1
|
Chen ZS, Peng SI, Leong LI, Gall-Duncan T, Wong NSJ, Li TH, Lin X, Wei Y, Koon AC, Huang J, Sun JKL, Turner C, Tippett L, Curtis MA, Faull RLM, Kwan KM, Chow HM, Ko H, Chan TF, Talbot K, Pearson CE, Chan HYE. Mutant huntingtin induces neuronal apoptosis via derepressing the non-canonical poly(A) polymerase PAPD5. Nat Commun 2025; 16:3307. [PMID: 40204699 PMCID: PMC11982267 DOI: 10.1038/s41467-025-58618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play crucial roles in post-transcriptional gene regulation. Poly(A) RNA polymerase D5 (PAPD5) catalyzes the addition of adenosine to the 3' end of miRNAs. In this study, we demonstrate that the Yin Yang 1 protein, a transcriptional repressor of PAPD5, is recruited to both RNA foci and protein aggregates, resulting in an upregulation of PAPD5 expression in Huntington's disease (HD). Additionally, we identify a subset of PAPD5-regulated miRNAs with increased adenylation and reduced expression in our disease model. We focus on miR-7-5p and find that its reduction causes the activation of the TAB2-mediated TAK1-MKK4-JNK pro-apoptotic pathway. This pathway is also activated in induced pluripotent stem cell-derived striatal neurons and post-mortem striatal tissues isolated from HD patients. In addition, we discover that a small molecule PAPD5 inhibitor, BCH001, can mitigate cell death and neurodegeneration in our disease models. This study highlights the importance of PAPD5-mediated miRNA dysfunction in HD pathogenesis and suggests a potential therapeutic direction for the disease.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shaohong Isaac Peng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lok I Leong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Terence Gall-Duncan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nathan Siu Jun Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tsz Ho Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuming Wei
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alex Chun Koon
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junzhe Huang
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacquelyne Ka-Li Sun
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Clinton Turner
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Lynette Tippett
- School of Psychology, University of Auckland, Auckland, New Zealand
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- School of Psychology, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Ko
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
| | - Christopher E Pearson
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Ariyeloye S, Watts D, Jaykar MT, Ermis C, Krüger A, Kaden D, Stepien BK, Alexaki VI, Peitzsch M, Bechmann N, Mirtschink P, El-Armouche A, Wielockx B. HIF1α controls steroidogenesis under acute hypoxic stress. Cell Commun Signal 2025; 23:86. [PMID: 39948619 PMCID: PMC11827267 DOI: 10.1186/s12964-025-02080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Hypoxia is a critical physiological and pathological condition known to influence various cellular processes, including steroidogenesis. While previous studies, including our own, have highlighted the regulatory effects of Hypoxia-Inducible Factor 1α (HIF1α) on steroid production, the specific molecular mechanisms remain poorly understood. This study investigates the role of hypoxia and HIF1α in steroid biosynthesis across multiple experimental models during acute exposure to low oxygen levels. METHODS To assess the extent to which acute hypoxia modulates steroidogenesis, we employed several approaches, including the Y1 adrenocortical cell line, and a conditional HIF1α-deficient mouse line in the adrenal cortex. We focused on various regulatory patterns that may critically suppress steroidogenesis. RESULTS In Y1 cells, hypoxia upregulated specific microRNAs in a HIF1α-dependent manner, resulting in the suppression of mRNA levels of critical steroidogenic enzymes and a subsequent reduction in steroid hormone production. The hypoxia/HIF1α-dependent induction of these microRNAs and the consequent modulation of steroid production were confirmed in vivo. Notably, using our adrenocortical-specific HIF1α-deficient mouse line, we demonstrated that the increase in miRNA expression in vivo is also directly HIF1α-dependent, while the regulation of steroidogenic enzymes (e.g., StAR and Cyp11a1) and steroid production occurs at the level of protein translation, revealing an unexpected layer of control under hypoxic/HIF1 α conditions in vivo. CONCLUSIONS These findings elucidate the molecular mechanisms underlying acute hypoxia/HIF1α-induced changes in steroid biosynthesis and may also be useful in developing new strategies for various steroid hormone pathologies.
