1
|
Largo R, Mediero A, Villa-Gomez C, Bermejo-Alvarez I, Herrero-Beaumont G. Aberrant anabolism hinders constructive metabolism of chondrocytes by pharmacotherapy in osteoarthritis. Bone Joint Res 2025; 14:199-207. [PMID: 40042132 PMCID: PMC11881514 DOI: 10.1302/2046-3758.143.bjr-2024-0241.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
Osteoarthritis (OA) is a highly prevalent and disabling disease with an unmet therapeutic need. The characteristic cartilage loss and alteration of other joint structures result from a complex interaction of multiple risk factors, with mechanical overload consistently playing a central role. This overload generates an inflammatory response in the cartilage due to the activation of the innate immune response in chondrocytes, which occurs through various cellular mechanisms. Moreover, risk factors associated with obesity, being overweight, and metabolic syndrome enhance the inflammatory response both locally and systemically. OA chondrocytes, the only cells present in articular cartilage, are therefore inflamed and initiate an anabolic process in an attempt to repair the damaged tissue, which ultimately results in an aberrant and dysfunctional process. Under these circumstances, where the cartilage continues to be subjected to chronic mechanical stress, proposing a treatment that stimulates the chondrocytes' anabolic response to restore tissue structure does not appear to be a therapeutic target with a high likelihood of success. In fact, anabolic drugs proposed for the treatment of OA have yet to demonstrate efficacy. By contrast, multiple therapeutic strategies focused on pharmacologically managing the inflammatory component, both at the joint and systemic levels, have shown promise. Therefore, prioritizing the control of chronic innate pro-inflammatory pathways presents the most viable and promising therapeutic strategy for the effective management of OA. As research continues, this approach may offer the best opportunity to alleviate the burden of this incapacitating disease.
Collapse
Affiliation(s)
- Raquel Largo
- Joint and Bone Research Unit, Service of Rheumatology, IIS Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Aranzazu Mediero
- Joint and Bone Research Unit, Service of Rheumatology, IIS Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Cristina Villa-Gomez
- Joint and Bone Research Unit, Service of Rheumatology, IIS Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Ismael Bermejo-Alvarez
- Joint and Bone Research Unit, Service of Rheumatology, IIS Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Gabriel Herrero-Beaumont
- Joint and Bone Research Unit, Service of Rheumatology, IIS Fundación Jiménez Díaz UAM, Madrid, Spain
| |
Collapse
|
2
|
Maurer S, Kirsch V, Ruths L, Brenner RE, Riegger J. Senolytic therapy combining Dasatinib and Quercetin restores the chondrogenic phenotype of human osteoarthritic chondrocytes by the release of pro-anabolic mediators. Aging Cell 2025; 24:e14361. [PMID: 39402753 PMCID: PMC11995296 DOI: 10.1111/acel.14361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cellular senescence is associated with various age-related disorders and is assumed to play a major role in the pathogenesis of osteoarthritis (OA). Based on this, we tested a senolytic combination therapy using Dasatinib (D) and Quercetin (Q) on aged isolated human articular chondrocytes (hACs), as well as in OA-affected cartilage tissue (OARSI grade 1-2). Stimulation with D + Q selectively eliminated senescent cells in both, cartilage explants and isolated hAC. Furthermore, the therapy significantly promoted chondroanabolism, as demonstrated by increased gene expression levels of COL2A1, ACAN, and SOX9, as well as elevated collagen type II and glycosaminoglycan biosynthesis. Additionally, D + Q treatment significantly reduced the release of SASP factors (IL6, CXCL1). RNA sequencing analysis revealed an upregulation of the anabolic factors, inter alia, FGF18, IGF1, and TGFB2, as well as inhibitory effects on cytokines and the YAP-1 signaling pathway, explaining the underlying mechanism of the chondroanabolic promotion upon senolytic treatment. Accordingly, stimulation of untreated hAC with conditioned medium of D + Q-treated cells similarly induced the expression of chondrogenic markers. Detailed analyses demonstrated that chondroanabolic effects could be mainly attributed to Dasatinib, while monotherapeutical application of Quercetin or Navitoclax did not promote the chondroanabolism. Overall, D + Q therapy restored the chondrogenic phenotype in OA hAC most likely by creating a pro-chondroanabolic environment through the reduction of SASP factors and upregulation of growth factors. This senolytic approach could therefore be a promising candidate for further testing as a disease-modifying osteoarthritis drug.
Collapse
Affiliation(s)
- Svenja Maurer
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of OrthopedicsUniversity of UlmUlmGermany
| | - Valeria Kirsch
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of OrthopedicsUniversity of UlmUlmGermany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of OrthopedicsUniversity of UlmUlmGermany
| | - Rolf E. Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of OrthopedicsUniversity of UlmUlmGermany
| | - Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of OrthopedicsUniversity of UlmUlmGermany
| |
Collapse
|
3
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2025; 14:e2402737. [PMID: 39506433 PMCID: PMC11730424 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Wei Liu
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| |
Collapse
|
4
|
Siddiq MAB, Oo WM, Hunter DJ. New therapeutic strategies in osteoarthritis. Joint Bone Spine 2024; 91:105739. [PMID: 38685527 DOI: 10.1016/j.jbspin.2024.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Osteoarthritis (OA) is the most prevalent arthritis-type and is a major contributor to chronic joint pain, impaired physical function, and limited mobility. By the end of 2020, a total of 595 million, equal to 7·6% of the global population, had OA; this figure is expected to rise exponentially by 2050. Even while the disorder's intricate pathophysiology is starting to appear intelligible, we are yet to have a cure for the disorder. OA is typically managed with traditional palliative measures, such as topical and systemic analgesics, including non-steroidal anti-inflammatory drugs, therapeutic exercise, and braces. Sometimes, intra-articular glucocorticoids, viscosupplementation, or regenerative interventions provide short-term pain relief and functional improvement; some may require arthroplasty. Researchers continue their efforts to unveil a new therapeutic target to be effective in OA that modifies symptoms and arrests disease progression as well. In the present literature review, insights into new therapeutic strategies in OA, for example, liposome-based dexamethasone, microspore-based triamcinolone, nerve growth factor antagonist, anti-ADAMTS-5 (A Disintegrin And Metalloproteinase Thrombospoidin Motifs - 5), pentosan polysulfate sodium, allogeneic stem cells, C-C chemokine receptor type-4 (CCR4) ligand 17 inhibitor, Wnt-signaling inhibitor, and anti-obesity medications are provided.
