1
|
Schwab AD, Wyatt TA, Nelson AJ, Gleason A, Gaurav R, Romberger DJ, Poole JA. Lung-delivered IL-10 therapy elicits beneficial effects via immune modulation in organic dust exposure-induced lung inflammation. J Immunotoxicol 2024; 21:2332172. [PMID: 38563602 PMCID: PMC11137733 DOI: 10.1080/1547691x.2024.2332172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Efficacious therapeutic options capable of resolving inflammatory lung disease associated with environmental and occupational exposures are lacking. This study sought to determine the preclinical therapeutic potential of lung-delivered recombinant interleukin (IL)-10 therapy following acute organic dust exposure in mice. Here, C57BL/6J mice were intratracheally instilled with swine confinement organic dust extract (ODE) (12.5%, 25%, 50% concentrations) with IL-10 (1 μg) treatment or vehicle control intratracheally-administered three times: 5 hr post-exposure and then daily for 2 days. The results showed that IL-10 treatment reduced ODE (25%)-induced weight loss by 66% and 46% at Day 1 and Day 2 post-exposure, respectively. IL-10 treatment reduced ODE (25%, 50%)-induced lung levels of TNFα (-76%, -83% [reduction], respectively), neutrophil chemoattractant CXCL1 (-51%, -60%), and lavage fluid IL-6 (-84%, -89%). IL-10 treatment reduced ODE (25%, 50%)-induced lung neutrophils (-49%, -70%) and recruited CD11cintCD11b+ monocyte-macrophages (-49%, -70%). IL-10 therapy reduced ODE-associated expression of antigen presentation (MHC Class II, CD80, CD86) and inflammatory (Ly6C) markers and increased anti-inflammatory CD206 expression on CD11cintCD11b+ cells. ODE (12.5%, 25%)-induced lung pathology was also reduced with IL-10 therapy. In conclusion, the studies here showed that short-term, lung-delivered IL-10 treatment induced a beneficial response in reducing inflammatory consequences (that were also associated with striking reduction in recruited monocyte-macrophages) following acute complex organic dust exposure.
Collapse
Affiliation(s)
- Aaron D. Schwab
- Division of Allergy and Immunology, Critical Care & Sleep, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Todd A. Wyatt
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE
| | - Amy J. Nelson
- Division of Allergy and Immunology, Critical Care & Sleep, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Angela Gleason
- Division of Allergy and Immunology, Critical Care & Sleep, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Rohit Gaurav
- Division of Allergy and Immunology, Critical Care & Sleep, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Debra J. Romberger
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Jill A. Poole
- Division of Allergy and Immunology, Critical Care & Sleep, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
2
|
Shen X, Yang YB, Gao Y, Wang S, Wang H, Sun M, Meng F, Tang YD, Tu Y, Kong Q, An TQ, Cai XH. Lipid A-modified Escherichia coli can produce porcine parvovirus virus-like particles with high immunogenicity and minimal endotoxin activity. Microb Cell Fact 2024; 23:222. [PMID: 39118114 PMCID: PMC11308658 DOI: 10.1186/s12934-024-02497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND A cost-effective Escherichia coli expression system has gained popularity for producing virus-like particle (VLP) vaccines. However, the challenge lies in balancing the endotoxin residue and removal costs, as residual endotoxins can cause inflammatory reactions in the body. RESULTS In this study, porcine parvovirus virus-like particles (PPV-VLPs) were successfully assembled from Decreased Endotoxic BL21 (BL21-DeE), and the effect of structural changes in the lipid A of BL21 on endotoxin activity, immunogenicity, and safety was investigated. The lipopolysaccharide purified from BL21-DeE produced lower IL-6 and TNF-α than that from wild-type BL21 (BL21-W) in both RAW264.7 cells and BALB/c mice. Additionally, mice immunized with PPV-VLP derived form BL21-DeE (BL21-DeE-VLP) showed significantly lower production of inflammatory factors and a smaller increase in body temperature within 3 h than those immunized with VLP from BL21-W (BL21-W-VLP) and endotoxin-removed VLP (ReE-VLP). Moreover, mice in the BL21-DeE-VLP immunized group had similar levels of serum antibodies as those in the BL21-W-VLP group but significantly higher levels than those in the ReE-VLP group. Furthermore, the liver, lungs, and kidneys showed no pathological damage compared with the BL21-W-VLP group. CONCLUSION Overall, this study proposes a method for producing VLP with high immunogenicity and minimal endotoxin activity without chemical or physical endotoxin removal methods. This method could address the issue of endotoxin residues in the VLP and provide production benefits.
Collapse
Affiliation(s)
- Xuegang Shen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Yong-Bo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
- Heilongjiang Veterinary Biopharmaceutical Engineering Technology Research Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yanfei Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Haiwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Mingxia Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Fandan Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Yabin Tu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Qingke Kong
- College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China.
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Xue-Hui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China.
- Heilongjiang Veterinary Biopharmaceutical Engineering Technology Research Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
3
|
Liu Y, Gao C, Li G, Niu Z, Liu X, Shen H, Sun J, Zhang R. Melanin Nanoparticle-Modified Probiotics for Targeted Synergistic Therapy of Ulcerative Colitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31950-31965. [PMID: 38861025 DOI: 10.1021/acsami.4c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Ulcerative colitis (UC) is a recurrent chronic mucosal inflammation disease whose most significant pathological characteristics are intestinal inflammation and damaged mucosal barrier induced by reactive oxygen/nitrogen species, abnormal immune microenvironment, and intestinal microecological imbalance. Oral probiotics are a living therapy for intestinal diseases, but their clinical application is hindered by poor bacterial biological activity and insufficient intestinal retention. Here, we developed a targeted oral formulation, functionalized probiotic Lf@MPB, with Lactobacillus fermentum (Lf) as the core and modified melanin nanoparticles (MNPs) on its surface through a click reaction of tricarboxyphenylboronic acid for synergistic therapy of UC. In vitro experiments showed that Lf@MPB not only possessed strong free radical scavenging ability, reduced cellular mitochondrial polarization, and inhibited apoptosis but also significantly enhanced the viability of Lf probiotics in simulated gastrointestinal fluid. Fluorescence imaging in vivo revealed the high accumulation of Lf@MPB at the site of intestinal inflammation in dextran sulfate sodium-induced UC mice. Moreover, in vivo results demonstrated that Lf@MPB effectively alleviated oxidative stress and inflammatory response and restored the intestinal barrier. In addition, 16S rRNA gene sequencing verified that Lf@MPB could increase the abundance and diversity of intestinal microbial communities and optimize microbial composition to inhibit the progression of UC. This work combines effective antioxidant and anti-inflammatory strategies with the oral administration of functionalized probiotics to provide a promising alternative for UC treatment.
