1
|
Diaz C. JL, Colmegna P, Pryor E, Breton MD. A Performance-Based Adaptation Index for Automated Insulin Delivery Systems. J Diabetes Sci Technol 2025:19322968251315499. [PMID: 39910927 PMCID: PMC11803600 DOI: 10.1177/19322968251315499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
BACKGROUND Automated insulin delivery (AID) algorithms can benefit from tuning of their aggressiveness to meet individual needs, as insulin requirements vary among and within users. We introduce the Performance-Based Adaptation Index (PAI), a tool designed to enable automatic adjustment of an AID system aggressiveness based on continuous glucose monitoring (CGM) metrics. METHODS PAI integrates two CGM-based metrics-one for hypoglycemia and another for hyperglycemia exposure-over a previous time window into a single index (α θ ). We propose two methods to compute α θ : one based on time in range (TIR, 70-180 mg/dL), and the other on glycemic risk indices. Using α θ , we developed a multiplicative strategy to adjust the AID system's aggressiveness, accounting for situations where α θ cannot be reliably calculated. The feasibility of this method was assessed in-silico using the UVA/Padova Type 1 Diabetes Simulator and our full closed-loop algorithm (UVA-model predictive control (MPC)) across five scenarios: optimal tuning (baseline), conservative and aggressive tunings, and temporary and permanent changes in insulin needs. Glycemic outcomes were evaluated from the simulated glucose traces. RESULTS Negligible performance variations were observed in the baseline scenario. For the conservative scenario, adjusting α θ improved TIR (35.1% vs 71.8%) and increased total daily insulin (32.1 U vs 41.2 U). Conversely, for the aggressive scenario, it reduced hypoglycemia exposure (TBR: 2.6% vs 1.4%) and overall insulin usage (45.6 U vs 43.0 U). CONCLUSION In-silico results demonstrated the safety and efficacy of using PAI to automatically tune the UVA-MPC controller, achieving TIR values above 70% under fully closed-loop conditions and across various physiological states. Clinical validation of these results is warranted.
Collapse
Affiliation(s)
- Jenny L. Diaz C.
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Insulet Co., Acton, MA, USA
| | - Patricio Colmegna
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Dexcom Inc, San Diego, CA, USA
| | - Elliot Pryor
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Marc D. Breton
- Center for Diabetes Technology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
2
|
Iftikhar M, Saqib M, Qayyum SN, Asmat R, Mumtaz H, Rehan M, Ullah I, Ud-Din I, Noori S, Khan M, Rehman E, Ejaz Z. Artificial intelligence-driven transformations in diabetes care: a comprehensive literature review. Ann Med Surg (Lond) 2024; 86:5334-5342. [PMID: 39238969 PMCID: PMC11374247 DOI: 10.1097/ms9.0000000000002369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/05/2024] [Indexed: 09/07/2024] Open
Abstract
Artificial intelligence (AI) has been applied in healthcare for diagnosis, treatments, disease management, and for studying underlying mechanisms and disease complications in diseases like diabetes and metabolic disorders. This review is a comprehensive overview of various applications of AI in the healthcare system for managing diabetes. A literature search was conducted on PubMed to locate studies integrating AI in the diagnosis, treatment, management and prevention of diabetes. As diabetes is now considered a pandemic now so employing AI and machine learning approaches can be applied to limit diabetes in areas with higher prevalence. Machine learning algorithms can visualize big datasets, and make predictions. AI-powered mobile apps and the closed-loop system automated glucose monitoring and insulin delivery can lower the burden on insulin. AI can help identify disease markers and potential risk factors as well. While promising, AI's integration in the medical field is still challenging due to privacy, data security, bias, and transparency. Overall, AI's potential can be harnessed for better patient outcomes through personalized treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Muhammad Rehan
- Al-Nafees Medical College and Hospital, Islamabad, Pakistan
| | | | | | - Samim Noori
- Nangarhar University, Faculty of Medicine, Nangarhar, Afghanistan
| | | | | | | |
Collapse
|
3
|
Serafini MC, Rosales N, Garelli F. Auto adaptation of closed-loop insulin delivery system using continuous reward functions and incremental discretization. Comput Methods Biomech Biomed Engin 2024; 27:1375-1386. [PMID: 37545465 DOI: 10.1080/10255842.2023.2241945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Several closed or hybrid loop controllers for Blood Glucose (BG) regulation, which are also known as Artificial Pancreas (AP) Systems or Automated Insulin Delivery systems (AIDs), are in development worldwide. Most AIDs are designed and evaluated for short-term performance, with a particular emphasis on the post-meal period. However, if controllers are not adapted properly to account for variations in physiology that affect Insulin Sensitivity (IS), the AIDs may perform inadequately. In this work, the performance of two Reinforcement Learning (RL) agents trained under both piecewise and continuous reward functions is evaluated in-silico for long-term adaptation of a Fully Automated Insulin Delivery (fAID) system. An automatic adaptive discretization scheme that expands the state space as needed is also implemented to avoid disproportionate state space exploration. The proposed agents are evaluated for long-term adaptation of the Automatic Regulation of Glucose (ARG) algorithm, considering variations in IS. Results show that both RL agents have improved performance compared to a rule-based decision-making approach and the baseline controller for the majority of the adult population. Moreover, the use of a continuous shaped reward function proves to enhance the performance of the agents further than a piecewise one.