Collapse
Affiliation(s)
- Md Abu Bakar Siddiq
- Department of Rheumatology, Faculty of Medicine and Health Science, Kolling Institute, Royal North Shore Hospital, University of Sydney, Sydney, Australia.
| | - Win Min Oo
- Department of Rheumatology, Faculty of Medicine and Health Science, Kolling Institute, Royal North Shore Hospital, University of Sydney, Sydney, Australia; Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine, Mandalay, Myanmar
| | - David J Hunter
- Department of Rheumatology, Faculty of Medicine and Health Science, Kolling Institute, Royal North Shore Hospital, University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Scanzello CR, Hasty KA, Chung CB, Griffin TM, Willet NJ, Krug H, Chu CQ, Ewart D, Jerban S, Baker JF, Duvall CL, Brunger JM, Burdick JA, Spindler KP, Drissi H. Teaming up to overcome challenges toward translation of new therapeutics for osteoarthritis. J Orthop Res 2024; 42:2659-2672. [PMID: 39103981 DOI: 10.1002/jor.25944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
As a leading global cause of musculoskeletal-related disability, osteoarthritis (OA) represents a public health urgency. Understanding of disease pathogenesis has advanced substantially in the past decade, yet no disease-modifying therapeutics have advanced to the clinic. To address this challenge, the CARE-AP (Cartilage Repair strategies to alleviate Arthritis Pain) collaborative research team was convened to bring together relevant multidisciplinary expertise and perspectives from across the VA research community nationwide. The first CARE-AP Annual Research Symposium took place (virtually) in February 2022 with roughly 90 participants. A number of innovative and therapeutic strategies were discussed, including siRNA approaches coupled with novel nanoparticle-based delivery systems, cellular engineering approaches to develop reparative cells that can probe the joint environment and respond to disease-specific cues, and novel biofabrication techniques to improve tissue engineering and effect "biological joint replacement." In addition, challenges and advances in rehabilitation approaches, imaging outcomes, and clinical studies were presented, which were integrated into a framework of recommendations for running "preclinical trials" to improve successful clinical translation.
Collapse
Affiliation(s)
- Carla R Scanzello
- Translational Musculoskeletal Research Center, Corp. Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karen A Hasty
- Research Service 151, Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, Tennessee, USA
- Department of Orthopaedic Surgery and Biomedical Engineering, Campbell Clinic/University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Christine B Chung
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Timothy M Griffin
- Oklahoma City VA Health Care System, Oklahoma City, Oklahoma, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Nick J Willet
- Veterans Affairs Portland Health Care System, Portland, Oregon, USA
- Phil and Penny Knight Campus for Accelerating Scientific Impact, Department of Bioengineering, University of Oregon, Eugene, Oregon, USA
| | - Hollis Krug
- Rheumatology Section, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota, USA
- Division of Rheumatology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cong-Qiu Chu
- Veterans Affairs Portland Health Care System, Portland, Oregon, USA
- Division of Arthritis and Rheumatic Diseases, Oregon Health Sciences University, Portland, Oregon, USA
| | - David Ewart
- Rheumatology Section, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota, USA
- Division of Rheumatology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Saeed Jerban
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Joshua F Baker
- Translational Musculoskeletal Research Center, Corp. Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jason A Burdick
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Kurt P Spindler
- Department of Orthopaedic Surgery, Sports Medicine, Cleveland Clinic Florida, Coral Springs, Florida, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| |
Collapse
|
6
|
Xiao M, Zhang J, Wu J, Yuan N, Liu T, Tang C, Xu N, Li Q, Wu J, Li S, Song Z. Microneedles containing Cucumaria frondosa polysaccharides and 3-acetylaconitine exert analgesic, anti-inflammatory and chondroprotective activity for knee osteoarthritis. Int J Biol Macromol 2024; 281:136204. [PMID: 39362426 DOI: 10.1016/j.ijbiomac.2024.136204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
3-Acetylaconitine (AAC) is a commercially analgesic drug for arthritis, however, due to its narrow safety range, its clinical application is limited. The objective of the study was to investigate the combined effect of Cucumaria frondosa polysaccharide (CFP) and AAC in microneedles on knee osteoarthritis (KOA). The characterization of microneedles was conducted and a rat model of monosodium iodoacetate (MIA)-induced KOA was established to evaluate the anti-inflammatory and analgesic activity in this study. The inhibitory effects on cartilage degradation and synovial inflammation were determined by morphological observation of the knee joint, pathological and imaging results. The von Frey pain threshold and hind limb weight bearing test were used to evaluate the effect of microneedles on pain relief. The results showed that microneedles had the mechanical strength to penetrate the skin and dissolved well in the skin for drug delivery within 30 min after patch administration. Furthermore, AAC-MN and CFP-AAC-MN both played roles in relieving pain, reducing cartilage degeneration and inhibiting synovial inflammation in KOA. In summary, CFP combined with AAC loading into microneedles exhibited higher skin penetration and more advantages in inhibiting cartilage damage and inflammation compared to AAC alone.
Collapse
Affiliation(s)
- Mingmei Xiao
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Jiuhua Zhang
- Bioengineering Laboratory, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510006, Guangdong, PR China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, PR China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, PR China
| | - Jiajin Wu
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Ning Yuan
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Tao Liu
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Chunzhi Tang
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Qingxin Li
- Bioengineering Laboratory, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510006, Guangdong, PR China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, PR China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, PR China
| | - Jinchuan Wu
- Bioengineering Laboratory, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510006, Guangdong, PR China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, PR China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, PR China.
| | - Shijie Li
- South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China.
| | - Zhuoyue Song
- Bioengineering Laboratory, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510006, Guangdong, PR China; South China Research Center for Acupuncture and Moxibustion, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China; National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, PR China; Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, PR China.
| |
Collapse
|
7
|
Liu Y, Xing Z, Wu B, Chen N, Wu T, Cai Z, Guo D, Tao G, Xie Z, Wu C, Cao P, Wang X, Li J. Association of MRI-based knee osteoarthritis structural phenotypes with short-term structural progression and subsequent total knee replacement. J Orthop Surg Res 2024; 19:699. [PMID: 39468567 PMCID: PMC11520466 DOI: 10.1186/s13018-024-05194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The failure of disease-modifying osteoarthritis drugs (DMOADs) trials lies mainly in the heterogeneity of the disease, which calls for a more precise population with specific progression and outcomes. This study aimed to determine whether and which MRI-based structural phenotype of knee osteoarthritis (KOA) is associated with short-term structural progression and subsequent total knee replacement (TKR). METHODS A longitudinal study was conducted among participants with baseline Kellgren-Lawrence grade (KLG) ≥ 2 from the Osteoarthritis Initiative (OAI). The structural phenotypes at baseline were defined as subchondral bone, meniscus/cartilage and inflammatory phenotypes according to the MRI Osteoarthritis Knee Score (MOAKS). The primary outcome was the progression of structural abnormalities within 24 months and multivariable logistic regressions were applied to evaluate the associations. The secondary outcome was the incidence of TKR during 108 months. Cox regressions and Kaplan-Meier survival curves were used for the analysis. RESULTS A total of 733 participants with KOA were finally included in our study, with 493 (67.3%) having the three main structural phenotypes. For the primary outcome, the subchondral bone phenotype (OR [95% CI]:1.71 [1.02, 2.83], 1.52 [1.06, 2.18], 1.65 [1.11, 2.42], respectively) and the inflammatory phenotype (OR [95% CI]: 1.69 [1.05, 2.74], 1.82 [1.31, 2.52], 2.15 [1.48, 3.14], respectively) were both associated with the short-term progression of joint space narrowing, osteophytes and sclerosis in 24 months, whereas the meniscus/cartilage phenotype was only associated with the progression of osteophytes and sclerosis. For the secondary outcome, the subchondral bone phenotype (HR [95% CI]: 1.71 [1.06-2.78]) and inflammatory phenotype (HR [95%CI]: 2.00 [1.02-2.67]) were associated with shorter time to subsequent TKR, but not the meniscus/cartilage phenotype. Besides, the cumulative effect when the structural phenotype overlapped was confirmed in both outcomes. CONCLUSIONS The subchondral bone phenotype and inflammatory phenotype were associated with the progression of joint space narrowing, osteophytes and sclerosis in 24 months, along with subsequent TKR in 108 months. Besides, additive effects of overlapped phenotypes were further determined. These phenotypes could serve as valuable screening tools for future clinical trials and provide guidance for risk evaluation.