Collapse
Affiliation(s)
- Yuqin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Caifang Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Gang Li
- Shanxi Medical University, Taiyuan 030001, China
| | | | - Xiaoli Liu
- Shanxi Medical University, Taiyuan 030001, China
| | - Hao Shen
- Shanxi Medical University, Taiyuan 030001, China
| | - Jinghua Sun
- First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
4
|
Bryan EE, Bode NM, Chen X, Burris ES, Johnson DC, Dilger RN, Dilger AC. The effect of chronic, non-pathogenic maternal immune activation on offspring postnatal muscle and immune outcomes. J Anim Sci 2024; 102:skad424. [PMID: 38189595 PMCID: PMC10794819 DOI: 10.1093/jas/skad424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
The objective was to determine the effects of maternal inflammation on offspring muscle development and postnatal innate immune response. Sixteen first-parity gilts were randomly allotted to repeated intravenous injections with lipopolysaccharide (LPS; n = 8, treatment code INFLAM) or comparable volume of phosphate buffered saline (CON, n = 8). Injections took place every other day from gestational day (GD) 70 to GD 84 with an initial dose of 10 μg LPS/kg body weight (BW) increasing by 12% each time to prevent endotoxin tolerance. On GD 70, 76, and 84, blood was collected at 0 and 4 h postinjection via jugular or ear venipuncture to determine tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β concentrations. After farrowing, litter mortality was recorded, and the pig closest to litter BW average was used for dissection and muscle fiber characterization. On weaning (postnatal day [PND] 21), pigs were weighed individually and 2 barrows closest to litter BW average were selected for another study. The third barrow closest to litter BW average was selected for the postnatal LPS challenge. On PND 52, pigs were given 5 μg LPS/kg BW via intraperitoneal injection, and blood was collected at 0, 4, and 8 h postinjection to determine TNF-α concentration. INFLAM gilt TNF-α concentration increased (P < 0.01) 4 h postinjection compared to 0 h postinjection, while CON gilt TNF-α concentration did not differ between time points. INFLAM gilt IL-6 and IL-1β concentrations increased (P = 0.03) 4 h postinjection compared to 0 h postinjection on GD 70, but did not differ between time points on GD 76 and 84. There were no differences between INFLAM and CON gilts litter mortality outcomes (P ≥ 0.13), but INFLAM pigs were smaller (P = 0.04) at birth and tended (P = 0.09) to be smaller at weaning. Muscle and organ weights did not differ (P ≥ 0.17) between treatments, with the exception of semitendinosus, which was smaller (P < 0.01) in INFLAM pigs. INFLAM pigs tended (P = 0.06) to have larger type I fibers. INFLAM pig TNF-α concentration did not differ across time, while CON pig TNF-α concentration peaked (P = 0.01) 4 h postinjection. TNF-α concentration did not differ between treatments at 0 and 8 h postinjection, but CON pigs had increased (P = 0.01) TNF-α compared to INFLAM pigs 4 h postinjection. Overall, maternal immune activation did not alter pig muscle development, but resulted in suppressed innate immune activation.
Collapse
Affiliation(s)
- Erin E Bryan
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Nick M Bode
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Xuenan Chen
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Elli S Burris
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Danielle C Johnson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Anna C Dilger
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
5
|
Bartkeviciene A, Jasukaitiene A, Zievyte I, Stukas D, Ivanauskiene S, Urboniene D, Maimets T, Jaudzems K, Vitkauskiene A, Matthews J, Dambrauskas Z, Gulbinas A. Association between AHR Expression and Immune Dysregulation in Pancreatic Ductal Adenocarcinoma: Insights from Comprehensive Immune Profiling of Peripheral Blood Mononuclear Cells. Cancers (Basel) 2023; 15:4639. [PMID: 37760608 PMCID: PMC10526859 DOI: 10.3390/cancers15184639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), has an immune suppressive environment that allows tumour cells to evade the immune system. The aryl-hydrocarbon receptor (AHR) is a transcription factor that can be activated by certain exo/endo ligands, including kynurenine (KYN) and other tryptophan metabolites. Once activated, AHR regulates the expression of various genes involved in immune responses and inflammation. Previous studies have shown that AHR activation in PDAC can have both pro-tumorigenic and anti-tumorigenic effects, depending on the context. It can promote tumour growth and immune evasion by suppressing anti-tumour immune responses or induce anti-tumour effects by enhancing immune cell function. In this study involving 30 PDAC patients and 30 healthy individuals, peripheral blood samples were analysed. PDAC patients were categorized into Low (12 patients) and High/Medium (18 patients) AHR groups based on gene expression in peripheral blood mononuclear cells (PBMCs). The Low AHR group showed distinct immune characteristics, including increased levels of immune-suppressive proteins such as PDL1, as well as alterations in lymphocyte and monocyte subtypes. Functional assays demonstrated changes in phagocytosis, nitric oxide production, and the expression of cytokines IL-1, IL-6, and IL-10. These findings indicate that AHR's expression level has a crucial role in immune dysregulation in PDAC and could be a potential target for early diagnostics and personalised therapeutics.
Collapse
Affiliation(s)
- Arenida Bartkeviciene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Aldona Jasukaitiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Inga Zievyte
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Darius Stukas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Sandra Ivanauskiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Daiva Urboniene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (D.U.); (A.V.)