Collapse
Affiliation(s)
- Stephen Ariyeloye
- Institute of Clinical Chemistry and Laboratory Medicine, University Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany
| | - Deepika Watts
- Institute of Clinical Chemistry and Laboratory Medicine, University Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany
| | - Mangesh T Jaykar
- Institute of Clinical Chemistry and Laboratory Medicine, University Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany
| | - Cagdas Ermis
- Institute of Clinical Chemistry and Laboratory Medicine, University Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany
| | - Anja Krüger
- Institute of Clinical Chemistry and Laboratory Medicine, University Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany
| | - Denise Kaden
- Institute of Clinical Chemistry and Laboratory Medicine, University Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany
| | - Barbara K Stepien
- Institute of Clinical Chemistry and Laboratory Medicine, University Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, University Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Faculty of Medicine, Technische Universität Dresden, Dresden, 01307, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, University Carl Gustav Carus and Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, Dresden, 01307, Germany.
- Experimental Centre, Faculty of Medicine, Technische Universität Dresden, Dresden, 01307, Germany.
| |
Collapse
|
3
|
Liang J, Zhu Y, Liu S, Kuang B, Tian Z, Zhang L, Yang S, Lin M, Chen N, Liu X, Ai Q, Yang Y. Progress of Exosomal MicroRNAs and Traditional Chinese Medicine Monomers in Neurodegenerative Diseases. Phytother Res 2024; 38:5323-5349. [PMID: 39225243 DOI: 10.1002/ptr.8322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/14/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Exosomes, extracellular vesicles secreted by various cells, actively participate in intercellular communication by facilitating the exchange of crucial molecular information such as DNA, RNA, and lipids. Within this intricate network, microRNAs, endogenous non-coding small RNAs, emerge as pivotal regulators of post-transcriptional gene expression, significantly influencing the development of neurodegenerative diseases. The historical prominence of traditional Chinese medicine (TCM) in clinical practice in China underscores its enduring significance. Notably, TCM monomers, serving as active constituents within herbal medicine, assume a critical role in the treatment of neurodegenerative diseases, particularly in mitigating oxidative stress, inhibiting apoptosis, and reducing inflammation. This comprehensive review aims to delineate the specific involvement of exosomal microRNAs in various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, stroke, and amyotrophic lateral sclerosis. Furthermore, the exploration extends to the application of TCM monomers, elucidating their efficacy as therapeutic agents in these conditions. Additionally, the review examines the utilization of exosomes as drug delivery carriers in the context of neurodegenerative diseases, providing a nuanced understanding of the potential synergies between TCM and modern therapeutic approaches. This synthesis of knowledge aims to contribute to the advancement of our comprehension of the intricate molecular mechanisms underlying neurodegeneration and the potential therapeutic avenues offered by TCcom interventions.
Collapse
Affiliation(s)
- Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuchen Zhu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Boyu Kuang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhifeng Tian
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ling Zhang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Saleem A, Javed M, Akhtar MF, Sharif A, Akhtar B, Naveed M, Saleem U, Baig MMFA, Zubair HM, Bin Emran T, Saleem M, Ashraf GM. Current Updates on the Role of MicroRNA in the Diagnosis and Treatment of Neurodegenerative Diseases. Curr Gene Ther 2024; 24:122-134. [PMID: 37861022 DOI: 10.2174/0115665232261931231006103234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND MicroRNAs (miRNA) are small noncoding RNAs that play a significant role in the regulation of gene expression. The literature has explored the key involvement of miRNAs in the diagnosis, prognosis, and treatment of various neurodegenerative diseases (NDD), such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). The miRNA regulates various signalling pathways; its dysregulation is involved in the pathogenesis of NDD. OBJECTIVE The present review is focused on the involvement of miRNAs in the pathogenesis of NDD and their role in the treatment or management of NDD. The literature provides comprehensive and cutting-edge knowledge for students studying neurology, researchers, clinical psychologists, practitioners, pathologists, and drug development agencies to comprehend the role of miRNAs in the NDD's pathogenesis, regulation of various genes/signalling pathways, such as α-synuclein, P53, amyloid-β, high mobility group protein (HMGB1), and IL-1β, NMDA receptor signalling, cholinergic signalling, etc. Methods: The issues associated with using anti-miRNA therapy are also summarized in this review. The data for this literature were extracted and summarized using various search engines, such as Google Scholar, Pubmed, Scopus, and NCBI using different terms, such as NDD, PD, AD, HD, nanoformulations of mRNA, and role of miRNA in diagnosis and treatment. RESULTS The miRNAs control various biological actions, such as neuronal differentiation, synaptic plasticity, cytoprotection, neuroinflammation, oxidative stress, apoptosis and chaperone-mediated autophagy, and neurite growth in the central nervous system and diagnosis. Various miRNAs are involved in the regulation of protein aggregation in PD and modulating β-secretase activity in AD. In HD, mutation in the huntingtin (Htt) protein interferes with Ago1 and Ago2, thus affecting the miRNA biogenesis. Currently, many anti-sense technologies are in the research phase for either inhibiting or promoting the activity of miRNA. CONCLUSION This review provides new therapeutic approaches and novel biomarkers for the diagnosis and prognosis of NDDs by using miRNA.
