolism is an understudied therapeutic target. Evidence regarding the important role of autophagy in maintaining EC homeostasis is accumulating rapidly. Here we focus on advances over the past two years regarding how EC autophagy mediates EC nitric oxide generation in the context of aging and cardiovascular complications including coronary artery disease, aneurysm, and stroke. In addition, insight concerning the efficacy of maneuvers designed to boost EC autophagy in an effort to combat cardiovascular complications associated with repressed EC autophagy is discussed.
Collapse
Affiliation(s)
- Seul-Ki Park
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Department of Medicine, Greater Los Angeles VA Healthcare System, University of California, Los Angeles
| | - Sohom Mookherjee
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Paulo W Pires
- Department of Physiology, University of Arizona College of Medicine, Tuscon
| | - J David Symons
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine
| |
Collapse
|
13
|
Kostiuchenko O, Lushnikova I, Kowalczyk M, Skibo G. mTOR/α-ketoglutarate-mediated signaling pathways in the context of brain neurodegeneration and neuroprotection. BBA ADVANCES 2022; 2:100066. [PMID: 37082603 PMCID: PMC10074856 DOI: 10.1016/j.bbadva.2022.100066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebral disorders are largely associated with impaired cellular metabolism, despite the regulatory mechanisms designed to ensure cell viability and adequate brain function. Mechanistic target of rapamycin (mTOR) signaling is one of the most crucial factors in the regulation of energy homeostasis and its imbalance is linked with a variety of neurodegenerative diseases. Recent advances in the metabolic pathways' modulation indicate the role of α-ketoglutarate (AKG) as a major signaling hub, additionally highlighting its anti-aging and neuroprotective properties, but the mechanisms of its action are not entirely clear. In this review, we analyzed the physiological and pathophysiological aspects of mTOR in the brain. We also discussed AKG's multifunctional properties, as well as mTOR/AKG-mediated functional communications in cellular metabolism. Thus, this article provides a broad overview of the mTOR/AKG-mediated signaling pathways, in the context of neurodegeneration and endogenous neuroprotection, with the aim to find novel therapeutic strategies.
Collapse
|
14
|
Tiedt S, Buchan AM, Dichgans M, Lizasoain I, Moro MA, Lo EH. The neurovascular unit and systemic biology in stroke - implications for translation and treatment. Nat Rev Neurol 2022; 18:597-612. [PMID: 36085420 DOI: 10.1038/s41582-022-00703-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Ischaemic stroke is a leading cause of disability and death for which no acute treatments exist beyond recanalization. The development of novel therapies has been repeatedly hindered by translational failures that have changed the way we think about tissue damage after stroke. What was initially a neuron-centric view has been replaced with the concept of the neurovascular unit (NVU), which encompasses neuronal, glial and vascular compartments, and the biphasic nature of neural-glial-vascular signalling. However, it is now clear that the brain is not the private niche it was traditionally thought to be and that the NVU interacts bidirectionally with systemic biology, such as systemic metabolism, the peripheral immune system and the gut microbiota. Furthermore, these interactions are profoundly modified by internal and external factors, such as ageing, temperature and day-night cycles. In this Review, we propose an extension of the concept of the NVU to include its dynamic interactions with systemic biology. We anticipate that this integrated view will lead to the identification of novel mechanisms of stroke pathophysiology, potentially explain previous translational failures, and improve stroke care by identifying new biomarkers of and treatment targets in stroke.