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia;
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (D.U.); (A.V.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 1046 Blindern, 0317 Oslo, Norway;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zilvinas Dambrauskas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Antanas Gulbinas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| |
Collapse
|
6
|
Schott T, Reisinger N, Teichmann K, König J, Ladinig A, Mayer E. Establishment of an In Vitro Co-Culture Model of the Piglet Gut to Study Inflammatory Response and Barrier Integrity. PLANTA MEDICA 2022; 88:262-273. [PMID: 34144625 DOI: 10.1055/a-1510-5802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In intensive farming, piglets are exposed to various challenges that activate intestinal inflammatory processes, negatively affecting animal health and leading to economic losses. To study the role of the inflammatory response on epithelial barrier integrity, co-culture systems that mimic in vivo complexity are more and more preferred over cell monocultures. In this study, an in vitro gut co-culture model consisting of intestinal porcine epithelial cells and porcine peripheral blood mononuclear cells was established. The model provides an appropriate tool to study the role of the inflammatory response on epithelial barrier integrity and to screen for feed and food components, exerting beneficial effects on gut health. In the established model, inflammation-like reactions and damage of the epithelial barrier, indicated by a decrease of transepithelial electrical resistance, were elicited by activation of peripheral blood mononuclear cells via one of 3 stimuli: lipopolysaccharide, lipoteichoic acid, or concanavalin A. Two phytogenic substances that are commonly used as feed additives, licorice extract and oregano oil, have been shown to counteract the drop in transepithelial electrical resistance values in the gut co-culture model. The established co-culture model provides a powerful in vitro tool to study the role of intestinal inflammation on epithelial barrier integrity. As it consists of porcine epithelial and porcine blood cells it perfectly mimics in vivo conditions and imitates the inter-organ communication of the piglet gut. The developed model is useful to screen for nutritional components or drugs, having the potential to balance intestinal inflammation and strengthen the epithelial barrier integrity in piglets.
Collapse
Affiliation(s)
| | | | | | - Jürgen König
- Department of Nutritional Science, University of Vienna, Vienna, Austria
| | - Andrea Ladinig
- Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | | |
Collapse
|
7
|
Sharma P, Vijaykumar A, Raghavan JV, Rananaware SR, Alakesh A, Bodele J, Rehman JU, Shukla S, Wagde V, Nadig S, Chakrabarti S, Visweswariah SS, Nandi D, Gopal B, Jhunjhunwala S. Particle uptake driven phagocytosis in macrophages and neutrophils enhances bacterial clearance. J Control Release 2022; 343:131-141. [PMID: 35085696 PMCID: PMC7615985 DOI: 10.1016/j.jconrel.2022.01.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Humans are exposed to numerous synthetic foreign particles in the form of drug delivery systems and diagnostic agents. Specialized immune cells (phagocytes) clear these particles by phagocytosing and attempting to degrade them. The process of recognition and internalization of the particles may trigger changes in the function of phagocytes. Some of these changes, especially the ability of a particle-loaded phagocyte to take up and neutralize pathogens, remains poorly studied. Herein, we demonstrate that the uptake of non-stimulatory cargo-free particles enhances the phagocytic ability of monocytes, macrophages and neutrophils. The enhancement in phagocytic ability was independent of particle properties, such as size or the base material constituting the particle. Additionally, we show that the increased phagocytosis was not a result of cellular activation or cellular heterogeneity but was driven by changes in cell membrane fluidity and cellular compliance. A consequence of the enhanced phagocytic activity was that particulate-laden immune cells neutralize Escherichia coli (E. coli) faster in culture. Moreover, when administered in mice as a prophylactic, particulates enable faster clearance of E. coli and Staphylococcus epidermidis. Together, we demonstrate that the process of uptake induces cellular changes that favor additional phagocytic events. This study provides insights into using non-stimulatory cargo-free particles to engineer immune cell functions for applications involving faster clearance of phagocytosable abiotic and biotic material.
Collapse
Affiliation(s)
- Preeti Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Anjali Vijaykumar
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | | | - Alakesh Alakesh
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Janhavi Bodele
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Junaid Ur Rehman
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Shivani Shukla
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Virta Wagde
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Savitha Nadig
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Sveta Chakrabarti
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | | | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
8
|
Immune Modulatory Effects of Probiotic Streptococcus thermophilus on Human Monocytes. BIOLOGICS 2021. [DOI: 10.3390/biologics1030023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ingesting probiotics contributes to the development of a healthy microflora in the GIT with established benefits to human health. Some of these beneficial effects may be through the modulation of the immune system. In addition, probiotics have become more common in the treatment of many inflammatory and immune disorders. Here, we demonstrate a range of immune modulating effects of Streptococcus thermophilus by human monocytes, including decreased mRNA expression of IL-1R, IL-18, IFNαR1, IFNγR1, CCL2, CCR5, TLR-1, TLR-2, TLR-4, TLR-5, TLR-6, TLR-8, CD14, CD86, CD4, ITGAM, LYZ, TYK2, IFNR1, IRAK-1, NOD2, MYD88, SLC11A1, and increased expression of IL-1α, IL-1β, IL-2, IL-6, IL-8, IL-23, IFNγ, TNFα, CSF-2. The routine administration of Streptococcus thermophilus in fermented dairy products and their consumption may be beneficial to the treatment/management of inflammatory and autoimmune diseases.
