1
|
Dong H, Gao M, Lu L, Gui R, Fu Y. Doxorubicin-Loaded Platelet Decoys for Enhanced Chemoimmunotherapy Against Triple-Negative Breast Cancer in Mice Model. Int J Nanomedicine 2023; 18:3577-3593. [PMID: 37409026 PMCID: PMC10319348 DOI: 10.2147/ijn.s403339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/18/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) is a highly aggressive subtype with a poor prognosis. Current single-agent checkpoint therapy has limited effectiveness in TNBC patients. In this study, we developed doxorubicin-loaded platelet decoys (PD@Dox) for chemotherapy and induction of tumor immunogenic cell death (ICD). By combining PD-1 antibody, PD@Dox has the potential to enhance tumor therapy through chemoimmunotherapy in vivo. Methods Platelet decoys were prepared using 0.1% Triton X-100 and co-incubated with doxorubicin to obtain PD@Dox. Characterization of PDs and PD@Dox was performed using electron microscopy and flow cytometry. We evaluated the properties of PD@Dox to retain platelets through sodium dodecyl sulfate-polyacrylamide gel electrophoresis, flow cytometry, and thromboelastometry. In vitro experiments assessed drug-loading capacity, release kinetics, and the enhanced antitumor activity of PD@Dox. The mechanism of PD@Dox was investigated through cell viability assays, apoptosis assays, Western blot analysis, and immunofluorescence staining. In vivo studies were performed using a TNBC tumor-bearing mouse model to assess the anticancer effects. Results Electron microscopic observations confirmed that platelet decoys and PD@Dox exhibited a round shape similar to normal platelets. Platelet decoys demonstrated superior drug uptake and loading capacity compared to platelets. Importantly, PD@Dox retained the ability to recognize and bind tumor cells. The released doxorubicin induced ICD, resulting in the release of tumor antigens and damage-related molecular patterns that recruit dendritic cells and activate antitumor immunity. Notably, the combination of PD@Dox and immune checkpoint blockade therapy using PD-1 antibody achieved significant therapeutic efficacy by blocking tumor immune escape and promoting ICD-induced T cell activation. Conclusion Our results suggest that PD@Dox, in combination with immune checkpoint blockade therapy, holds promise as a potential strategy for TNBC treatment.
Collapse
Affiliation(s)
- Hang Dong
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Meng Gao
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lu Lu
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rong Gui
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yunfeng Fu
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
2
|
Riddiough GE, Walsh KA, Fifis T, Kastrappis G, Tran BM, Vincan E, Muralidharan V, Christophi C, Gordon CL, Perini MV. Captopril, a Renin-Angiotensin System Inhibitor, Attenuates Tumour Progression in the Regenerating Liver Following Partial Hepatectomy. Int J Mol Sci 2022; 23:5281. [PMID: 35563674 PMCID: PMC9105412 DOI: 10.3390/ijms23095281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Liver regeneration following partial hepatectomy for colorectal liver metastasis (CRLM) has been linked to tumour recurrence. Inhibition of the renin−angiotensin system (RASi) attenuates CRLM growth in the non-regenerating liver. This study investigates whether RASi exerts an antitumour effect within the regenerating liver following partial hepatectomy for CRLM and examines RASi-induced changes in the tumour immune microenvironment; (2) CRLM in mice was induced via intrasplenic injection of mouse colorectal tumour cells, followed by splenectomy on Day 0. Mice were treated with RASi captopril (250 mg/kg/day), or saline (control) from Day 4 to Day 16 (endpoint) and underwent 70% partial hepatectomy on Day 7. Liver and tumour samples were characterised by flow cytometry and immunofluorescence; (3) captopril treatment reduced tumour burden in mice following partial hepatectomy (p < 0.01). Captopril treatment reduced populations of myeloid-derived suppressor cells (MDSCs) (CD11b+Ly6CHi p < 0.05, CD11b+Ly6CLo p < 0.01) and increased PD-1 expression on infiltrating hepatic tissue-resident memory (TRM)-like CD8+ (p < 0.001) and double-negative (CD4-CD8-; p < 0.001) T cells; (4) RASi reduced CRLM growth in the regenerating liver and altered immune cell composition by reducing populations of immunosuppressive MDSCs and boosting populations of PD-1+ hepatic TRMs. Thus, RASi should be explored as an adjunct therapy for patients undergoing partial hepatectomy for CRLM.
Collapse
Affiliation(s)
- Georgina E. Riddiough
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia; (G.E.R.); (K.A.W.); (T.F.); (G.K.); (V.M.); (C.C.)
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (B.M.T.); (E.V.)
| | - Katrina A. Walsh
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia; (G.E.R.); (K.A.W.); (T.F.); (G.K.); (V.M.); (C.C.)
| | - Theodora Fifis
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia; (G.E.R.); (K.A.W.); (T.F.); (G.K.); (V.M.); (C.C.)
| | - Georgios Kastrappis
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia; (G.E.R.); (K.A.W.); (T.F.); (G.K.); (V.M.); (C.C.)
| | - Bang M. Tran
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (B.M.T.); (E.V.)
| | - Elizabeth Vincan
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (B.M.T.); (E.V.)
