1
|
Chen SD, Chu CY, Wang CB, Yang Y, Xu ZY, Qu YL, Man Y. Integrated-omics profiling unveils the disparities of host defense to ECM scaffolds during wound healing in aged individuals. Biomaterials 2024; 311:122685. [PMID: 38944969 DOI: 10.1016/j.biomaterials.2024.122685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Extracellular matrix (ECM) scaffold membranes have exhibited promising potential to better the outcomes of wound healing by creating a regenerative microenvironment around. However, when compared to the application in younger individuals, the performance of the same scaffold membrane in promoting re-epithelialization and collagen deposition was observed dissatisfying in aged mice. To comprehensively explore the mechanisms underlying this age-related disparity, we conducted the integrated analysis, combing single-cell RNA sequencing (scRNA-Seq) with spatial transcriptomics, and elucidated six functionally and spatially distinctive macrophage groups and lymphocytes surrounding the ECM scaffolds. Through intergroup comparative analysis and cell-cell communication, we characterized the dysfunction of Spp1+ macrophages in aged mice impeded the activation of the type Ⅱ immune response, thus inhibiting the repair ability of epidermal cells and fibroblasts around the ECM scaffolds. These findings contribute to a deeper understanding of biomaterial applications in varied physiological contexts, thereby paving the way for the development of precision-based biomaterials tailored specifically for aged individuals in future therapeutic strategies.
Collapse
Affiliation(s)
- Shuai-Dong Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chen-Yu Chu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chen-Bing Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Yang Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhao-Yu Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi-Li Qu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Man
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Yang X, Chen D, He B, Cheng W. NRP1 and MMP9 are dual targets of RNA-binding protein QKI5 to alter VEGF-R/ NRP1 signalling in trophoblasts in preeclampsia. J Cell Mol Med 2021; 25:5655-5670. [PMID: 33942999 PMCID: PMC8184681 DOI: 10.1111/jcmm.16580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia (PE) is characterized by placental ischemia and hypoxia, resulting in abnormal casting of the uterine spiral artery, which is mainly caused by insufficient trophoblastic cell infiltration. A reduction in levels of growth factor-based signalling via Neuropilin-1 (NRP1) has been shown to contribute to dysfunctional trophoblast development. In this study, we showed that the RNA-binding protein, QKI5, regulated NRP1 expression and significantly improved trophoblast proliferation in vitro and in vivo. QKI5 and NRP1 expressions were significantly reduced in human PE placentas and in trophoblasts during hypoxia. Overexpression of these factors significantly improved cell proliferation and migration in vitro, in contrast to a decrease upon siRNA knockdown of QKI5 and NRP1 in HTR-8/SVneo cells. Using RIP and RNA pull-down assays, we further showed that QKI5 directly interacted with the 3'-UTR region of NRP1, to mediate cell proliferation and migration via matrix metalloprotease-9. Further, similar to NRP1, QKI5 also targets matrix metalloproteinase 9 (MMP9) involved in secretion of growth factors and its effects can be counteracted by NRP1 overexpression. In vivo studies using a PE mouse model revealed that QKI5 overexpression alleviated PE-related symptoms such as elevated blood pressure and proteinuria. Taken together, we found that QKI5 was a novel regulator, of VEGF-R/NRP1 signalling pathway functioning in trophoblast proliferation and migration, resulting in major contributors to the pathogenesis of PE. While careful evaluation of the broad implications of QKI5 expression is still necessary, this study identified QKI5 as a promising target for treatment strategies in acute PE patients.
Collapse
Affiliation(s)
- Xingyu Yang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Dan Chen
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Municipal Key Clinical SpecialtyShanghaiChina
| | - Biwei He
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Weiwei Cheng
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|