Collapse
|
9
|
Chopra H, Dey PS, Das D, Bhattacharya T, Shah M, Mubin S, Maishu SP, Akter R, Rahman MH, Karthika C, Murad W, Qusty N, Qusti S, Alshammari EM, Batiha GES, Altalbawy FMA, Albooq MIM, Alamri BM. Curcumin Nanoparticles as Promising Therapeutic Agents for Drug Targets. Molecules 2021; 26:4998. [PMID: 34443593 PMCID: PMC8402133 DOI: 10.3390/molecules26164998] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Curcuma longa is very well-known medicinal plant not only in the Asian hemisphere but also known across the globe for its therapeutic and medicinal benefits. The active moiety of Curcuma longa is curcumin and has gained importance in various treatments of various disorders such as antibacterial, antiprotozoal, cancer, obesity, diabetics and wound healing applications. Several techniques had been exploited as reported by researchers for increasing the therapeutic potential and its pharmacological activity. Here, the dictum is the new room for the development of physicochemical, as well as biological, studies for the efficacy in target specificity. Here, we discussed nanoformulation techniques, which lend support to upgrade the characters to the curcumin such as enhancing bioavailability, increasing solubility, modifying metabolisms, and target specificity, prolonged circulation, enhanced permeation. Our manuscript tried to seek the attention of the researcher by framing some solutions of some existing troubleshoots of this bioactive component for enhanced applications and making the formulations feasible at an industrial production scale. This manuscript focuses on recent inventions as well, which can further be implemented at the community level.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Protity Shuvra Dey
- Department of Food Science & Nutrition Management, J.D. Birla Institute, Kolkata 700020, India;
| | - Debashrita Das
- School of Community Science & Technology, IIEST Shibpur, Howrah 711103, India;
| | - Tanima Bhattacharya
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | | | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Naeem Qusty
- Biochemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah 80200, Saudi Arabia;
| | - Safaa Qusti
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia;
| | - Eida M. Alshammari
- Department of Medical Laboratories, Faculty of Applied Medical Sciences, Umma Al-Qura University, Mecca P.O. Box 715, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Farag M. A. Altalbawy
- National institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt;
- Department of Biology, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia;
| | - Mona I. M. Albooq
- Department of Biology, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia;
| | - Badrieah M. Alamri
- Department of Biology, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
10
|
Hejna M, Kovanda L, Rossi L, Liu Y. Mint Oils: In Vitro Ability to Perform Anti-Inflammatory, Antioxidant, and Antimicrobial Activities and to Enhance Intestinal Barrier Integrity. Antioxidants (Basel) 2021; 10:antiox10071004. [PMID: 34201645 PMCID: PMC8300686 DOI: 10.3390/antiox10071004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
The objectives of the study were to test the biological activities of peppermint and spearmint oils via (i) measuring in vitro anti-inflammatory effects with porcine alveolar macrophages (PAMs), (ii) determining the barrier integrity of IPEC-J2 by analyzing transepithelial electrical resistance (TEER), (iii) testing their antioxidant activities, and (iv) investigating the antimicrobial activity against enterotoxigenic Escherichia coli (ETEC) F18+. Briefly, (i) macrophages were seeded at 106 cells/mL and treated (24 h) with mint oils and lipopolysaccharide (LPS). The treatments were 2 (0 or 1 μg/mL of LPS) × 5 (0, 25, 50, 100, 200 µg/mL of mint oils). The supernatants were collected for TNF-α and IL-1β measurement by ELISA; (ii) IPEC-J2 cells were seeded at 5 × 105 cells/mL and treated with mint oils (0, 25, 50, 100, and 200 μg/mL). TEER (Ωcm2) was measured at 0, 24, 48, and 72 h; (iii) the antioxidant activity was assessed (0, 1, 50, 100, 200, 500, and 600 mg/mL) using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and reducing power assays; (iv) overnight-grown ETEC F18+ were quantified (CFU/mL) after supplementing with peppermint and spearmint oils (0, 1.44, 2.87, 5.75, 11.50, and 23.00 mg/mL). All data were analyzed using the MIXED procedure. Both mint oils significantly inhibited (p < 0.05) IL-1β and TNF-α secretion from LPS-stimulated PAMs. Mint oil treatments did not affect TEER in IPEC-J2. Spearmint and peppermint oils exhibited (p < 0.05) strong antioxidant activities in DPPH and reducing power assays. Both mint oils also dose-dependently inhibited (p < 0.05) the growth of ETEC F18+ in vitro. The results of the study indicated that both mint oils are great candidate feed additives due to their in vitro anti-inflammatory, antioxidant, and antimicrobial effects. Further research is needed to evaluate their efficacy in vivo.
Collapse
Affiliation(s)
- Monika Hejna
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milan, Italy;
- Department of Animal Science, University of California, Davis, 4302 Meyer Hall, One Shields Ave, Davis, CA 95616, USA;
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, 4302 Meyer Hall, One Shields Ave, Davis, CA 95616, USA;
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milan, Italy;
- Correspondence: (L.R.); (Y.L.); Tel.: +41-61-683-77-34 (L.R.); +1-530-752-4275 (Y.L.); Fax: +41-61-302-89-18 (L.R.); +1-530-752-0175 (Y.L.)
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, 4302 Meyer Hall, One Shields Ave, Davis, CA 95616, USA;
- Correspondence: (L.R.); (Y.L.); Tel.: +41-61-683-77-34 (L.R.); +1-530-752-4275 (Y.L.); Fax: +41-61-302-89-18 (L.R.); +1-530-752-0175 (Y.L.)
| |
Collapse
|
11
|
Karami E, Esfahrood ZR, Mansouri R, Haerian A, Abdian-Asl A. Effect of epigallocatechin-3-gallate on tumor necrosis factor-alpha production by human gingival fibroblasts stimulated with bacterial lipopolysaccharide: An in vitro study. J Indian Soc Periodontol 2021; 25:11-16. [PMID: 33642735 PMCID: PMC7904023 DOI: 10.4103/jisp.jisp_323_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/24/2020] [Accepted: 10/11/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Evidence shows that epigallocatechin-3-gallate (EGCG) in green tea has anti-inflammatory effects. Aim: This study assessed the effect of EGCG on the production of tumor necrosis factor-alpha (TNF-α) as an inflammatory cytokine in periodontitis, which produced by human gingival fibroblasts (HGFs) stimulated with lipopolysaccharide (LPS) of Porphyromonas gingivalis. Materials and Methods: In this study, HGFs were cultured and subjected to LPS and EGCG. Cell viability of different concentrations of EGCG (10, 25, 50, 75, and 100 μM) and LPS (1, 10, 20, and 50 μg/mL) was assessed using methyl-thiazole-tetrazolium (MTT) assay. Then, the best concentrations of EGCG and P. gingivalis LPS were used simultaneously and separately to assess the production of TNF-α by HGFs using the enzyme-linked immunosorbent assay (ELISA). Assessments were done at 1, 3, and 5 days. Data were read using the ELISA reader and analyzed by the SPSS through two-way ANOVA. Results: LPS at 1, 10, and 20 and EGCG at 10.25 and 50 μM showed the least cytotoxicity in MTT assay. ELISA showed EGCG alone decreased the production of TNF-α in all days, except 10 μM on day 1. 1, 10, and 20 μg/mL LPS increased the output of TNF-α on days 1 and 3 while reducing it on day 5. The combination of EGCG and LPS showed a decrease of TNF-α in all days except on day 5 that revealed an increase in the production of TNF-α at 25 and 50 μM EGCG. Conclusion: In the combination use of EGCG and LPS, EGCG shows anti-inflammatory effects by decreasing the production of TNF-α by HGFs stimulated with P. gingivalis.