Collapse
Affiliation(s)
- Yukang Liu
- Division of Orthopaedic Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zikai Xing
- Division of Orthopaedic Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Baoer Wu
- Division of Orthopaedic Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ning Chen
- Division of Orthopaedic Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianxing Wu
- Division of Orthopaedic Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuojian Cai
- Division of Orthopaedic Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Donghong Guo
- Division of Orthopaedic Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Gaochenzi Tao
- Department of Gynecology, Guangzhou Haizhu District Changgang Street Community Service Center, Guangzhou, Guangdong, China
| | - Zikun Xie
- Division of Orthopaedic Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengkai Wu
- Division of Orthopaedic Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Public Health, Southern Medical University, Guangzhou, 510515, China
- School of Health Management, Southern Medical University, Guangzhou, 510515, China
| | - Peihua Cao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jia Li
- Division of Orthopaedic Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Geng N, Fan M, Kuang B, Zhang F, Xian M, Deng L, Chen C, Pan Y, Chen J, Feng N, Liang L, Ye Y, Liu K, Li X, Du Y, Guo F. 10-hydroxy-2-decenoic acid prevents osteoarthritis by targeting aspartyl β hydroxylase and inhibiting chondrocyte senescence in male mice preclinically. Nat Commun 2024; 15:7712. [PMID: 39231947 PMCID: PMC11375154 DOI: 10.1038/s41467-024-51746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
Osteoarthritis is a degenerative joint disease with joint pain as the main symptom, caused by fibrosis and loss of articular cartilage. Due to the complexity and heterogeneity of osteoarthritis, there is a lack of effective individualized disease-modifying osteoarthritis drugs in clinical practice. Chondrocyte senescence is reported to participate in occurrence and progression of osteoarthritis. Here we show that small molecule 10-hydroxy-2-decenoic acid suppresses cartilage degeneration and relieves pain in the chondrocytes, cartilage explants from osteoarthritis patients, surgery-induced medial meniscus destabilization or naturally aged male mice. We further confirm that 10-hydroxy-2-decenoic acid exerts a protective effect by targeting the glycosylation site in the Asp_Arg_Hydrox domain of aspartyl β-hydroxylase. Mechanistically, 10-hydroxy-2-decenoic acid alleviate cellular senescence through the ERK/p53/p21 and GSK3β/p16 pathways in the chondrocytes. Our study uncovers that 10-hydroxy-2-decenoic acid modulate cartilage metabolism by targeting aspartyl β-hydroxylase to inhibit chondrocyte senescence in osteoarthritis. 10-hydroxy-2-decenoic acid may be a promising therapeutic drug against osteoarthritis.
Collapse
Affiliation(s)
- Nana Geng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mengtian Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Biao Kuang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengmei Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Menglin Xian
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cheng Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jianqiang Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Naibo Feng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Li Liang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yuanlan Ye
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Kaiwen Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengjin Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Fu K, Si S, Jin X, Zhang Y, Duong V, Cai Q, Li G, Oo WM, Zheng X, Boer CG, Zhang Y, Wei X, Zhang C, Gao Y, Hunter DJ. Exploring antidiabetic drug targets as potential disease-modifying agents in osteoarthritis. EBioMedicine 2024; 107:105285. [PMID: 39153411 PMCID: PMC11378937 DOI: 10.1016/j.ebiom.2024.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Osteoarthritis is a leading cause of disability, and disease-modifying osteoarthritis drugs (DMOADs) could represent a pivotal advancement in treatment. Identifying the potential of antidiabetic medications as DMOADs could impact patient care significantly. METHODS We designed a comprehensive analysis pipeline involving two-sample Mendelian Randomization (MR) (genetic proxies for antidiabetic drug targets), summary-based MR (SMR) (for mRNA), and colocalisation (for drug-target genes) to assess their causal relationship with 12 osteoarthritis phenotypes. Summary statistics from the largest genome-wide association meta-analysis (GWAS) of osteoarthritis and gene expression data from the eQTLGen consortium were utilised. FINDINGS Seven out of eight major types of clinical antidiabetic medications were identified, resulting in fourteen potential drug targets. Sulfonylurea targets ABCC8/KCNJ11 were associated with increased osteoarthritis risk at any site (odds ratio (OR): 2.07, 95% confidence interval (CI): 1.50-2.84, P < 3 × 10-4), while PPARG, influenced by thiazolidinediones (TZDs), was associated with decreased risk of hand (OR: 0.61, 95% CI: 0.48-0.76, P < 3 × 10-4), finger (OR: 0.50, 95% CI: 0.35-0.73, P < 3 × 10-4), and thumb (OR: 0.49, 95% CI: 0.34-0.71, P < 3 × 10-4) osteoarthritis. Metformin and GLP1-RA, targeting GPD1 and GLP1R respectively, were associated with reduced risk of knee and finger osteoarthritis. In the SMR analyses, gene expression of KCNJ11, GANAB, ABCA1, and GSTP1, targeted by antidiabetic drugs, was significantly linked to at least one osteoarthritis phenotype and was replicated across at least two gene expression datasets. Additionally, increased KCNJ11 expression was related to decreased osteoarthritis risk and co-localised with at least one osteoarthritis phenotype. INTERPRETATION Our findings suggest a potential therapeutic role for antidiabetic drugs in treating osteoarthritis. The results indicate that certain antidiabetic drug targets may modify disease progression, with implications for developing targeted DMOADs. FUNDING This study was funded by the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant (2022), the Shanghai Municipal Health Commission Health Industry Clinical Research Project (Grant No. 20224Y0139), Beijing Natural Science Foundation (Grant No. 7244458), and the Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation (Grant No. GZC20230130).