Collapse
Affiliation(s)
- Steffen Tiedt
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), . .,Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Alastair M Buchan
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Martin Dichgans
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ignacio Lizasoain
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Department of Pharmacology and Toxicology, Complutense Medical School, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Maria A Moro
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Eng H Lo
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), . .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Novel Therapeutic Strategies for Ischemic Stroke: Recent Insights into Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3450207. [PMID: 35720192 PMCID: PMC9200548 DOI: 10.1155/2022/3450207] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
Stroke is one of the leading causes of death and disability worldwide. Autophagy is a conserved cellular catabolic pathway that maintains cellular homeostasis by removal of damaged proteins and organelles, which is critical for the maintenance of energy and function homeostasis of cells. Accumulating evidence demonstrates that autophagy plays important roles in pathophysiological mechanisms under ischemic stroke. Previous investigations show that autophagy serves as a “double-edged sword” in ischemic stroke as it can either promote the survival of neuronal cells or induce cell death in special conditions. Following ischemic stroke, autophagy is activated or inhibited in several cell types in brain, including neurons, astrocytes, and microglia, as well as microvascular endothelial cells, which involves in inflammatory activation, modulation of microglial phenotypes, and blood-brain barrier permeability. However, the exact mechanisms of underlying the role of autophagy in ischemic stroke are not fully understood. This review focuses on the recent advances regarding potential molecular mechanisms of autophagy in different cell types. The focus is also on discussing the “double-edged sword” effect of autophagy in ischemic stroke and its possible underlying mechanisms. In addition, potential therapeutic strategies for ischemic stroke targeting autophagy are also reviewed.
Collapse
|
16
|
Lingling D, Miaomiao Q, Yili L, Hongyun H, Yihao D. Attenuation of histone H4 lysine 16 acetylation (H4K16ac) elicits a neuroprotection against ischemic stroke by alleviating the autophagic/lysosomal dysfunction in neurons at the penumbra. Brain Res Bull 2022; 184:24-33. [DOI: 10.1016/j.brainresbull.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/06/2022] [Accepted: 03/24/2022] [Indexed: 11/02/2022]
|
17
|
Sharma S, Rana AK, Sharma A, Singh D. Inhibition of Mammalian Target of Rapamycin Attenuates Recurrent Seizures Associated Cardiac Damage in a Zebrafish Kindling Model of Chronic Epilepsy. J Neuroimmune Pharmacol 2022; 17:334-349. [PMID: 34537895 DOI: 10.1007/s11481-021-10021-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022]
Abstract
Sudden Unexpected Death in Epilepsy (SUDEP) is primarily linked with the cardiac irregularities that occur due to recurrent seizures. Our previous studies found a role of mTOR pathway activation in seizures-linked cardiac damage in a rat model. In continuation to the earlier work, the present study was devised to explore the role of rapamycin (mTOR inhibitor and clinically used immunosuppressive agent) in a zebrafish kindling model and associated cardiac damage. Adult zebrafish were incubated with increasing concentrations of rapamycin (1, 2 and, 4 μM), followed by pentylenetetrazole (PTZ) exposure to record seizure latency and severity. In another experiment, zebrafish were subjected to a standardized PTZ kindling protocol. The kindled fish were treated daily with rapamycin for up to 25 days, along with PTZ to record seizure severity. At the end, zebrafish heart was excised for carbonylation assay, gene expression, and protein quantification studies. In the acute PTZ convulsion test, treatment with rapamycin showed a significant increase in seizure latency and decreased seizure severity without any change in seizure incidence. Treatment with rapamycin also reduced the severity of seizures in kindled fish. The cardiac expressions of gpx, nppb, kcnh2, scn5a, mapk8, stat3, rps6 and ddit were decreased, whereas the levels of trxr2 and beclin 1 were increased following rapamycin treatment in kindled fish. Furthermore, rapamycin treatment also decreased p-mTOR expression and protein carbonyls level in the fish cardiac tissue. The present study concluded that rapamycin reduces seizures and associated cardiac damage by inhibiting mTOR activation in the zebrafish kindling model.