Collapse
Affiliation(s)
- Elahe Karami
- Department of Periodontics, School of Dentistry, Shahid Sadughi University of Medical Science, Yazd, Iran
| | - Zeinab Rezaei Esfahrood
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mansouri
- Department of Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Blood and oncology research center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Haerian
- Department of Periodontics, School of Dentistry, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Amir Abdian-Asl
- Department of Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
12
|
Nadella V, Garg M, Kapoor S, Barwal TS, Jain A, Prakash H. Emerging neo adjuvants for harnessing therapeutic potential of M1 tumor associated macrophages (TAM) against solid tumors: Enusage of plasticity. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1029. [PMID: 32953829 PMCID: PMC7475467 DOI: 10.21037/atm-20-695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrophages are a major component of the tumor microenvironment (TME) of most tumors. They are characterized by a high degree of functional plasticity which enable these cells to both promote and eliminate established tumors. Under the influence of immunosuppressive TME, tumor infiltrating iNOS+ and CD11b+ M-1 effector macrophages get polarized towards tumor associated macrophages (TAM) which are tropic to variety of tumors. Increased infiltration and density of TAM is associated with tumor progression and poor prognosis in the plethora of tumors due to their angiogenetic and tissue re-modelling nature. Importantly, TAMs are also responsible for developing endothelium anergy, a major physical barrier for majority of cancer directed immune/chemotherapies. Therefore, functional retuning/re-educating TAM to M-1 phenotypic macrophages is paramount for effective immunotherapy against established tumors. In this review, we discuss and provide comprehensive update on TAM-targeted approaches for enhancing immunity against various solid tumors.
Collapse
Affiliation(s)
- Vinod Nadella
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Telangana, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Sonia Kapoor
- Amity Institute of Molecular Medicine and Stem cell Research, Amity University Uttar Pradesh, Sector 125, Noida, India
| | | | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bhatinda, India
| | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India
| |
Collapse
|
13
|
Yan Y, Zhang X, Zhang X, Li N, Man H, Chen L, Xiao Y. Ratiometric sensing lysosomal pH in inflammatory macrophages by a BODIPY-rhodamine dyad with restrained FRET. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Galvão I, de Carvalho RVH, Vago JP, Silva ALN, Carvalho TG, Antunes MM, Ribeiro FM, Menezes GB, Zamboni DS, Sousa LP, Teixeira MM. The role of annexin A1 in the modulation of the NLRP3 inflammasome. Immunology 2020; 160:78-89. [PMID: 32107769 DOI: 10.1111/imm.13184] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Annexins are well-known Ca2+ phospholipid-binding proteins, which have a wide variety of cellular functions. The role of annexin A1 (AnxA1) in the innate immune system has focused mainly on the anti-inflammatory and proresolving properties through its binding to the formyl-peptide receptor 2 (FPR2)/ALX receptor. However, studies suggesting an intracellular role of AnxA1 are emerging. In this study, we aimed to understand the role of AnxA1 for interleukin (IL)-1β release in response to activators of the nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3 (NLRP3) inflammasome. Using AnxA1 knockout mice, we observed that AnxA1 is required for IL-1β release in vivo and in vitro. These effects were due to reduction of transcriptional levels of IL-1β, NLRP3 and caspase-1, a step called NLRP3 priming. Moreover, we demonstrate that AnxA1 co-localize and directly bind to NLRP3, suggesting the role of AnxA1 in inflammasome activation is independent of its anti-inflammatory role via FPR2. Therefore, AnxA1 regulates NLRP3 inflammasome priming and activation in a FPR2-independent manner.
Collapse
Affiliation(s)
- Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renan V H de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana P Vago
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre L N Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Toniana G Carvalho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maísa M Antunes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M Ribeiro
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo B Menezes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
15
|
Dargahi N, Johnson J, Apostolopoulos V. Streptococcus thermophilus alters the expression of genes associated with innate and adaptive immunity in human peripheral blood mononuclear cells. PLoS One 2020; 15:e0228531. [PMID: 32045425 PMCID: PMC7012395 DOI: 10.1371/journal.pone.0228531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Consumption of probiotics contributes to a healthy microbiome of the GIT leading to many health benefits. They also contribute to the modulation of the immune system and are becoming popular for the treatment of a number of immune and inflammatory diseases. The main objective of this study was to evaluate anti-inflammatory and modulatory properties of Streptococcus thermophilus. We used peripheral blood mononuclear cells from healthy donors and assessed modifications in the mRNA expression of their genes related to innate and adaptive immune system. Our results showed strong immune modulatory effects of S. thermophilus 285 to human peripheral blood mononuclear cells with an array of anti-inflammatory properties. S. thermophilus 285 reduced mRNA expression in a number of inflammatory immune mediators and markers, and upregulated a few of immune markers. S. thermophilus is used in the dairy industry, survives during cold storage, tolerates well upon ingesting, and their consumption may have beneficial effects with potential implications in inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Joshua Johnson
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Zheng R, Tan Y, Gu M, Kang T, Zhang H, Guo L. N-acetyl cysteine inhibits lipopolysaccharide-mediated synthesis of interleukin-1β and tumor necrosis factor-α in human periodontal ligament fibroblast cells through nuclear factor-kappa B signaling. Medicine (Baltimore) 2019; 98:e17126. [PMID: 31577702 PMCID: PMC6783161 DOI: 10.1097/md.0000000000017126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the role of n-acetyl cysteine (NAC) in the lipopolysaccharide (LPS)-mediated induction of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) synthesis by human periodontal ligament fibroblast cells (hPDLFs). In addition, we aimed to determine the involvement of the nuclear factor-kappa B (NF-κB) pathway in any changes in IL-1β and TNF-α expression observed in response to LPS and NAC. METHODS HPDLFs were obtained by primary culture. The culture medium used in this experiment was Dulbecco's Modified Eagle Medium (DMEM low-glucose). Cells were stimulated with various concentrations of NAC or LPS. Cell proliferation was measured at various time-points with the cell Counting Kit 8 (CCK-8) assay. mRNA levels of IL-1β and TNF-α were determined by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. Protein levels of IL-1β and TNF-α were measured by enzyme-linked immunosorbent assay (ELISA). Protein and mRNA expression levels of NF-κB were measured by western blot and RT-qPCR. RESULTS The results showed that LPS treatment in hPDLFs induced mRNA and protein expression of IL-1β, TNF-α, and NF-κB. However, these effects were eliminated by pretreatment with NAC. Pretreatment with both NAC (1 mmol/L) and BAY11-7082 (10 μmol/L) significantly inhibited the NF-κB activity induced by LPS. CONCLUSION NAC inhibits the LPS-mediated synthesis of tumor TNF-α and IL-1β in hPDLFs, through the NF-κB pathway.