Collapse
Affiliation(s)
- Kai Fu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia
| | - Shucheng Si
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Xinzhong Jin
- Centre for Big Data Research in Health, University of New South Wales, Sydney, Australia
| | - Yan Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Vicky Duong
- Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia
| | - Qianying Cai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangyi Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Win Min Oo
- Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia; Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine Mandalay, Mandalay, Myanmar
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Medical Center, Rotterdam, the Netherlands
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Xiaojuan Wei
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - David J Hunter
- Kolling Institute, Sydney Musculoskeletal Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Zhu R, Liao HY, Huang YC, Shen HL. Application of Injectable Hydrogels as Delivery Systems in Osteoarthritis and Rheumatoid Arthritis. Br J Hosp Med (Lond) 2024; 85:1-41. [PMID: 39212571 DOI: 10.12968/hmed.2024.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Osteoarthritis and rheumatoid arthritis, though etiologically distinct, are both inflammatory joint diseases that cause progressive joint injury, chronic pain, and loss of function. Therefore, long-term treatment with a focus on relieving symptoms is needed. At present, the primary treatment for arthritis is drug therapy, both oral and intravenous. Although significant progress has been achieved for these treatment methods in alleviating symptoms, certain prominent drawbacks such as the substantial side effects and limited absorption of medications call for an urgent need for improved drug delivery methods. Injected hydrogels can be used as a delivery system to deliver drugs to the joint cavity in a controlled manner and continuously release them, thereby enhancing drug retention in the joint cavity to improve therapeutic effectiveness, which is attributed to the desirable attributes of the delivery system such as low immunogenicity, good biodegradability and biocompatibility. This review summarizes the types of injectable hydrogels and analyzes their applications as delivery systems in arthritis treatment. We also explored how hydrogels counteract inflammation, bone and cartilage degradation, and oxidative stress, while promoting joint cartilage regeneration in the treatment of osteoarthritis (OA) and rheumatoid arthritis (RA). This review also highlights new approaches to developing injectable hydrogels as delivery systems for OA and RA.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yi-Chen Huang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Li Shen
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Kuswanto W, Baker MC. Repurposing drugs for the treatment of osteoarthritis. Osteoarthritis Cartilage 2024; 32:886-895. [PMID: 38821468 DOI: 10.1016/j.joca.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVE Currently, no disease-modifying therapies for osteoarthritis (OA) exist, and attempts to identify novel cellular targets have been challenging. Risk factors for OA include advanced age, obesity, and metabolic syndrome. This creates an attractive opportunity to repurpose existing drugs that are used to treat comorbidities commonly encountered in patients with OA, if those drugs possess OA disease modifying properties. METHODS This narrative review incorporates findings from knee or hand OA randomized clinical trials, post-hoc clinical trial analyses, prospective cohort studies, and observational data. RESULTS Drugs used for the treatment of rheumatoid arthritis (methotrexate; TNFa, IL-1, and IL-6 pathway inhibitors; hydroxychloroquine), atopic/allergic disease (anti-histamines), osteoporosis (bisphosphonates and vitamin D), type 2 diabetes (metformin and GLP-1 agonists), and cardiovascular disease (atorvastatin, fish oil, and beta blockers) were reviewed for their potential benefit in OA. This review outlines the successful attributes of repurposed drugs, the challenges in repurposing drugs, and strategies for future clinical trials to support OA drug repurposing. Potential drug candidates for OA may be identified through the use of existing datasets and via collaborations with researchers in other fields to include OA endpoints in future clinical trials. CONCLUSION Given the association of OA with several commonly treated comorbidities, drug repurposing is an appealing approach that could provide a favorable benefit-to-risk ratio for chronic OA treatment.
Collapse
Affiliation(s)
- Wilson Kuswanto
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Gilead Sciences Inc, Foster City, CA, USA
| | - Matthew C Baker
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Miao MZ, Lee JS, Yamada KM, Loeser RF. Integrin signalling in joint development, homeostasis and osteoarthritis. Nat Rev Rheumatol 2024; 20:492-509. [PMID: 39014254 PMCID: PMC11886400 DOI: 10.1038/s41584-024-01130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/18/2024]
Abstract
Integrins are key regulators of cell-matrix interactions during joint development and joint tissue homeostasis, as well as in the development of osteoarthritis (OA). The signalling cascades initiated by the interactions of integrins with a complex network of extracellular matrix (ECM) components and intracellular adaptor proteins orchestrate cellular responses necessary for maintaining joint tissue integrity. Dysregulated integrin signalling, triggered by matrix degradation products such as matrikines, disrupts this delicate balance, tipping the scales towards an environment conducive to OA pathogenesis. The interplay between integrin signalling and growth factor pathways further underscores the multifaceted nature of OA. Moreover, emerging insights into the role of endocytic trafficking in regulating integrin signalling add a new layer of complexity to the understanding of OA development. To harness the therapeutic potential of targeting integrins for mitigation of OA, comprehensive understanding of their molecular mechanisms across joint tissues is imperative. Ultimately, deciphering the complexities of integrin signalling will advance the ability to treat OA and alleviate its global burden.
Collapse
Affiliation(s)
- Michael Z Miao
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Oo WM, Linklater J, Siddiq MAB, Fu K, Hunter DJ. Comparison of ultrasound guidance with landmark guidance for symptomatic benefits in knee, hip and hand osteoarthritis: Systematic review and meta-analysis of randomised controlled trials. Australas J Ultrasound Med 2024; 27:97-105. [PMID: 38784696 PMCID: PMC11109994 DOI: 10.1002/ajum.12386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Introduction More than half of the patients with moderate and severe osteoarthritis (OA) report unsatisfactory pain relief, requiring consideration of intra-articular (IA) injections as the second-line management. Ultrasound-guided IA injection has proven evidence of higher accuracy in administering IA injectates into the joints than landmark-guided or blind IA injections. However, questions remain about translating higher accuracy rates of ultrasound-guided injection into better clinical improvements. Therefore, we examined the symptomatic benefits (pain, function and patient satisfaction) of ultrasound-guided injection in knee, hip and hand OA compared with blind injections by synthesising a systematic review and meta-analysis of randomised controlled trials (RCT). Methods PubMed, Medline and Embase databases were searched for eligible studies from their inception to August 28, 2023. Results Out of 295 records, our meta-analysis included four RCTs (338 patients with knee OA), demonstrating significant improvement in procedural pain [-0.89 (95% CI -1.25, -0.53)], pain at follow-up [-0.51 (95% CI -0.98, -0.04)] and function [1.30 (95% CI 0.86, 1.73)], favouring ultrasound guidance. One single study showed higher patient satisfaction with ultrasound guidance. Conclusion Ultrasound-guided IA injection provided superior clinical outcomes compared with landmark-guided IA injection.