Collapse
Affiliation(s)
- Supriya Sharma
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Aditi Sharma
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
18
|
Growth Hormone Increases BDNF and mTOR Expression in Specific Brain Regions after Photothrombotic Stroke in Mice. Neural Plast 2022; 2022:9983042. [PMID: 35465399 PMCID: PMC9033347 DOI: 10.1155/2022/9983042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Aims We have shown that growth hormone (GH) treatment poststroke increases neuroplasticity in peri-infarct areas and the hippocampus, improving motor and cognitive outcomes. We aimed to explore the mechanisms of GH treatment by investigating how GH modulates pathways known to induce neuroplasticity, focusing on association between brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) in the peri-infarct area, hippocampus, and thalamus. Methods Recombinant human growth hormone (r-hGH) or saline was delivered (0.25 μl/hr, 0.04 mg/day) to mice for 28 days, commencing 48 hours after photothrombotic stroke. Protein levels of pro-BDNF, total-mTOR, phosphorylated-mTOR, total-p70S6K, and phosporylated-p70S6K within the peri-infarct area, hippocampus, and thalamus were evaluated by western blotting at 30 days poststroke. Results r-hGH treatment significantly increased pro-BDNF in peri-infarct area, hippocampus, and thalamus (p < 0.01). r-hGH treatment significantly increased expression levels of total-mTOR in the peri-infarct area and thalamus (p < 0.05). r-hGH treatment significantly increased expression of total-p70S6K in the hippocampus (p < 0.05). Conclusion r-hGH increases pro-BDNF within the peri-infarct area and regions that are known to experience secondary neurodegeneration after stroke. Upregulation of total-mTOR protein expression in the peri-infarct and thalamus suggests that this might be a pathway that is involved in the neurorestorative effects previously reported in these animals and warrants further investigation. These findings suggest region-specific mechanisms of action of GH treatment and provide further understanding for how GH treatment promotes neurorestorative effects after stroke.
Collapse
|
19
|
Villa-González M, Martín-López G, Pérez-Álvarez MJ. Dysregulation of mTOR Signaling after Brain Ischemia. Int J Mol Sci 2022; 23:ijms23052814. [PMID: 35269956 PMCID: PMC8911477 DOI: 10.3390/ijms23052814] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
In this review, we provide recent data on the role of mTOR kinase in the brain under physiological conditions and after damage, with a particular focus on cerebral ischemia. We cover the upstream and downstream pathways that regulate the activation state of mTOR complexes. Furthermore, we summarize recent advances in our understanding of mTORC1 and mTORC2 status in ischemia–hypoxia at tissue and cellular levels and analyze the existing evidence related to two types of neural cells, namely glia and neurons. Finally, we discuss the potential use of mTORC1 and mTORC2 as therapeutic targets after stroke.
Collapse
Affiliation(s)
- Mario Villa-González
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
| | - Gerardo Martín-López
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
| | - María José Pérez-Álvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-497-2819
| |
Collapse
|
20
|
Cheng Y, Cheng A, Jia Y, Yang L, Ning Y, Xu L, Zhong Y, Zhuang Z, Guan J, Zhang X, Lin Y, Zhou T, Fan X, Li J, Liu P, Yan G, Wu R. pH-Responsive Multifunctional Theranostic Rapamycin-Loaded Nanoparticles for Imaging and Treatment of Acute Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56909-56922. [PMID: 34807583 DOI: 10.1021/acsami.1c16530] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stroke is the second leading cause of death globally and the most common cause of severe disability. Several barriers need to be addressed more effectively to treat stroke, including efficient delivery of therapeutic agents, rapid release at the infarct site, precise imaging of the infarct site, and drug distribution monitoring. The present study aimed to develop a bio-responsive theranostic nanoplatform with signal-amplifying capability to deliver rapamycin (RAPA) to ischemic brain tissues and visually monitor drug distribution. A pH-sensitive theranostic RAPA-loaded nanoparticle system was designed since ischemic tissues have a low-pH microenvironment compared with normal tissues. The nanoparticles demonstrated good stability and biocompatibility and could efficiently load rapamycin, followed by its rapid release in acidic environments, thereby improving therapeutic accuracy. The nano-drug-delivery system also exhibited acid-enhanced magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging signal properties, enabling accurate multimodal imaging with minimal background noise, thus improving drug tracing and diagnostic accuracy. Finally, in vivo experiments confirmed that the nanoparticles preferentially aggregated in the ischemic hemisphere and exerted a neuroprotective effect in rats with transient middle cerebral artery occlusion (tMCAO). These pH-sensitive multifunctional theranostic nanoparticles could serve as a potential nanoplatform for drug tracing as well as the treatment and even diagnosis of acute ischemic stroke. Moreover, they could be a universal solution to achieve accurate in vivo imaging and treatment of other diseases.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Airong Cheng