Collapse
|
17
|
Zhou M, Fang H, Du M, Li C, Tang R, Liu H, Gao Z, Ji Z, Ke B, Chen XL. The Modulation of Regulatory T Cells via HMGB1/PTEN/β-Catenin Axis in LPS Induced Acute Lung Injury. Front Immunol 2019; 10:1612. [PMID: 31402909 PMCID: PMC6669370 DOI: 10.3389/fimmu.2019.01612] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/27/2019] [Indexed: 01/08/2023] Open
Abstract
Sepsis-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) remains the leading complication for mortality caused by bacterial infection. The regulatory T (Treg) cells appear to be an important modulator in resolving lung injury. Despite the extensive studies, little is known about the role of macrophage HMGB1/PTEN/β-catenin signaling in Treg development during ALI. Objectives: This study was designed to determine the roles and molecular mechanisms of HMGB1/PTEN/β-catenin signaling in mediating CD4+CD25+Foxp3+ Treg development in sepsis-induced lung injury in mice. Setting: University laboratory research of First Affiliated Hospital of Anhui Medical University. Subjects: PTEN/β-catenin Loxp and myeloid-specific knockout mice. Interventions: Groups of PTENloxp/β-cateninloxp and myeloid-specific PTEN/β-catenin knockout (PTENM−KO/β-cateninM−KO) mice were treated with LPS or recombinant HMGB1 (rHMGB1) to induce ALI. The effects of HMGB1-PTEN axis were further analyzed by in vitro co-cultures. Measures and Main Results: In a mouse model of ALI, blocking HMGB1 or myeloid-specific PTEN knockout (PTENM−KO) increased animal survival/body weight, reduced lung damage, increased TGF-β production, inhibited the expression of RORγt and IL-17, while promoting β-catenin signaling and increasing CD4+CD25+Foxp3+ Tregs in LPS- or rHMGB-induced lung injury. Notably, myeloid-specific β-catenin ablation (β-cateninM−KO) resulted in reduced animal survival and increased lung injury, accompanied by reduced CD4+CD25+Foxp3+ Tregs in rHMGB-induced ALI. Furthermore, disruption of macrophage HMGB1/PTEN or activation of β-catenin significantly increased CD4+CD25+Foxp3+ Tregs in vitro. Conclusions: HMGB1/PTEN/β-catenin signaling is a novel pathway that regulates Treg development and provides a potential therapeutic target in sepsis-induced lung injury.
Collapse
Affiliation(s)
- Min Zhou
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Min Du
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Rui Tang
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiyan Liu
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhi Gao
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zongshu Ji
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bibo Ke
- Department of Surgery, The Dumont-UCLA Transplant Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Nova Z, Skovierova H, Calkovska A. Alveolar-Capillary Membrane-Related Pulmonary Cells as a Target in Endotoxin-Induced Acute Lung Injury. Int J Mol Sci 2019; 20:ijms20040831. [PMID: 30769918 PMCID: PMC6412348 DOI: 10.3390/ijms20040831] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
The main function of the lungs is oxygen transport from the atmosphere into the blood circulation, while it is necessary to keep the pulmonary tissue relatively free of pathogens. This is a difficult task because the respiratory system is constantly exposed to harmful substances entering the lungs by inhalation or via the blood stream. Individual types of lung cells are equipped with the mechanisms that maintain pulmonary homeostasis. Because of the clinical significance of acute respiratory distress syndrome (ARDS) the article refers to the physiological role of alveolar epithelial cells type I and II, endothelial cells, alveolar macrophages, and fibroblasts. However, all these cells can be damaged by lipopolysaccharide (LPS) which can reach the airspaces as the major component of the outer membrane of Gram-negative bacteria, and lead to local and systemic inflammation and toxicity. We also highlight a negative effect of LPS on lung cells related to alveolar-capillary barrier and their response to LPS exposure. Additionally, we describe the molecular mechanism of LPS signal transduction pathway in lung cells.
Collapse
Affiliation(s)
- Zuzana Nova
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Henrieta Skovierova
- Biomedical Center Martin, Division of Molecular Medicine, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Andrea Calkovska
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| |
Collapse
|
19
|
Cumming BM, Goldring JPD. Monocyte phagocytosis of malaria β-haematin in the presence of artemisinin, amodiaquine, chloroquine, doxycycline, primaquine, pyrimethamine and quinine. Exp Parasitol 2018; 197:93-102. [PMID: 30562480 DOI: 10.1016/j.exppara.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 11/07/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
Abstract
The intraerythrocytic malaria parasite digests haemoglobin to provide amino acids for metabolism and releases toxic haem that is sequestered into haemozoin, a non-toxic, insoluble, crystalline pigment. Following erythrocyte rupture, haemozoin is released into circulation and phagocytosed by monocytes. Phagocytosed haemozoin and antimalarial drugs have both been reported to modulate monocyte functions. This study determined the effects of therapeutic concentrations of seven antimalarial drugs; amodiaquine, artemisinin, chloroquine, doxycycline, primaquine, pyrimethamine and quinine, on the phagocytosis of β-haematin (synthetic haemozoin) by two monocytic cell lines, J774A.1 and U937, and human peripheral blood mononuclear cells. A novel spectrophotometric method based on the absorbance (O.D 400 nm) of alkali/SDS treated monocytes containing β-haematin was developed to complement counting phagocytosis with microscopy. The method has potential use for the large scale screening of monocyte phagocytic activity. Artemisinin, quinine, primaquine and pyrimethamine activated β-haematin phagocytosis by 12% or more, whereas amodiaquine, chloroquine and doxycyline inhibited β-haematin phagocytosis. In contrast, antimalarial drugs had minimal inhibitory effects on the phagocytosis of latex beads with only quinine resulting in more than 20% inhibition. Antimalarial drugs appear to alter monocyte phagocytic activity which has implications for the treatment, pathogenicity and adjunct therapies for malaria.