Collapse
Affiliation(s)
- Win Min Oo
- Department of Physical Medicine and Rehabilitation, Mandalay General HospitalUniversity of MedicineMandalayMyanmar
- Rheumatology Department, Royal North Shore Hospital, and Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | | | - Md Abu Bakar Siddiq
- Rheumatology Department, Royal North Shore Hospital, and Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Kai Fu
- Rheumatology Department, Royal North Shore Hospital, and Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - David J. Hunter
- Rheumatology Department, Royal North Shore Hospital, and Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
14
|
Culvenor AG, West TJ, Bruder AM, Scholes MJ, Barton CJ, Roos EM, Oei EHG, McPhail SM, Souza RB, Lee J, Patterson BE, Girdwood MA, Couch JL, Crossley KM. Recruitment and baseline characteristics of young adults at risk of early-onset knee osteoarthritis after ACL reconstruction in the SUPER-Knee trial. BMJ Open Sport Exerc Med 2024; 10:e001909. [PMID: 38601122 PMCID: PMC11002429 DOI: 10.1136/bmjsem-2024-001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Objectives The study aims to (1) report the process of recruiting young adults into a secondary knee osteoarthritis prevention randomised controlled trial (RCT) after anterior cruciate ligament reconstruction (ACLR); (2) determine the number of individuals needed to be screened to include one participant (NNS) and (3) report baseline characteristics of randomised participants. Methods The SUpervised exercise-therapy and Patient Education Rehabilitation (SUPER)-Knee RCT compares SUPER and minimal intervention for young adults (aged 18-40 years) with ongoing symptoms (ie, mean score of <80/100 from four Knee injury and Osteoarthritis Outcome Score subscales (KOOS4)) 9-36 months post-ACLR. The NNS was calculated as the number of prospective participants screened to enrol one person. At baseline, participants provided medical history, completed questionnaires (demographic, injury/surgery, rehabilitation characteristics) and underwent physical examination. Results 1044 individuals were screened to identify 567 eligible people, from which 184 participants (63% male) enrolled. The sample of enrolled participants was multicultural (29% born outside Australia; 2% Indigenous Australians). The NNS was 5.7. For randomised participants, mean±SD age was 30±6 years. The mean body mass index was 27.3±5.2 kg/m2, with overweight (43%) and obesity (21%) common. Participants were, on average, 2.3 years post-ACLR. Over half completed <8 months of postoperative rehabilitation, with 56% having concurrent injury/surgery to meniscus and/or cartilage. The most affected KOOS (0=worst, 100=best) subscale was quality of life (mean 43.7±19.1). Conclusion Young adults post-ACLR were willing to participate in a secondary osteoarthritis prevention trial. Sample size calculations should be multiplied by at least 5.7 to provide an estimate of the NNS. The SUPER-Knee cohort is ideally positioned to monitor and intervene in the early development and trajectory of osteoarthritis. Trial registration number ACTRN12620001164987.
Collapse
Affiliation(s)
- Adam G Culvenor
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- Australian IOC Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Thomas J West
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- Australian IOC Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Andrea M Bruder
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- Department of Physiotherapy, Podiatry and Prosthetics and Orthotics, La Trobe University, Melbourne, Victoria, Australia
| | - Mark J Scholes
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- Department of Physiotherapy, Podiatry and Prosthetics and Orthotics, La Trobe University, Melbourne, Victoria, Australia
| | - Christian J Barton
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- Department of Physiotherapy, Podiatry and Prosthetics and Orthotics, La Trobe University, Melbourne, Victoria, Australia
| | - Ewa M Roos
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Steven M McPhail
- Australian Centre for Health Services Innovation & Centre for Healthcare Transformation, School of Public Health & Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
- Clinical Informatics Directorate, Metro South Health, Woolloongabba, Queensland, Australia
| | - Richard B Souza
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California, USA
| | - Jusuk Lee
- Department of Radiology and Biomedical Imaging, University of California, San Francicso, California, USA
| | - Brooke E Patterson
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- Australian IOC Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Michael A Girdwood
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- Australian IOC Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Jamon L Couch
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- Australian IOC Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Kay M Crossley
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia
- Australian IOC Research Centre, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Calvet J, Berenguer-Llergo A, Orellana C, García-Manrique M, Rusiñol M, Garcia-Cirera S, Llop M, Arévalo M, Garcia-Pinilla A, Galisteo C, Aymerich C, Gómez R, Serrano A, Carreras A, Gratacós J. Specific-cytokine associations with outcomes in knee osteoarthritis subgroups: breaking down disease heterogeneity with phenotyping. Arthritis Res Ther 2024; 26:19. [PMID: 38212829 PMCID: PMC10782658 DOI: 10.1186/s13075-023-03244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Despite existing extensive literature, a comprehensive and clinically relevant classification system for osteoarthritis (OA) has yet to be established. In this study, we aimed to further characterize four knee OA (KOA) inflammatory phenotypes (KOIP) recently proposed by our group, by identifying the inflammatory factors associated with KOA severity and progression in a phenotype-specific manner. METHODS We performed an analysis within each of the previously defined four KOIP groups, to assess the association between KOA severity and progression and a panel of 13 cytokines evaluated in the plasma and synovial fluid of our cohort's patients. The cohort included 168 symptomatic female KOA patients with persistent joint effusion. RESULTS Overall, our analyses showed that associations with KOA outcomes were of higher magnitude within the KOIP groups than for the overall patient series (all p-values < 1.30e-16) and that several of the cytokines showed a KOIP-specific behaviour regarding their associations with KOA outcomes. CONCLUSION Our study adds further evidence supporting KOA as a multifaceted syndrome composed of multiple phenotypes with differing pathophysiological pathways, providing an explanation for inconsistencies between previous studies focussed on the role of cytokines in OA and the lack of translational results to date. Our findings also highlight the potential clinical benefits of accurately phenotyping KOA patients, including improved patient stratification, tailored therapies, and the discovery of novel treatments.
Collapse
Affiliation(s)
- Joan Calvet
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| | - Antoni Berenguer-Llergo
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Cristóbal Orellana
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - María García-Manrique
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Menna Rusiñol
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Silvia Garcia-Cirera
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Maria Llop
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Marta Arévalo
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Alba Garcia-Pinilla
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Carlos Galisteo
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Cristina Aymerich
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Rafael Gómez
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Alejandra Serrano
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Anna Carreras
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
| | - Jordi Gratacós
- Department of Rheumatology, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, c/Parc Taulí s/n, edifici VII Centenari, 08208, Sabadell, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
16
|
Calvet J, García-Manrique M, Berenguer-Llergo A, Orellana C, Cirera SG, Llop M, Galisteo Lencastre C, Arévalo M, Aymerich C, Gómez R, Giménez NA, Gratacós J. Metabolic and inflammatory profiles define phenotypes with clinical relevance in female knee osteoarthritis patients with joint effusion. Rheumatology (Oxford) 2023; 62:3875-3885. [PMID: 36944271 PMCID: PMC10691929 DOI: 10.1093/rheumatology/kead135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/12/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVES Osteoarthritis has been the subject of abundant research in the last years with limited translation to the clinical practice, probably due to the disease's high heterogeneity. In this study, we aimed to identify different phenotypes in knee osteoarthritis (KOA) patients with joint effusion based on their metabolic and inflammatory profiles. METHODS A non-supervised strategy based on statistical and machine learning methods was applied to 45 parameters measured on 168 female KOA patients with persistent joint effusion, consecutively recruited at our hospital after a monographic OA outpatient visit. Data comprised anthropometric and metabolic factors and a panel of systemic and local inflammatory markers. The resulting clusters were compared regarding their clinical, radiographic and ultrasound severity at baseline and their radiographic progression at two years. RESULTS Our analyses identified four KOA inflammatory phenotypes (KOIP): a group characterized by metabolic syndrome, probably driven by body fat and obesity, and by high local and systemic inflammation (KOIP-1); a metabolically healthy phenotype with mild overall inflammation (KOIP-2); a non-metabolic phenotype with high inflammation levels (KOIP-3); and a metabolic phenotype with low inflammation and cardiovascular risk factors not associated with obesity (KOIP-4). Of interest, these groups exhibited differences regarding pain, functional disability and radiographic progression, pointing to a clinical relevance of the uncovered phenotypes. CONCLUSION Our results support the existence of different KOA phenotypes with clinical relevance and differing pathways regarding their pathophysiology and disease evolution, which entails implications in patients' stratification, treatment tailoring and the search of novel and personalized therapies.