- Victorian Infectious Disease Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Vijayaragavan Muralidharan
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia; (G.E.R.); (K.A.W.); (T.F.); (G.K.); (V.M.); (C.C.)
| | - Christopher Christophi
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia; (G.E.R.); (K.A.W.); (T.F.); (G.K.); (V.M.); (C.C.)
| | - Claire L. Gordon
- Department of Infectious Diseases, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Australia;
- Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
- North Eastern Public Health Unit, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Australia
| | - Marcos V. Perini
- Department of Surgery, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia; (G.E.R.); (K.A.W.); (T.F.); (G.K.); (V.M.); (C.C.)
| |
Collapse
|
3
|
Zhou Q, Qi Y, Wang Z, Zeng H, Zhang H, Liu Z, Huang Q, Xiong Y, Wang J, Chang Y, Bai Q, Xia Y, Wang Y, Liu L, Xu L, Dai B, Guo J, Zhu Y, Zhang W, Xu J. CCR5 blockade inflames antitumor immunity in BAP1-mutant clear cell renal cell carcinoma. J Immunother Cancer 2021; 8:jitc-2019-000228. [PMID: 32371459 PMCID: PMC7228663 DOI: 10.1136/jitc-2019-000228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 11/06/2022] Open
Abstract
Background Patients with BRCA1-associated protein 1 (BAP1)-mutant clear cell renal cell carcinoma (ccRCC) have worse prognosis. C-C chemokine receptor 5 (CCR5) plays an important role in ccRCC development and its expression is elevated in BAP1-mutant tumors. Methods 533 patients with ccRCC from The Cancer Genome Atlas cohort and 797 patients with ccRCC from the Shanghai cohort were enrolled. In vitro and in vivo studies were conducted with human ccRCC tumors and murine tumor models. The association between BAP1 and CCR5 or its ligands was assessed by immunohistochemistry, flow cytometry, real-time PCR and ELISA. Survival was compared between different subpopulations of patients using Kaplan-Meier curve. Therapeutic effect of CCR5 blockade was validated using human ccRCC tumors and murine models. Results Expression of CCR5 and its ligands were elevated in BAP1-mutant patients with ccRCC. High CCR5 expression was indicative of poor prognosis in BAP1-low group of patients. CCR5 blockade prolonged the survival of tumor-bearing mice, resulting in enhanced cytotoxicity of T cells and antigen presentation of dendritic cells but repressed immune checkpoint expression. CCR5 ligands could recruit CCR5+ regulatory T cells to the tumor microenvironment. Additionally, BAP1-mutant ccRCC tumor cells secreted CCR5 ligands, which increased programmed cell death ligand 1 expression. However, both processes could be inhibited by CCR5 blockade. Study limitations include the unclear impact of CCR5 expressed by other cell populations. Conclusions CCR5 in BAP1-mutant ccRCC results in an immune-suppressive microenvironment. Targeting CCR5 could provide a potential therapeutic benefit for patients. Trial registration number NCT01358721, CA209-009.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yangyang Qi
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongyu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiuren Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Hubert JN, Suybeng V, Vallée M, Delhomme TM, Maubec E, Boland A, Bacq D, Deleuze JF, Jouenne F, Brennan P, McKay JD, Avril MF, Bressac-de Paillerets B, Chanudet E. The PI3K/mTOR Pathway Is Targeted by Rare Germline Variants in Patients with Both Melanoma and Renal Cell Carcinoma. Cancers (Basel) 2021; 13:2243. [PMID: 34067022 PMCID: PMC8125037 DOI: 10.3390/cancers13092243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Malignant melanoma and RCC have different embryonic origins, no common lifestyle risk factors but intriguingly share biological properties such as immune regulation and radioresistance. An excess risk of malignant melanoma is observed in RCC patients and vice versa. This bidirectional association is poorly understood, and hypothetic genetic co-susceptibility remains largely unexplored. Results: We hereby provide a clinical and genetic description of a series of 125 cases affected by both malignant melanoma and RCC. Clinical germline mutation testing identified a pathogenic variant in a melanoma and/or RCC predisposing gene in 17/125 cases (13.6%). This included mutually exclusive variants in MITF (p.E318K locus, N = 9 cases), BAP1 (N = 3), CDKN2A (N = 2), FLCN (N = 2), and PTEN (N = 1). A subset of 46 early-onset cases, without underlying germline variation, was whole-exome sequenced. In this series, thirteen genes were significantly enriched in mostly exclusive rare variants predicted to be deleterious, compared to 19,751 controls of similar ancestry. The observed variation mainly consisted of novel or low-frequency variants (<0.01%) within genes displaying strong evolutionary mutational constraints along the PI3K/mTOR pathway, including PIK3CD, NFRKB, EP300, MTOR, and related epigenetic modifier SETD2. The screening of independently processed germline exomes from The Cancer Genome Atlas confirmed an association with melanoma and RCC but not with cancers of established differing etiology such as lung cancers. Conclusions: Our study highlights that an exome-wide case-control enrichment approach may better characterize the rare variant-based missing heritability of multiple primary cancers. In our series, the co-occurrence of malignant melanoma and RCC was associated with germline variation in the PI3K/mTOR signaling cascade, with potential relevance for early diagnostic and clinical management.