Collapse
Affiliation(s)
- Bridgette M Cumming
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa
| | - J P Dean Goldring
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
20
|
Utispan K, Pugdee K, Koontongkaew S. Porphyromonas gingivalis lipopolysaccharide-induced macrophages modulate proliferation and invasion of head and neck cancer cell lines. Biomed Pharmacother 2018; 101:988-995. [DOI: 10.1016/j.biopha.2018.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/27/2022] Open
|
21
|
Yang Q, Pröll MJ, Salilew-Wondim D, Zhang R, Tesfaye D, Fan H, Cinar MU, Große-Brinkhaus C, Tholen E, Islam MA, Hölker M, Schellander K, Uddin MJ, Neuhoff C. LPS-induced expression of CD14 in the TRIF pathway is epigenetically regulated by sulforaphane in porcine pulmonary alveolar macrophages. Innate Immun 2016; 22:682-695. [PMID: 27688705 DOI: 10.1177/1753425916669418] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary alveolar macrophages (AMs) are important in defense against bacterial lung inflammation. Cluster of differentiation 14 (CD14) is involved in recognizing bacterial lipopolysaccharide (LPS) through MyD88-dependent and TRIF pathways of innate immunity. Sulforaphane (SFN) shows anti-inflammatory activity and suppresses DNA methylation. To identify CD14 epigenetic changes by SFN in the LPS-induced TRIF pathway, an AMs model was investigated in vitro. CD14 gene expression was induced by 5 µg/ml LPS at the time point of 12 h and suppressed by 5 µM SFN. After 12 h of LPS stimulation, gene expression was significantly up-regulated, including TRIF, TRAF6, NF-κB, TRAF3, IRF7, TNF-α, IL-1β, IL-6, and IFN-β. LPS-induced TRAM, TRIF, RIPK1, TRAF3, TNF-α, IL-1β and IFN-β were suppressed by 5 µM SFN. Similarly, DNMT3a expression was increased by LPS but significantly down-regulated by 5 µM SFN. It showed positive correlation of CD14 gene body methylation with in LPS-stimulated AMs, and this methylation status was inhibited by SFN. This study suggests that SFN suppresses CD14 activation in bacterial inflammation through epigenetic regulation of CD14 gene body methylation associated with DNMT3a. The results provide insights into SFN-mediated epigenetic down-regulation of CD14 in LPS-induced TRIF pathway inflammation and may lead to new methods for controlling LPS-induced inflammation in pigs.
Collapse
Affiliation(s)
- Qin Yang
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Maren J Pröll
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Dessie Salilew-Wondim
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Rui Zhang
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Dawit Tesfaye
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Huitao Fan
- 2 Department of Basic Medical Sciences, and Purdue Center for Cancer Research, Purdue University, USA
| | - Mehmet U Cinar
- 3 Department of Animal Science, Faculty of Agriculture, Erciyes University, Turkey
| | - Christine Große-Brinkhaus
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Ernst Tholen
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Mohammad A Islam
- 4 Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Michael Hölker
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Karl Schellander
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| | - Muhammad J Uddin
- 4 Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh
| | - Christiane Neuhoff
- 1 Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Germany
| |
Collapse
|
22
|
Prakash H, Nadella V, Singh S, Schmitz-Winnenthal H. CD14/TLR4 priming potentially recalibrates and exerts anti-tumor efficacy in tumor associated macrophages in a mouse model of pancreatic carcinoma. Sci Rep 2016; 6:31490. [PMID: 27511884 PMCID: PMC4980608 DOI: 10.1038/srep31490] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is the fourth major cause of cancer related deaths in the world and 5 year survival is below 5%. Among various tumor directed therapies, stimulation of Toll-like receptors (TLR) has shown promising effects in various tumor models. However, pancreatic cancer cells frequently express these receptors themselves and their stimulation (TLR 2 and/or 4 particularly) within tumor microenvironment is known to potentially enhance tumor cell proliferation and cancer progression. Consistent stimulation of tumor associated macrophages (TAMs), in particular with tumor derived TLR ligand within the tumor microenvironment promotes cancer related inflammation, which is sterile, non-immunogenic and carcinogenic in nature. In view of this, recalibrating of TAM has the potential to induce immunogenic inflammation. Consistent with this, we provide experimental evidence for the first time in this study that priming of TAMs with TLR4 ligend (LPS) alone or in combination with IFN-γ not only recalibrates pancreatic tumor cells induced M2 polarization, but also confers anti-tumor potential in TAMs. Most interestingly, reduced tumor growth in macrophage depleted animals suggests that macrophage directed approaches are important for the management of pancreatic tumors.
Collapse
Affiliation(s)
- Hridayesh Prakash
- Translational Immunology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center of Tumor diseases (NCT), Heidelberg, Germany
- Translational medicine Laboratory, School of life sciences, University of Hyderabad, Hyderabad, India
| | - Vinod Nadella
- Translational medicine Laboratory, School of life sciences, University of Hyderabad, Hyderabad, India
| | - Sandhya Singh
- Department of Animal Biology, School of Life sciences, University of Hyderabad, 500046, India
| | | |
Collapse
|
23
|
SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS One 2015; 10:e0126576. [PMID: 25965346 PMCID: PMC4428707 DOI: 10.1371/journal.pone.0126576] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/06/2015] [Indexed: 11/19/2022] Open
Abstract
The surfactant protein (SP-A) receptor SP-R210 has been shown to increase phagocytosis of SP-A-bound pathogens and to modulate cytokine secretion by immune cells. SP-A plays an important role in pulmonary immunity by enhancing opsonization and clearance of pathogens and by modulating macrophage inflammatory responses. Alternative splicing of the Myo18A gene results in two isoforms: SP-R210S and SP-R210L, with the latter predominantly expressed in alveolar macrophages. In this study we show that SP-A is required for optimal expression of SP-R210L on alveolar macrophages. Interestingly, pre-treatment with SP-A prepared by different methods either enhances or suppresses responsiveness to LPS, possibly due to differential co-isolation of SP-B or other proteins. We also report that dominant negative disruption of SP-R210L augments expression of receptors including SR-A, CD14, and CD36, and enhances macrophages' inflammatory response to TLR stimulation. Finally, because SP-A is known to modulate CD14, we used a variety of techniques to investigate how SP-R210 mediates the effect of SP-A on CD14. These studies revealed a novel physical association between SP-R210S, CD14, and SR-A leading to an enhanced response to LPS, and found that SP-R210L and SP-R210S regulate internalization of CD14 via distinct macropinocytosis-like mechanisms. Together, our findings support a model in which SP-R210 isoforms differentially regulate trafficking, expression, and activation of innate immune receptors on macrophages.