Collapse
Affiliation(s)
- Joan Calvet
- Rheumatology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
- Departament de Medicina, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain
| | - María García-Manrique
- Rheumatology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
- Departament de Medicina, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain
| | - Antoni Berenguer-Llergo
- Rheumatology Department, Biostatistics and Bioinformatics, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | - Cristóbal Orellana
- Rheumatology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | - Silvia Garcia Cirera
- Rheumatology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | - Maria Llop
- Rheumatology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | - Carlos Galisteo Lencastre
- Rheumatology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | - Marta Arévalo
- Rheumatology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | - Cristina Aymerich
- Rheumatology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | - Rafael Gómez
- Rheumatology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
| | - Néstor Albiñana Giménez
- Scientific-Technical Unit, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA) (UAB), Sabadell, Spain
| | - Jordi Gratacós
- Rheumatology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Sabadell, Spain
- Departament de Medicina, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
17
|
Andersen C, Jacobsen S, Uvebrant K, Griffin JF, Vonk LA, Walters M, Berg LC, Lundgren-Åkerlund E, Lindegaard C. Integrin α10β1-Selected Mesenchymal Stem Cells Reduce Pain and Cartilage Degradation and Increase Immunomodulation in an Equine Osteoarthritis Model. Cartilage 2023:19476035231209402. [PMID: 37990503 DOI: 10.1177/19476035231209402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE Integrin α10β1-selected mesenchymal stem cells (integrin α10-MSCs) have previously shown potential in treating cartilage damage and osteoarthritis (OA) in vitro and in animal models in vivo. The aim of this study was to further investigate disease-modifying effects of integrin α10-MSCs. DESIGN OA was surgically induced in 17 horses. Eighteen days after surgery, horses received 2 × 107 integrin α10-MSCs intra-articularly or were left untreated. Lameness and response to carpal flexion was assessed weekly along with synovial fluid (SF) analysis. On day 52 after treatment, horses were euthanized, and carpi were evaluated by computed tomography (CT), MRI, histology, and for macroscopic pathology and integrin α10-MSCs were traced in the joint tissues. RESULTS Lameness and response to carpal flexion significantly improved over time following integrin α10-MSC treatment. Treated horses had milder macroscopic cartilage pathology and lower cartilage histology scores than the untreated group. Prostaglandin E2 and interleukin-10 increased in the SF after integrin α10-MSC injection. Integrin α10-MSCs were found in SF from treated horses up to day 17 after treatment, and in the articular cartilage and subchondral bone from 5 of 8 treated horses after euthanasia at 52 days after treatment. The integrin α10-MSC injection did not cause joint flare. CONCLUSION This study demonstrates that intra-articular (IA) injection of integrin α10-MSCs appears to be safe, alleviate pathological changes in the joint, and improve joint function in an equine post-traumatic osteoarthritis (PTOA) model. The results suggest that integrin α10-MSCs hold promise as a disease-modifying osteoarthritis drug (DMOAD).
Collapse
Affiliation(s)
- Camilla Andersen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
- Xintela AB, Lund, Sweden
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | | | - John F Griffin
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Marie Walters
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | | | - Casper Lindegaard
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
18
|
Abstract
Importance Approximately 5% of all primary care visits in adults are related to knee pain. Osteoarthritis (OA), patellofemoral pain, and meniscal tears are among the most common causes of knee pain. Observations Knee OA, affecting an estimated 654 million people worldwide, is the most likely diagnosis of knee pain in patients aged 45 years or older who present with activity-related knee joint pain with no or less than 30 minutes of morning stiffness (95% sensitivity; 69% specificity). Patellofemoral pain typically affects people younger than 40 years who are physically active and has a lifetime prevalence of approximately 25%. The presence of anterior knee pain during a squat is approximately 91% sensitive and 50% specific for patellofemoral pain. Meniscal tears affect an estimated 12% of the adult population and can occur following acute trauma (eg, twisting injury) in people younger than 40 years. Alternatively, a meniscal tear may be a degenerative condition present in patients with knee OA who are aged 40 years or older. The McMurray test, consisting of concurrent knee rotation (internal or external to test lateral or medial meniscus, respectively) and extension (61% sensitivity; 84% specificity), and joint line tenderness (83% sensitivity; 83% specificity) assist diagnosis of meniscal tears. Radiographic imaging of all patients with possible knee OA is not recommended. First-line management of OA comprises exercise therapy, weight loss (if overweight), education, and self-management programs to empower patients to better manage their condition. Surgical referral for knee joint replacement can be considered for patients with end-stage OA (ie, no or minimal joint space with inability to cope with pain) after using all appropriate conservative options. For patellofemoral pain, hip and knee strengthening exercises in combination with foot orthoses or patellar taping are recommended, with no indication for surgery. Conservative management (exercise therapy for 4-6 weeks) is also appropriate for most meniscal tears. For severe traumatic (eg, bucket-handle) tears, consisting of displaced meniscal tissue, surgery is likely required. For degenerative meniscal tears, exercise therapy is first-line treatment; surgery is not indicated even in the presence of mechanical symptoms (eg, locking, catching). Conclusions and Relevance Knee OA, patellofemoral pain, and meniscal tears are common causes of knee pain, can be diagnosed clinically, and can be associated with significant disability. First-line treatment for each condition consists of conservative management, with a focus on exercise, education, and self-management.
Collapse
Affiliation(s)
- Vicky Duong
- Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Win Min Oo
- Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine, Mandalay, Mandalay, Myanmar
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Adam G Culvenor
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
- Australian IOC Research Centre, La Trobe University, Melbourne, Australia
| | - David J Hunter
- Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Rheumatology Department, Royal North Shore Hospital, St Leonards, Australia
| |
Collapse
|
19
|
Kawata M, McClatchy DB, Diedrich JK, Olmer M, Johnson KA, Yates JR, Lotz MK. Mocetinostat activates Krüppel-like factor 4 and protects against tissue destruction and inflammation in osteoarthritis. JCI Insight 2023; 8:e170513. [PMID: 37681413 PMCID: PMC10544226 DOI: 10.1172/jci.insight.170513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/19/2023] [Indexed: 09/09/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disorder, and disease-modifying OA drugs (DMOADs) represent a major need in OA management. Krüppel-like factor 4 (KLF4) is a central transcription factor upregulating regenerative and protective functions in joint tissues. This study was aimed to identify small molecules activating KLF4 expression and to determine functions and mechanisms of the hit compounds. High-throughput screening (HTS) with 11,948 clinical-stage compounds was performed using a reporter cell line detecting endogenous KLF4 activation. Eighteen compounds were identified through the HTS and confirmed in a secondary screen. After testing in SW1353 chondrosarcoma cells and human chondrocytes, mocetinostat - a class I selective histone deacetylase (HDAC) inhibitor - had the best profile of biological activities. Mocetinostat upregulated cartilage signature genes in human chondrocytes, meniscal cells, and BM-derived mesenchymal stem cells, and it downregulated hypertrophic, inflammatory, and catabolic genes in those cells and synoviocytes. I.p. administration of mocetinostat into mice reduced severity of OA-associated changes and improved pain behaviors. Global gene expression and proteomics analyses revealed that regenerative and protective effects of mocetinostat were dependent on peroxisome proliferator-activated receptor γ coactivator 1-α. These findings show therapeutic and protective activities of mocetinostat against OA, qualifying it as a candidate to be used as a DMOAD.