- Department of Neurology, Chengwu County People's Hospital, Chengwu 274200, Shandong, China
| | - Yanlong Jia
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei 441021, China
| | - Lin Yang
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yan Ning
- Department of TCM, Shenzhen Maternity & Child Healthcare Hospital Affiliated to Southern Medical University, Shenzhen 518028, Guangdong, China
| | - Liang Xu
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yazhi Zhong
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zerui Zhuang
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, Guangdong, China
- Department of Neurosurgery, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jitian Guan
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaolei Zhang
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yan Lin
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Teng Zhou
- Department of Computer Science, Shantou University, Shantou 515041, China
| | - Xiusong Fan
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Jianwu Li
- Transfusion Department, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361023, Fujian, China
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
21
|
Beard DJ, Hadley G, Sutherland BA, Buchan AM. Commentary: Rapalink-1 Increased Infarct Size in Early Cerebral Ischemia-Reperfusion With Increased Blood-Brain Barrier Disruption. Front Physiol 2021; 12:761556. [PMID: 34630168 PMCID: PMC8493210 DOI: 10.3389/fphys.2021.761556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daniel J Beard
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Laboratory of Cerebral Ischaemia, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gina Hadley
- Laboratory of Cerebral Ischaemia, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Alastair M Buchan
- Laboratory of Cerebral Ischaemia, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Yihao D, Tao G, Zhiyuan W, Xiaoming Z, Lingling D, Hongyun H. Ginkgo biloba leaf extract (EGb-761) elicits neuroprotection against cerebral ischemia/reperfusion injury by enhancement of autophagy flux in neurons in the penumbra. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1138-1145. [PMID: 34804431 PMCID: PMC8591756 DOI: 10.22038/ijbms.2021.46318.10694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/11/2021] [Indexed: 11/29/2022]
Abstract
Objective(s): Ginkgo biloba leaf extract (EGb-761) injection has been widely used as adjuvant therapy for cerebral stroke in China. However, its underlying pharmacological mechanism is not completely understood. The present study aimed to investigate whether the therapeutic effects of EGb-761 are exerted by modulating autophagy flux. Materials and Methods: Ischemic cerebral stroke was prepared in male Sprague-Dawley rats by middle cerebral artery occlusion (MCAO) followed by reperfusion. The MCAO/reperfusion rats were then treated with EGb-761 injection once daily for 7 days. Thereafter, the brain tissues in the ischemic penumbra were obtained to detect the key proteins in the autophagic/lysosomal pathway with Beclin1, LC3, (SQSTM1)/p62, ubiquitin, LAMP-1, cathepsin B, and cathepsin D antibodies by western blot and immunofluorescence. Meanwhile, the infarct volume, neurological deficits, and neuronal apoptosis were assessed to evaluate the therapeutic outcomes. Results: The results illustrated that EGb-761 treatment was not only able to promote the autophagic activities of Beclin1 and LC3-II in neurons, but also could enhance the autophagic clearance, as indicated by reinforced lysosomal activities of LAMP-1, cathepsin B, and cathepsin D, as well as alleviating autophagic accumulation of ubiquitin and insoluble p62 in the MCAO+EGb-761 group, compared with those in the MCAO+saline group. Meanwhile, cerebral ischemia-induced neurological deficits, infarct volume, and neuronal apoptosis were significantly attenuated by 7 days of EGb-761 therapy. Conclusion: Our data suggest that EGb-761 injection can elicit a neuroprotective efficacy against MCAO/reperfusion injury, and this neuroprotection may be exerted by enhancement of autophagy flux in neurons in the ischemic penumbra.