Collapse
|
24
|
IL-12 Inhibits Lipopolysaccharide Stimulated Osteoclastogenesis in Mice. J Immunol Res 2015; 2015:214878. [PMID: 26064997 PMCID: PMC4433692 DOI: 10.1155/2015/214878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/04/2014] [Indexed: 11/18/2022] Open
Abstract
Lipopolysaccharide (LPS) is related to osteoclastogenesis in osteolytic diseases. Interleukin- (IL-) 12 is an inflammatory cytokine that plays a critical role in host defense. In this study, we investigated the effects of IL-12 on LPS-induced osteoclastogenesis. LPS was administered with or without IL-12 into the supracalvariae of mice, and alterations in the calvarial suture were evaluated histochemically. The number of osteoclasts in the calvarial suture and the mRNA level of tartrate-resistant acid phosphatase (TRAP), an osteoclast marker, were lower in mice administered LPS with IL-12 than in mice administered LPS alone. The serum level of tartrate-resistant acid phosphatase 5b (TRACP 5b), a bone resorption marker, was also lower in mice administered LPS with IL-12 than in mice administered LPS alone. These results revealed that IL-12 might inhibit LPS-induced osteoclastogenesis and bone resorption. In TdT-mediated dUTP-biotin nick end-labeling (TUNEL) assays, apoptotic changes in cells were recognized in the calvarial suture in mice administered LPS with IL-12. Furthermore, the mRNA levels of both Fas and FasL were increased in mice administered LPS with IL-12. Taken together, the findings demonstrate that LPS-induced osteoclastogenesis is inhibited by IL-12 and that this might arise through apoptotic changes in osteoclastogenesis-related cells induced by Fas/FasL interactions.
Collapse
|
25
|
Kyrova K, Stepanova H, Rychlik I, Polansky O, Leva L, Sekelova Z, Faldyna M, Volf J. The response of porcine monocyte derived macrophages and dendritic cells to Salmonella Typhimurium and lipopolysaccharide. BMC Vet Res 2014; 10:244. [PMID: 25270530 PMCID: PMC4195948 DOI: 10.1186/s12917-014-0244-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/24/2014] [Indexed: 01/24/2023] Open
Abstract
Background Following infection and initial multiplication in the gut lumen, Salmonella Typhimurium crosses the intestinal epithelial barrier and comes into contact with cells of the host immune system. Mononuclear phagocytes which comprise macrophages and dendritic cells (DC) are of key importance for the outcome of Salmonella infection. Although macrophages and DC may differentiate from a common precursor, their capacities to process and present antigen differ significantly. In this study, we therefore compared the response of porcine macrophages and DC differentiated from peripheral blood monocytes to S. Typhimurium and one of the most potent bacterial pathogen associated molecular patterns, bacterial lipopolysaccharide. To avoid any bias, the expression was determined by protein LC-MS/MS and verified at the level of transcription by quantitative RT-PCR. Results Within 4 days of culture, peripheral blood monocytes differentiated into two populations with distinct morphology and expression of MHC II. Mass spectrometry identified 446 proteins in macrophages and 672 in DC. Out of these, 433 proteins were inducible in macrophages either after infection with S. Typhimurium or LPS exposure and 144 proteins were inducible in DC. The expression of the 46 most inducible proteins was verified at the level of transcription and the differential expression was confirmed in 22 of them. Out of these, 16 genes were induced in both cell types, 3 genes (VCAM1, HMOX1 and Serglycin) were significantly induced in macrophages only and OLDLR1 and CDC42 were induced exclusively in DC. Thirteen out of 22 up-regulated genes contained the NF-kappaB binding site in their promoters and could be considered as either part of the NF-kappaB feedback loop (IkappaBalpha and ISG15) or as NF-kappaB targets (IL1beta, IL1alpha, AMCF2, IL8, SOD2, CD14, CD48, OPN, OLDLR1, HMOX1 and VCAM1). Conclusions The difference in the response of monocyte derived macrophages and DC was quantitative rather than qualitative. Despite the similarity of the responses, compared to DC, the macrophages responded in a more pro-inflammatory fashion. Electronic supplementary material The online version of this article (doi:10.1186/s12917-014-0244-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiri Volf
- Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic.
| |
Collapse
|
26
|
Differential effects of low and high doses of lipoteichoic acid on lipopolysaccharide-induced interleukin-6 production. Inflamm Res 2014; 63:419-28. [PMID: 24500697 DOI: 10.1007/s00011-014-0714-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 12/08/2013] [Accepted: 01/22/2014] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Interleukin-6 (IL-6), which is increased in patients who are suffering from septic shock, is an important mediator of the inflammatory response. Here, we examined the priming effect of lipoteichoic acid (LTA) and lipopolysaccharide (LPS) on IL-6 production in a monocyte-like cell line. METHODS THP-1 cells were primed by treatingwith a low or high dose of LTA isolated from Staphylococcus aureus (aLTA) and then re-treated with LPS. IL-6 production, receptor expression, and the variation of signaling molecules were examined by ELISA, reverse transcriptase polymerase chain reaction, and western blotting, respectively. RESULTS LPS-mediated IL-6 production was dramatically increased in THP-1 cells pretreated with a low dose aLTA, while it was significantly decreased when a high dose of aLTA was given along with LPS. LPS-induced IL-6 production in low dose aLTA priming cells mediated by NF-κB and MAPKs pathways, and Akt functioned as a negative regulator of IL-6 production. Together, the results of this study suggest that different doses of bacterial cell surface components can mediate a diverse range of responses with respect to inflammatory cytokine production.
Collapse
|