Collapse
Affiliation(s)
- Manabu Kawata
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Daniel B. McClatchy
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Jolene K. Diedrich
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | | | - John R. Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Martin K. Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
20
|
Tonutti A, Granata V, Marrella V, Sobacchi C, Ragusa R, Sconza C, Rani N, Di Matteo B, Ceribelli A. The role of WNT and IL-1 signaling in osteoarthritis: therapeutic implications for platelet-rich plasma therapy. FRONTIERS IN AGING 2023; 4:1201019. [PMID: 37362206 PMCID: PMC10285667 DOI: 10.3389/fragi.2023.1201019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Different from inflammatory arthritis, where biologicals and targeted synthetic molecules have revolutionized the disease course, no drug has demonstrated a disease modifying activity in osteoarthritis, which remains one of the most common causes of disability and chronic pain worldwide. The pharmacological therapy of osteoarthritis is mainly directed towards symptom and pain relief, and joint replacement is still the only curative strategy. Elucidating the disease pathophysiology is essential to understand which mechanisms can be targeted by innovative therapies. It has extensively been demonstrated that aberrant WNT and IL-1 signaling pathways are responsible for cartilage degeneration, impaired chondrocyte metabolism and differentiation, increased extracellular matrix degradation, and altered subchondral bone homeostasis. Platelet-rich plasma is an autologous blood derivative containing a concentration of platelets that is much higher than the whole blood counterpart and has shown promising results in the treatment of early knee osteoarthritis. Among the proposed mechanisms, the modulation of WNT and IL-1 pathways is of paramount importance and is herein reviewed in light of the proposed regenerative approaches.
Collapse
Affiliation(s)
- Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Valentina Granata
- Human Genome and Biomedical Technologies Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Milan Unit, National Research Council—Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Veronica Marrella
- Human Genome and Biomedical Technologies Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Milan Unit, National Research Council—Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Cristina Sobacchi
- Human Genome and Biomedical Technologies Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Milan Unit, National Research Council—Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Rita Ragusa
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Cristiano Sconza
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Department of Rehabilitation and Functional Recovery, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Nicola Rani
- Conservative Orthopaedic Surgery and Innovative Techniques, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Berardo Di Matteo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Division of Orthopedics, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Angela Ceribelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
21
|
Gezer HH, Ostor A. What is new in pharmacological treatment for osteoarthritis? Best Pract Res Clin Rheumatol 2023; 37:101841. [PMID: 37302928 DOI: 10.1016/j.berh.2023.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease in which structural changes of hyaline articular cartilage, subchondral bone, ligaments, capsule, synovium, muscles, and periarticular changes are involved. The knee is the most commonly affected joint, followed by the hand, hip, spine, and feet. Different pathological mechanisms are at play in each of these various involvement sites. Although systemic inflammation is more prominent in hand OA, knee and hip OA have been associated with excessive joint load and injury. As OA has varied phenotypes and the primarily affected tissues differ, treatment options must be tailored accordingly. In recent years, ongoing efforts have been made to develop disease-modifying options that halt or slow disease progression. Many are still in clinical trials, and as insights into the pathogenesis of OA evolve, novel therapeutic strategies will be developed. In this chapter, we provide an overview of the novel and emerging strategies in the management of OA.
Collapse
Affiliation(s)
- Halise Hande Gezer
- Marmara University School of Medicine, PMR Department Rheumatology Division, Istanbul, Turkiye
| | - Andrew Ostor
- Cabrini Medical Centre, Monash University, Melbourne & ANU, Canberra, Australia.
| |
Collapse
|
22
|
Guermazi A, Roemer FW, Crema MD, Jarraya M, Mobasheri A, Hayashi D. Strategic application of imaging in DMOAD clinical trials: focus on eligibility, drug delivery, and semiquantitative assessment of structural progression. Ther Adv Musculoskelet Dis 2023; 15:1759720X231165558. [PMID: 37063459 PMCID: PMC10103249 DOI: 10.1177/1759720x231165558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Despite decades of research efforts and multiple clinical trials aimed at discovering efficacious disease-modifying osteoarthritis (OA) drugs (DMOAD), we still do not have a drug that shows convincing scientific evidence to be approved as an effective DMOAD. It has been suggested these DMOAD clinical trials were in part unsuccessful since eligibility criteria and imaging-based outcome evaluation were solely based on conventional radiography. The OA research community has been aware of the limitations of conventional radiography being used as a primary imaging modality for eligibility and efficacy assessment in DMOAD trials. An imaging modality for DMOAD trials should be able to depict soft tissue and osseous pathologies that are relevant to OA disease progression and clinical manifestations of OA. Magnetic resonance imaging (MRI) fulfills these criteria and advances in technology and increasing knowledge regarding imaging outcomes likely should play a more prominent role in DMOAD clinical trials. In this perspective article, we will describe MRI-based tools and analytic methods that can be applied to DMOAD clinical trials with a particular emphasis on knee OA. MRI should be the modality of choice for eligibility screening and outcome assessment. Optimal MRI pulse sequences must be chosen to visualize specific features of OA.
Collapse
Affiliation(s)
- Ali Guermazi
- Department of Radiology, School of Medicine, Boston University, Boston, MA 02132, USA
- VA Boston Healthcare System, 1400 VFW Parkway, West Roxbury, MA, USA
| | - Frank W. Roemer
- Department of Radiology, Universitätsklinikum Erlangen & Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiology, School of Medicine, Boston University, Boston, MA, USA
| | - Michel D. Crema
- Institute of Sports Imaging, Sports Medicine Department, French National Institute of Sports (INSEP), Paris, France
- Department of Radiology, School of Medicine, Boston University, Boston, MA, USA
| | - Mohamed Jarraya
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
| | - Daichi Hayashi
- Department of Radiology, Tufts Medical Center, Tufts Medicine, Boston, MA, USA
- Department of Radiology, School of Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
23
|
Staebler S, Lichtblau A, Gurbiel S, Schubert T, Riechers A, Rottensteiner-Brandl U, Bosserhoff A. MIA/CD-RAP Regulates MMP13 and Is a Potential New Disease-Modifying Target for Osteoarthritis Therapy. Cells 2023; 12:cells12020229. [PMID: 36672165 PMCID: PMC9856983 DOI: 10.3390/cells12020229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Melanoma inhibitory activity/cartilage-derived retinoicacid-sensitive protein (MIA/CD-RAP) is a protein expressed and secreted by chondrocytes and cartilaginous tissues. MIA/CD-RAP-deficient mice develop milder osteoarthritis than wildtype mice. In this study, we investigated MIA/CD-RAP downstream targets to explain this reduced disease development. As a possible mediator, we could detect matrix metalloproteinase 13 (MMP13), and the influence of MIA/CD-RAP on MMP13 regulation was analyzed in vitro using SW1353 chondrosarcoma cells and primary chondrocytes. The femoral head cartilage of WT and MIA/CD-RAP -/- mice were cultured ex vivo to further investigate MMP13 activity. Finally, osteoarthritis was surgically induced via DMM in C57BL/6 mice, and the animals were treated with an MIA/CD-RAP inhibitory peptide by subcutaneously implanted pellets. MMP13 was regulated by MIA/CD-RAP in SW1353 cells, and MIA/CD-RAP -/- murine chondrocytes showed less expression of MMP13. Further, IL-1β-treated MIA/CD-RAP -/- chondrocytes displayed less MMP13 expression and activity. Additionally, MIA/CD-RAP-deficient ex vivo cultured cartilage explants showed less MMP13 activity as well as reduced cartilage degradation. The mice treated with the MIA/CD-RAP inhibitory peptide showed less osteoarthritis development. Our findings revealed MIA/CD-RAP as a new regulator of MMP13 and highlighted its role as a potential new target for osteoarthritis therapy.