Collapse
Affiliation(s)
- Deng Yihao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Guo Tao
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Wu Zhiyuan
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhao Xiaoming
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Dong Lingling
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - He Hongyun
- Department of Basic Medicine, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
23
|
Endothelial-specific insulin receptor substrate-1 overexpression worsens neonatal hypoxic-ischemic brain injury via mTOR-mediated tight junction disassembly. Cell Death Discov 2021; 7:150. [PMID: 34226528 PMCID: PMC8257791 DOI: 10.1038/s41420-021-00548-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/09/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Hypoxic-ischemic (HI) encephalopathy is the major cause of mortality and disability in newborns. The neurovascular unit is a major target of acute and chronic brain injury, and therapies that protect simultaneously both neurons and vascular endothelial cells from neonatal HI injury are in demand. Insulin receptors and its key downstream molecule-insulin receptor substrate −1 (IRS-1) are potential neuroprotective targets and expressed both in neuron and endothelial cells. To investigate whether IRS-1 can act similarly in neurons and vascular endothelial cells in protecting neurovascular units and brain form HI injury, we found that neuron-specific IRS-1 transgenic rats showed reduced neurovascular injury and infarct volumes, whereas endothelial-specific IRS-1 transgenic rats showed increased blood-brain barrier (BBB) disruption and exaggerated neurovascular injury after neonatal HI brain injury. Endothelial-specific IRS-1 overexpression increased vascular permeability and disassembled the tight junction protein (zonula occludens-1) complex. Inhibition of mammalian target of rapamycin (mTOR) by rapamycin preserved tight junction proteins and attenuated BBB leakage and neuronal apoptosis after HI in the endothelial-specific IRS-1 transgenic pups. Together, our findings suggested that neuronal and endothelial IRS-1 had opposite effects on the neurovascular integrity and damage after neonatal HI brain injury and that endothelial IRS-1 worsens neurovascular integrity after HI via mTOR-mediated tight junction protein disassembly.
Collapse
|
24
|
Aliena-Valero A, Baixauli-Martín J, Castelló-Ruiz M, Torregrosa G, Hervás D, Salom JB. Effect of uric acid in animal models of ischemic stroke: A systematic review and meta-analysis. J Cereb Blood Flow Metab 2021; 41:707-722. [PMID: 33210575 PMCID: PMC7983496 DOI: 10.1177/0271678x20967459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Addition of uric acid (UA) to thrombolytic therapy, although safe, showed limited efficacy in improving patients' stroke outcome, despite alleged neuroprotective effects of UA in preclinical research. This systematic review assessed the effects of UA on brain structural and functional outcomes in animal models of ischemic stroke. We searched Medline, Embase and Web of Science to identify 16 and 14 eligible rodent studies for qualitative and quantitative synthesis, respectively. Range of evidence met 10 of a possible 13 STAIR criteria. Median (Q1, Q3) quality score was 7.5 (6, 10) on the CAMARADES 15-item checklist. For each outcome, we used standardised mean difference (SMD) as effect size and random-effects modelling. Meta-analysis showed that UA significantly reduced infarct size (SMD: -1.18; 95% CI [-1.47, -0.88]; p < 0.001), blood-brain barrier (BBB) impairment/oedema (SMD: -0.72; 95% CI [-0.97, -0.48]; p < 0.001) and neurofunctional deficit (SMD: -0.98; 95% CI [-1.32, -0.63]; p < 0.001). Overall, there was low to moderate between-study heterogeneity and sizeable publication bias. In conclusion, published rodent data suggest that UA improves outcome following ischemic stroke by reducing infarct size, improving BBB integrity and ameliorating neurofunctional condition. Specific recommendations are given for further high-quality preclinical research required to better inform clinical research.
