1
|
Illes P, Rubini P, Ulrich H, Yin H, Tang Y. Dysregulation of Astrocytic ATP/Adenosine Release in the Hippocampus Cause Cognitive and Affective Disorders: Molecular Mechanisms, Diagnosis, and Therapy. MedComm (Beijing) 2025; 6:e70177. [PMID: 40255917 PMCID: PMC12006733 DOI: 10.1002/mco2.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
The gliotransmitter adenosine 5'-triphosphate (ATP) and its enzymatic degradation product adenosine play a major role in orchestrating in the hippocampus cognitive and affective functions via P2 purinoceptors (P2X, P2Y) and P1 adenosine receptors (A1, A2A). Although numerous reviews exist on purinoceptors that modulate these functions, there is an apparent gap relating to the involvement of astrocyte-derived extracellular ATP. Our review focuses on the following issues: An impeded release of ATP from hippocampal astrocytes through vesicular mechanisms or connexin hemichannels and pannexin channels interferes with spatial working memory in rodents. The pharmacological blockade of P2Y1 receptors (P2Y1Rs) reverses the deficits in learning/memory performance in mouse models of familial Alzheimer's disease (AD). Similarly, in mouse models of major depressive disorder (MDD), based on acute or chronic stress-induced development of depressive-like behavior, a reduced exocytotic/channel-mediated ATP release from hippocampal astrocytes results in the deterioration of these behavioral responses. However, on the opposite, the increased stimulation of the microglial/astrocytic P2X7R-channel by ATP causes neuroinflammation and in consequence depressive-like behavior. In conclusion, there is strong evidence for the assumption that gliotransmitter ATP is intimately involved in the pathophysiology of cognitive and affective neuron/astrocyte-based human illnesses opening new diagnostic and therapeutic vistas for AD and MDD.
Collapse
Affiliation(s)
- Peter Illes
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Rudolf Boehm Institute for Pharmacology and ToxicologyUniversity of Leipzig Germany
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
| | - Patrizia Rubini
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
| | - Henning Ulrich
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Department of BiochemistryInstitute of ChemistryUniversity of São PauloSão PauloBrazil
| | - Hai‐Yan Yin
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
| | - Yong Tang
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
- School of Health and RehabilitationChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
2
|
Illanes-González J, Flores-Muñoz C, Vitureira N, Ardiles ÁO. Pannexin 1 channels: A bridge between synaptic plasticity and learning and memory processes. Neurosci Biobehav Rev 2025; 174:106173. [PMID: 40274202 DOI: 10.1016/j.neubiorev.2025.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
The Pannexin 1 channel is a membrane protein widely expressed in various vertebrate cell types, including microglia, astrocytes, and neurons within the central nervous system. Growing research has demonstrated the significant involvement of Panx1 in synaptic physiology, such as its contribution to long-term synaptic plasticity, with a particular focus on the hippocampus, an essential structure for learning and memory. Investigations studying the role of Panx1 in synaptic plasticity have utilized knockout animal models and channel inhibition techniques, revealing that the absence or blockade of Panx1 channels in this region promotes synaptic potentiation, dendritic arborization, and spine formation. Despite substantial progress, the precise mechanism by which Panx1 regulates synaptic plasticity remains to be determined. Nevertheless, evidence suggests that Panx1 may exert its influence by releasing signaling molecules, such as adenosine triphosphate (ATP), or through the clearance of endocannabinoids (eCBs). This review aims to comprehensively explore the current literature on the role of Panx1 in synapses. By examining relevant articles, we seek to enhance our understanding of Panx1's contribution to synaptic fundamental processes and the potential implications for cognitive function.
Collapse
Affiliation(s)
- Javiera Illanes-González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile
| | - Nathalia Vitureira
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile; Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
3
|
Obot P, Cibelli A, Pan J, Velíšek L, Velíšková J, Scemes E. Pannexin1 Mediates Early-Life Seizure-Induced Social Behavior Deficits. ASN Neuro 2024; 16:2371164. [PMID: 39024558 PMCID: PMC11262470 DOI: 10.1080/17590914.2024.2371164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/11/2024] [Indexed: 07/20/2024] Open
Abstract
There is a high co-morbidity between childhood epilepsy and autism spectrum disorder (ASD), with age of seizure onset being a critical determinant of behavioral outcomes. The interplay between these comorbidities has been investigated in animal models with results showing that the induction of seizures at early post-natal ages leads to learning and memory deficits and to autistic-like behavior in adulthood. Modifications of the excitation/inhibition (glutamate/GABA, ATP/adenosine) balance that follows early-life seizures (ELS) are thought to be the physiological events that underlie neuropsychiatric and neurodevelopmental disorders. Although alterations in purinergic/adenosinergic signaling have been implicated in seizures and ASD, it is unknown whether the ATP release channels, Pannexin1 (Panx1), contribute to ELS-induced behavior changes. To tackle this question, we used the ELS-kainic acid model in transgenic mice with global and cell type specific deletion of Panx1 to evaluate whether these channels were involved in behavioral deficits that occur later in life. Our studies show that ELS results in Panx1 dependent social behavior deficits and also in poor performance in a spatial memory test that does not involve Panx1. These findings provide support for a link between ELS and adult behavioral deficits. Moreover, we identify neuronal and not astrocyte Panx1 as a potential target to specifically limit astrogliosis and social behavioral deficits resultant from early-life seizures.