Collapse
Affiliation(s)
- Sebastian Staebler
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Adrian Lichtblau
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Slavyana Gurbiel
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Thomas Schubert
- Institute of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 8-10, 91054 Erlangen, Germany
- Institute of Applied Pathology, 67346 Speyer, Germany
| | - Alexander Riechers
- Institute of Pathology, Medical School, University of Regensburg, 93053 Regensburg, Germany
| | | | - Anja Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
- Correspondence:
| |
Collapse
|
24
|
Tenti S, Bruyère O, Cheleschi S, Reginster JY, Veronese N, Fioravanti A. An update on the use of conventional and biological disease-modifying anti-rheumatic drugs in hand osteoarthritis. Ther Adv Musculoskelet Dis 2023; 15:1759720X231158618. [PMID: 36937821 PMCID: PMC10017945 DOI: 10.1177/1759720x231158618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/02/2023] [Indexed: 03/15/2023] Open
Abstract
Osteoarthritis (OA) is a highly prevalent condition worldwide associated with pain, progressive disability, reduced participation in social activities, and impaired quality of life. Despite its growing burden, the therapeutic options are still limited and almost exclusively addressed to symptoms' management, while no disease-modifying OA drugs able to prevent or retard disease progression are actually available. For these reasons, in the last decades, relevant efforts to find new potential therapeutic targets in OA have been made and a number of existing conventional and biological disease-modifying anti-rheumatic drugs (DMARDs), including hydroxychloroquine (HCQ), methotrexate (MTX), tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6 inhibitors, commonly used to treat inflammatory rheumatic diseases, have been repurposed for the treatment of OA and explored also in hand osteoarthritis (HOA). The current narrative review was aimed to provide a comprehensive and updated understanding of the possibilities and the criticisms related to the treatment of HOA with conventional and biological DMARDs. Unfortunately, therapy with conventional and biologic drugs in HOA has not achieved the expected success, despite a rationale for their use exists. Thus, our findings outline the urgent need to enhance the exploration of HOA basic molecular mechanisms to find new potential therapeutic targets, personalized for each patient, and appropriate for the different subsets of HOA and for the different phases of disease.
Collapse
Affiliation(s)
- Sara Tenti
- Clinic for the Diagnosis and Management of Hand Osteoarthritis, Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 1, 53100 Siena, Italy
| | - Olivier Bruyère
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Centre for Public Health, Aspects of Musculoskeletal Health and Ageing, University of Liege, Liege, Belgium
| | - Sara Cheleschi
- Clinic for the Diagnosis and Management of Hand Osteoarthritis, Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda ospedaliero-universitaria Senese, Siena, Italy
| | - Jean-Yves Reginster
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Centre for Public Health, Aspects of Musculoskeletal Health and Ageing, University of Liege, Liege, Belgium
| | - Nicola Veronese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, Palermo, Italy
| | | |
Collapse
|
25
|
Affiliation(s)
- Nicole Schäfer
- Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Susanne Grässel
- Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany. .,Department of Orthopaedic Surgery, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
26
|
Thermosensitive Injectable Hydrogels for Intra-Articular Delivery of Etanercept for the Treatment of Osteoarthritis. Gels 2022; 8:gels8080488. [PMID: 36005089 PMCID: PMC9407145 DOI: 10.3390/gels8080488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The intra-articular administration of drugs has attracted great interest in recent decades for the treatment of osteoarthritis. The use of modified drugs has also attracted interest in recent years because their intra-articular administration has demonstrated encouraging results. The objective of this work was to prepare injectable-thermosensitive hydrogels for the intra-articular administration of Etanercept (ETA), an inhibitor of tumor necrosis factor-α. Hydrogels were prepared from the physical mixture of chitosan and Pluronic F127 with β-glycerolphosphate (BGP). Adding β-glycerolphosphate to the system reduced the gelation time and also modified the morphology of the resulting material. In vitro studies were carried out to determine the cytocompatibility of the prepared hydrogels for the human chondrocyte line C28/I2. The in vitro release study showed that the incorporation of BGP into the system markedly modified the release of ETA. In the in vivo studies, it was verified that the hydrogels remained inside the implantation site in the joint until the end of the study. Furthermore, ETA was highly concentrated in the blood of the study mice 48 h after the loaded material was injected. Histological investigation of osteoarthritic knees showed that the material promotes cartilage recovery in osteoarthritic mice. The results demonstrate the potential of ETA-loaded injectable hydrogels for the localized treatment of joints.
Collapse
|
27
|
Oo WM, Mobasheri A, Hunter DJ. A narrative review of anti-obesity medications for obese patients with osteoarthritis. Expert Opin Pharmacother 2022; 23:1381-1395. [PMID: 35855642 DOI: 10.1080/14656566.2022.2104636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : The prevalence of both obesity and osteoarthritis (OA) are increasing worldwide (twindemic), and the association between the two chronic diseases is also well-established. AREAS COVERED : In this narrative review, we will briefly describe the double burdens of both diseases, the impact of weight loss or gain on OA incidence and structural progression and discuss the biomechanical and anti-inflammatory mechanisms mediating these effects. FDA-approved anti-obesity drugs are summarized in terms of their clinical efficacy and safety profile, and the completed or ongoing phase 2/3 clinical trials of such drugs in OA patients with obesity are examined. EXPERT OPINION : We will discuss the perspectives related to principles of prescription of anti-obesity drugs, the potential role of phenotype-guided approach, time to drug effects in clinical trials, sustainability of weight loss based on the real-world studies, the importance of concomitant therapies such as dieting and exercises, and the role of weight loss on non-weight bearing OA joints. Although obesity is the major risk factor for OA pathogenesis and progression, and there are a variety of anti-obesity medications on the market, research on the use of these disease-modifying drugs in OA (DMOAD) is still sparse..
Collapse
Affiliation(s)
- Win Min Oo
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine, Mandalay, Mandalay, Myanmar
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.,Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
| | - David J Hunter
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|