Collapse
Affiliation(s)
- Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Maira Javed
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, 5400, Pakistan
| | - Ali Sharif
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine, The University of Toledo, Toledo, OH, USA
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | | | - Hafiz Muhammad Zubair
- Post Graduate Medical College, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong-4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Saleem
- Department of Pharmacology, University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Sharjah 27272, UAE
| |
Collapse
|
5
|
Petry S, Keraudren R, Nateghi B, Loiselle A, Pircs K, Jakobsson J, Sephton C, Langlois M, St-Amour I, Hébert SS. Widespread alterations in microRNA biogenesis in human Huntington’s disease putamen. Acta Neuropathol Commun 2022; 10:106. [PMID: 35869509 PMCID: PMC9308264 DOI: 10.1186/s40478-022-01407-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
Altered microRNA (miRNA) expression is a common feature of Huntington’s disease (HD) and could participate in disease onset and progression. However, little is known about the underlying causes of miRNA disruption in HD. We and others have previously shown that mutant Huntingtin binds to Ago2, a central component of miRNA biogenesis, and disrupts mature miRNA levels. In this study, we sought to determine if miRNA maturation per se was compromised in HD. Towards this end, we characterized major miRNA biogenesis pathway components and miRNA maturation products (pri-miRNA, pre-miRNA, and mature) in human HD (N = 41, Vonsattel grades HD2-4) and healthy control (N = 25) subjects. Notably, the striatum (putamen) and cortex (BA39) from the same individuals were analyzed in parallel. We show that Ago2, Drosha, and Dicer were strongly downregulated in human HD at the early stages of the disease. Using a panel of HD-related miRNAs (miR-10b, miR-196b, miR-132, miR-212, miR-127, miR-128), we uncovered various types of maturation defects in the HD brain, the most prominent occurring at the pre-miRNA to mature miRNA maturation step. Consistent with earlier findings, we provide evidence that alterations in autophagy could participate in miRNA maturation defects. Notably, most changes occurred in the striatum, which is more prone to HTT aggregation and neurodegeneration. Likewise, we observed no significant alterations in miRNA biogenesis in human HD cortex and blood, strengthening tissue-specific effects. Overall, these data provide important clues into the underlying mechanisms behind miRNA alterations in HD-susceptible tissues. Further investigations are now required to understand the biological, diagnostic, and therapeutic implications of miRNA/RNAi biogenesis defects in HD and related neurodegenerative disorders.
Collapse
|
6
|
Epigenetic Changes in Prion and Prion-like Neurodegenerative Diseases: Recent Advances, Potential as Biomarkers, and Future Perspectives. Int J Mol Sci 2022; 23:ijms232012609. [PMID: 36293477 PMCID: PMC9604074 DOI: 10.3390/ijms232012609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs) caused by a conformational conversion of the native cellular prion protein (PrPC) to an abnormal, infectious isoform called PrPSc. Amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s diseases are also known as prion-like diseases because they share common features with prion diseases, including protein misfolding and aggregation, as well as the spread of these misfolded proteins into different brain regions. Increasing evidence proposes the involvement of epigenetic mechanisms, namely DNA methylation, post-translational modifications of histones, and microRNA-mediated post-transcriptional gene regulation in the pathogenesis of prion-like diseases. Little is known about the role of epigenetic modifications in prion diseases, but recent findings also point to a potential regulatory role of epigenetic mechanisms in the pathology of these diseases. This review highlights recent findings on epigenetic modifications in TSEs and prion-like diseases and discusses the potential role of such mechanisms in disease pathology and their use as potential biomarkers.