Collapse
Affiliation(s)
- Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universidad de Valencia, Valencia, Spain
| | | | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universidad de Valencia, Valencia, Spain.,Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
| | - Germán Torregrosa
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universidad de Valencia, Valencia, Spain
| | - David Hervás
- Unidad de Bioestadística, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Juan B Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe - Universidad de Valencia, Valencia, Spain.,Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
25
|
Wang S, Wang C, Wang L, Cai Z. Minocycline Inhibits mTOR Signaling Activation and Alleviates Behavioral Deficits in the Wistar Rats with Acute Ischemia stroke. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:791-799. [PMID: 32867663 DOI: 10.2174/1871527319999200831153748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mammalian target of rapamycin (mTOR) has been evidenced as a multimodal therapy in the pathophysiological process of Acute Ischemic Stroke (AIS). However, the pathway that minocycline targets mTOR signaling is not fully defined in the AIS pathogenesis. This study aims at the roles of minocycline on the mTOR signaling in the AIS process and further discovers the underlying mechanisms of minocycline involved in the following change of mTOR signaling-autophagy. METHODS Cerebral ischemia/reperfusion (CIR) rat animal models were established with the transient suture occlusion into the middle cerebral artery. Minocycline (50mg/kg) was given by intragastric administration. The Morris water maze was used to test the cognitive function of animals. Immunohistochemistry and immunofluorescence were introduced for testing the levels of synaptophysin and PSD-95. Western blot was conducted for investigating the levels of mTOR, p-mTOR (Ser2448), p70S6, p-p70S6 (Thr389), eEF2k, p-eEF2k (Ser366), p-eIF4B (Ser406), LC3, p62, synaptophysin and PSD-95. RESULTS Minocycline prevents the cognitive decline of the MCAO stroke rats. Minocycline limits the expression of p-mTOR (Ser2448) and the downstream targets of mTOR [p70S6, p-p70S6 (Thr389), eEF2k, p-eEF2k (Ser366) and p-eIF4B (Ser406)] (P<0.01), while minocycline has no influence on mTOR. LC3-II abundance and the LC3-II/I ratio were upregulated in the hippocampus of the MCAO stroke rats by the minocycline therapy (P<0.01). p62 was downregulated in the hippocampus from the MCAO stroke rats administrated with minocycline therapy(P<0.01). The levels of SYP and PSD-95 were upregulated in the brain of the MCAO stroke rats administrated with minocycline therapy. CONCLUSION Minocycline prevents cognitive deficits via inhibiting mTOR signaling and enhancing the autophagy process, and promoting the expression of pre- and postsynaptic proteins (synaptophysin and PSD-95) in the brain of the MCAO stroke rats. The potential neuroprotective role of minocycline in the process of cerebral ischemia may be related to mitigating ischemia-induced synapse injury via inhibiting the activation of mTOR signaling.
Collapse
Affiliation(s)
- Shengyuan Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Chuanling Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| |
Collapse
|
26
|
Beard DJ, Li Z, Schneider AM, Couch Y, Cipolla MJ, Buchan AM. Rapamycin Induces an eNOS (Endothelial Nitric Oxide Synthase) Dependent Increase in Brain Collateral Perfusion in Wistar and Spontaneously Hypertensive Rats. Stroke 2020; 51:2834-2843. [PMID: 32772681 DOI: 10.1161/strokeaha.120.029781] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND PURPOSE Rapamycin is a clinically approved mammalian target of rapamycin inhibitor that has been shown to be neuroprotective in animal models of stroke. However, the mechanism of rapamycin-induced neuroprotection is still being explored. Our aims were to determine if rapamycin improved leptomeningeal collateral perfusion, to determine if this is through eNOS (endothelial nitric oxide synthase)-mediated vessel dilation and to determine if rapamycin increases immediate postreperfusion blood flow. METHODS Wistar and spontaneously hypertensive rats (≈14 weeks old, n=22 and n=15, respectively) were subjected to ischemia by middle cerebral artery occlusion (90 and 120 minutes, respectively) with or without treatment with rapamycin at 30-minute poststroke. Changes in middle cerebral artery and collateral perfusion territories were measured by dual-site laser Doppler. Reactivity to rapamycin was studied using isolated and pressurized leptomeningeal anastomoses. Brain injury was measured histologically or with triphenyltetrazolium chloride staining. RESULTS In Wistar rats, rapamycin increased collateral perfusion (43±17%), increased reperfusion cerebral blood flow (16±8%) and significantly reduced infarct volume (35±6 versus 63±8 mm3, P<0.05). Rapamycin dilated leptomeningeal anastomoses by 80±9%, which was abolished by nitric oxide synthase inhibition. In spontaneously hypertensive rats, rapamycin increased collateral perfusion by 32±25%, reperfusion cerebral blood flow by 44±16%, without reducing acute infarct volume 2 hours postreperfusion. Reperfusion cerebral blood flow was a stronger predictor of brain damage than collateral perfusion in both Wistar and spontaneously hypertensive rats. CONCLUSIONS Rapamycin increased collateral perfusion and reperfusion cerebral blood flow in both Wistar and comorbid spontaneously hypertensive rats that appeared to be mediated by enhancing eNOS activation. These findings suggest that rapamycin may be an effective acute therapy for increasing collateral flow and as an adjunct therapy to thrombolysis or thrombectomy to improve reperfusion blood flow.