Collapse
Affiliation(s)
- Jean-Noël Hubert
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | - Voreak Suybeng
- Gustave Roussy, Département de Biopathologie, 94805 Villejuif, France; (V.S.); (F.J.)
| | - Maxime Vallée
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | - Tiffany M. Delhomme
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | - Eve Maubec
- Department of Dermatology, AP-HP, Hôpital Avicenne, University Paris 13, 93000 Bobigny, France;
- UMRS-1124, Campus Paris Saint-Germain-des-Prés, University of Paris, 75006 Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, 91057 Evry, France; (A.B.); (D.B.); (J.-F.D.)
| | - Delphine Bacq
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, 91057 Evry, France; (A.B.); (D.B.); (J.-F.D.)
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, CEA, 91057 Evry, France; (A.B.); (D.B.); (J.-F.D.)
| | - Fanélie Jouenne
- Gustave Roussy, Département de Biopathologie, 94805 Villejuif, France; (V.S.); (F.J.)
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | - James D. McKay
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| | | | - Brigitte Bressac-de Paillerets
- Gustave Roussy, Département de Biopathologie, 94805 Villejuif, France; (V.S.); (F.J.)
- INSERM U1279, Tumor Cell Dynamics, 94805 Villejuif, France
| | - Estelle Chanudet
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France; (J.-N.H.); (M.V.); (T.M.D.); (P.B.); (J.D.M.)
| |
Collapse
|
5
|
Fu Q, Xu L, Wang Y, Jiang Q, Liu Z, Zhang J, Zhou Q, Zeng H, Tong S, Wang T, Qi Y, Hu B, Fu H, Xie H, Zhou L, Chang Y, Zhu Y, Dai B, Zhang W, Xu J. Tumor-associated Macrophage-derived Interleukin-23 Interlinks Kidney Cancer Glutamine Addiction with Immune Evasion. Eur Urol 2019; 75:752-763. [PMID: 30293904 DOI: 10.1016/j.eururo.2018.09.030] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/15/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Glutamine addiction is a hallmark of clear cell renal cell carcinoma (ccRCC); yet whether glutamine metabolism impacts local immune surveillance is unclear. This knowledge may yield novel immunotherapeutic opportunities. OBJECTIVE To seek a potential therapeutic target in glutamine-addicted ccRCC. DESIGN, SETTING, AND PARTICIPANTS Tumors from ccRCC patients from a Shanghai cohort and ccRCC tumor data from The Cancer Genome Atlas (TCGA) cohort were analyzed. In vivo and in vitro studies were conducted with fresh human ccRCC tumors and murine tumor cells. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Immune cell numbers and functions were analyzed by flow cytometry. Glutamine and cytokine concentrations were determined. Survival was compared between different subpopulations of patients using Kaplan-Meier and Cox regression analyses. RESULTS AND LIMITATIONS We found that in ccRCC, high interleukin (IL)-23 expression was significantly associated with poor survival in both TCGA (overall survival [OS] hazard ratio [HR]=2.04, cancer-specific survival [CSS] HR=2.95; all p<0.001) and Shanghai (OS HR=2.07, CSS HR=3.92; all p<0.001) cohorts. IL-23 blockade prolongs the survival of tumor-bearing mice, promotes T-cell cytotoxicity in in vitro cultures of human ccRCC tumors, and augments the therapeutic benefits of anti-PD-1 antibodies. Mechanistically, glutamine consumption by ccRCC tumor cells results in the local deprivation of extracellular glutamine, which induces IL-23 secretion by tumor-infiltrating macrophages via the activation of hypoxia-inducible factor 1α (HIF1α). IL-23 activates regulatory T-cell proliferation and promotes IL-10 and transforming growth factor β expression, thereby suppressing tumor cell killing by cytotoxic lymphocytes. The positive correlations between glutamine metabolism, IL-23 levels, and Treg responses are confirmed in both TCGA cohort and tumors from Shanghai ccRCC patients. Study limitations include the unclear impacts of glutamine deprivation and IL-23 on other immune cells. CONCLUSIONS Macrophage-secreted IL-23 enhanced Treg functions in glutamine-addicted tumors; thus, IL-23 is a promising target for immunotherapy in ccRCC. PATIENT SUMMARY In this study, we analyzed the immune components in glutamine-addicted clear cell renal cell carcinoma (ccRCC) tumors from two patient cohorts and conducted both in vitro and in vivo studies. We found that ccRCC tumor cell-intrinsic glutamine metabolism orchestrates immune evasion via interleukin (IL)-23, and IL-23-high patients had significantly poorer survival than IL-23-low patients. IL-23 should thus be considered a therapeutic target in ccRCC, either alone or in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jiang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zheng Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Junyu Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Quan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shanyou Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Qi
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Baoying Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hangcheng Fu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Huyang Xie
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lin Zhou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|