Collapse
|
7
|
Weng YT, Chen HM, Chien T, Chiu FL, Kuo HC, Chern Y. TRAX Provides Neuroprotection for Huntington's Disease Via Modulating a Novel Subset of MicroRNAs. Mov Disord 2022; 37:2008-2020. [PMID: 35997316 DOI: 10.1002/mds.29174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/19/2022] [Accepted: 07/14/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disease caused by CAG-repeat expansions (>36) in exon 1 of HTT, which dysregulates multiple cellular machineries. Translin-associated protein X (TRAX) is a scaffold protein with diverse functions, including suppressing the microRNA (miRNA)-mediated silencing by degrading pre-miRNA. To date, the role of TRAX in neurodegenerative diseases remains unknown. OBJECTIVES We delineated the role of TRAX upregulation during HD progression. METHODS Expression of TRAX in the brains of humans and three mouse models with HD were analyzed by immunohistochemistry staining, western blot, and quantitative reverse transcription-polymerase chain reaction. Adeno-associated viruses harboring TRAX short hairpin RNA were intrastriatally injected into HD mice to downregulate TRAX. HD-like symptoms were analyzed by behavioral and biochemical assessments. The miRNA-sequencing and RNA-sequencing analyses were used to identify the TRAX- regulated miRNA-messenger RNA (mRNA) axis during HD progression. The identified gene targets were validated biochemically in mouse and human striatal cells. RESULTS We discovered that TRAX was upregulated in the brains of HD patients and three HD mouse models. Downregulation of TRAX enhanced 83 miRNAs (including miR-330-3p, miR-496a-3p) and subsequently changed the corresponding mRNA networks critical for HD pathogenesis (eg, DARPP-32 and brain-derived neurotrophic factor). Disruption of the TRAX-mediated miRNA-mRNA axis accelerated the progression of HD-like symptoms, including the degeneration of motor function, accumulation of mHTT aggregates, and shortened neurite outgrowth. CONCLUSIONS We demonstrated that TRAX upregulation is authentic and protective in HD. Our study provides a novel layer of regulation for HD pathogenesis and may lead to the development of new therapeutic strategies for HD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yu-Ting Weng
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting Chien
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Feng-Lan Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
de Souza JM, Ferreira-Vieira TH, Maciel EMA, Silva NC, Lima IBQ, Doria JG, Olmo IG, Ribeiro FM. mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype. Sci Rep 2022; 12:8982. [PMID: 35643779 PMCID: PMC9148310 DOI: 10.1038/s41598-022-13029-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate receptors, including mGluR5, are involved in learning and memory impairments triggered by aging and neurological diseases. However, each condition involves distinct molecular mechanisms. It is still unclear whether the mGluR5 cell signaling pathways involved in normal brain aging differ from those altered due to neurodegenerative disorders. Here, we employed wild type (WT), mGluR5−/−, BACHD, which is a mouse model of Huntington’s Disease (HD), and mGluR5−/−/BACHD mice, at the ages of 2, 6 and 12 months, to distinguish the mGluR5-dependent cell signaling pathways involved in aging and neurodegenerative diseases. We demonstrated that the memory impairment exhibited by mGluR5−/− mice is accompanied by massive neuronal loss and decreased dendritic spine density in the hippocampus, similarly to BACHD and BACHD/mGluR5−/− mice. Moreover, mGluR5 ablation worsens some of the HD-related alterations. We also show that mGluR5−/− and BACHD/mGluR5−/− mice have decreased levels of PSD95, BDNF, and Arc/Arg3.1, whereas BACHD mice are mostly spared. PSD95 expression was affected exclusively by mGluR5 ablation in the aging context, making it a potential target to treat age-related alterations. Taken together, we reaffirm the relevance of mGluR5 for memory and distinguish the mGluR5 cell signaling pathways involved in normal brain aging from those implicated in HD.
Collapse
|