Collapse
Affiliation(s)
- Price Obot
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Antonio Cibelli
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jian Pan
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Libor Velíšek
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
- Department of Neurology, New York Medical College, Valhalla, New York, USA
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jana Velíšková
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
- Department of Neurology, New York Medical College, Valhalla, New York, USA
- Department of Obstetrics and Gynecology, New York Medical College, Valhalla, New York, USA
| | - Eliana Scemes
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
4
|
Rangel-Sandoval C, Soula M, Li WP, Castillo PE, Hunt DL. NMDAR-mediated activation of pannexin1 channels contributes to the detonator properties of hippocampal mossy fiber synapses. iScience 2024; 27:109681. [PMID: 38680664 PMCID: PMC11046245 DOI: 10.1016/j.isci.2024.109681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/23/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Pannexins are large-pore ion channels expressed throughout the mammalian brain that participate in various neuropathologies; however, their physiological roles remain obscure. Here, we report that pannexin1 channels (Panx1) can be synaptically activated under physiological recording conditions in rodent acute hippocampal slices. Specifically, NMDA receptor (NMDAR)-mediated responses at the mossy fiber to CA3 pyramidal cell synapse were followed by a slow postsynaptic inward current that could activate CA3 pyramidal cells but was absent in Panx1 knockout mice. Immunoelectron microscopy revealed that Panx1 was localized near the postsynaptic density. Further, Panx1-mediated currents were potentiated by metabotropic receptors and bidirectionally modulated by burst-timing-dependent plasticity of NMDAR-mediated transmission. Lastly, Panx1 channels were preferentially recruited when NMDAR activation enters a supralinear regime, resulting in temporally delayed burst-firing. Thus, Panx1 can contribute to synaptic amplification and broadening the temporal associativity window for co-activated pyramidal cells, thereby supporting the auto-associative functions of the CA3 region.
Collapse
Affiliation(s)
- Cinthia Rangel-Sandoval
- Department of Neurosurgery, Department of Neurology, Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marisol Soula
- Dominick P. Purpura Department of Neuroscience, Department of Psychiatry and Behavioral Sciences. Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei-Ping Li
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Pablo E. Castillo
- Dominick P. Purpura Department of Neuroscience, Department of Psychiatry and Behavioral Sciences. Albert Einstein College of Medicine, Bronx, NY, USA
| | - David L. Hunt
- Department of Neurosurgery, Department of Neurology, Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
5
|
Sheng Y, Hu W, Chen S, Zhu X. Efferocytosis by macrophages in physiological and pathological conditions: regulatory pathways and molecular mechanisms. Front Immunol 2024; 15:1275203. [PMID: 38779685 PMCID: PMC11109379 DOI: 10.3389/fimmu.2024.1275203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Efferocytosis is defined as the highly effective phagocytic removal of apoptotic cells (ACs) by professional or non-professional phagocytes. Tissue-resident professional phagocytes ("efferocytes"), such as macrophages, have high phagocytic capacity and are crucial to resolve inflammation and aid in homeostasis. Recently, numerous exciting discoveries have revealed divergent (and even diametrically opposite) findings regarding metabolic immune reprogramming associated with efferocytosis by macrophages. In this review, we highlight the key metabolites involved in the three phases of efferocytosis and immune reprogramming of macrophages under physiological and pathological conditions. The next decade is expected to yield further breakthroughs in the regulatory pathways and molecular mechanisms connecting immunological outcomes to metabolic cues as well as avenues for "personalized" therapeutic intervention.
Collapse
Affiliation(s)
- Yan−Ran Sheng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wen−Ting Hu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Siman Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiao−Yong Zhu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Li B, Deng S, Jiang H, Zhu W, Zhuo B, Du Y, Meng Z. The mechanistic effects of acupuncture in rodent neurodegenerative disease models: a literature review. Front Neurosci 2024; 18:1323555. [PMID: 38500484 PMCID: PMC10944972 DOI: 10.3389/fnins.2024.1323555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Neurodegenerative diseases refer to a battery of medical conditions that affect the survival and function of neurons in the brain, which are mainly presented with progressive loss of cognitive and/or motor function. Acupuncture showed benign effects in improving neurological deficits, especially on movement and cognitive function impairment. Here, we reviewed the therapeutic mechanisms of acupuncture at the neural circuit level in movement and cognition disorders, summarizing the influence of acupuncture in the dopaminergic system, glutamatergic system, γ-amino butyric acid-ergic (GABAergic) system, serotonergic system, cholinergic system, and glial cells at the circuit and synaptic levels. These findings can provide targets for clinical treatment and perspectives for further studies.
Collapse
Affiliation(s)
- Boxuan Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shizhe Deng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hailun Jiang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weiming Zhu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bifang Zhuo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzheng Du
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihong Meng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|