Collapse
Affiliation(s)
- Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom (D.J.B., A.M.S., Y.C., A.M.B.)
- School of Biomedical Science and Pharmacy, The University of Newcastle, Australia (D.J.B.)
| | - Zhaojin Li
- Department of Neurological Sciences, The University of Vermont, Burlington (Z.L., M.J.C.)
| | - Anna M Schneider
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom (D.J.B., A.M.S., Y.C., A.M.B.)
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom (D.J.B., A.M.S., Y.C., A.M.B.)
| | - Marilyn J Cipolla
- Department of Neurological Sciences, The University of Vermont, Burlington (Z.L., M.J.C.)
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom (D.J.B., A.M.S., Y.C., A.M.B.)
| |
Collapse
|
27
|
Zimmerman MA, Wilkison S, Qi Q, Chen G, Li PA. Mitochondrial dysfunction contributes to Rapamycin-induced apoptosis of Human Glioblastoma Cells - A synergistic effect with Temozolomide. Int J Med Sci 2020; 17:2831-2843. [PMID: 33162811 PMCID: PMC7645350 DOI: 10.7150/ijms.40159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) is upregulated in a high percentage of glioblastomas. While a well-known mTOR inhibitor, rapamycin, has been shown to reduce glioblastoma survival, the role of mitochondria in achieving this therapeutic effect is less well known. Here, we examined mitochondrial dysfunction mechanisms that occur with the suppression of mTOR signaling. We found that, along with increased apoptosis, and a reduction in transformative potential, rapamycin treatment significantly affected mitochondrial health. Specifically, increased production of reactive oxygen species (ROS), depolarization of the mitochondrial membrane potential (MMP), and altered mitochondrial dynamics were observed. Furthermore, we verified the therapeutic potential of rapamycin-induced mitochondrial dysfunction through co-treatment with temzolomide (TMZ), the current standard of care for glioblastoma. Together these results demonstrate that the mitochondria remain a promising target for therapeutic intervention against human glioblastoma and that TMZ and rapamycin have a synergistic effect in suppressing glioblastoma viability, enhancing ROS production, and depolarizing MMP.
Collapse
Affiliation(s)
- Mary A Zimmerman
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville St, Durham, NC, 27707, USA.,Department of Biology, University of Wisconsin-La Crosse, 1725 State St, La Crosse, WI, 54601, USA
| | - Samantha Wilkison
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville St, Durham, NC, 27707, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27708, USA
| | - Qi Qi
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville St, Durham, NC, 27707, USA.,Department of Neurology, Neuroscience Center, General Hospital of Ningxia Medical University, and Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 750004, China
| | - Guisheng Chen
- Department of Neurology, Neuroscience Center, General Hospital of Ningxia Medical University, and Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan 750004, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, 1801 Fayetteville St, Durham, NC, 27707, USA
| |
Collapse
|