Collapse
Affiliation(s)
- Maria Cecilia Serafini
- Grupo de Control Aplicado, Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
| | - Nicolas Rosales
- Grupo de Control Aplicado, Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
| | - Fabricio Garelli
- Grupo de Control Aplicado, Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina
| |
Collapse
|
4
|
Jacobs PG, Herrero P, Facchinetti A, Vehi J, Kovatchev B, Breton MD, Cinar A, Nikita KS, Doyle FJ, Bondia J, Battelino T, Castle JR, Zarkogianni K, Narayan R, Mosquera-Lopez C. Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities. IEEE Rev Biomed Eng 2024; 17:19-41. [PMID: 37943654 DOI: 10.1109/rbme.2023.3331297] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Artificial intelligence and machine learning are transforming many fields including medicine. In diabetes, robust biosensing technologies and automated insulin delivery therapies have created a substantial opportunity to improve health. While the number of manuscripts addressing the topic of applying machine learning to diabetes has grown in recent years, there has been a lack of consistency in the methods, metrics, and data used to train and evaluate these algorithms. This manuscript provides consensus guidelines for machine learning practitioners in the field of diabetes, including best practice recommended approaches and warnings about pitfalls to avoid. METHODS Algorithmic approaches are reviewed and benefits of different algorithms are discussed including importance of clinical accuracy, explainability, interpretability, and personalization. We review the most common features used in machine learning applications in diabetes glucose control and provide an open-source library of functions for calculating features, as well as a framework for specifying data sets using data sheets. A review of current data sets available for training algorithms is provided as well as an online repository of data sources. SIGNIFICANCE These consensus guidelines are designed to improve performance and translatability of new machine learning algorithms developed in the field of diabetes for engineers and data scientists.
Collapse
|
5
|
Zimmer RT, Auth A, Schierbauer J, Haupt S, Wachsmuth N, Zimmermann P, Voit T, Battelino T, Sourij H, Moser O. (Hybrid) Closed-Loop Systems: From Announced to Unannounced Exercise. Diabetes Technol Ther 2023. [PMID: 38133645 DOI: 10.1089/dia.2023.0293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Physical activity and exercise have many beneficial effects on general and type 1 diabetes (T1D) specific health and are recommended for individuals with T1D. Despite these health benefits, many people with T1D still avoid exercise since glycemic management during physical activity poses substantial glycemic and psychological challenges - which hold particularly true for unannounced exercise when using an AID system. Automated insulin delivery (AID) systems have demonstrated their efficacy in improving overall glycemia and in managing announced exercise in numerous studies. They are proven to increase time in range (70-180 mg/dL) and can especially counteract nocturnal hypoglycemia, even when evening exercise was performed. AID-systems consist of a pump administering insulin as well as a CGM sensor (plus transmitter), both communicating with a control algorithm integrated into a device (insulin pump, mobile phone/smart watch). Nevertheless, without manual pre-exercise adaptions, these systems still face a significant challenge around physical activity. Automatically adapting to the rapidly changing insulin requirements during unannounced exercise and physical activity is still the Achilles' heel of current AID systems. There is an urgent need for improving current AID-systems to safely and automatically maintain glucose management without causing derailments - so that going forward, exercise announcements will not be necessary in the future. Therefore, this narrative literature review aimed to discuss technological strategies to how current AID-systems can be improved in the future and become more proficient in overcoming the hurdle of unannounced exercise. For this purpose, the current state-of-the-art therapy recommendations for AID and exercise as well as novel research approaches are presented along with potential future solutions - in order to rectify their deficiencies in the endeavor to achieve fully automated AID-systems even around unannounced exercise.
Collapse
Affiliation(s)
- Rebecca Tanja Zimmer
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Alexander Auth
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Janis Schierbauer
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Sandra Haupt
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Nadine Wachsmuth
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Paul Zimmermann
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Thomas Voit
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Tadej Battelino
- University Children's Hospital, Ljubljana, Slovenia, Department of Endocrinology, Diabetes and Metabolism, Bohoriceva 20, Ljubljana, Slovenia, 1000
- Slovenia;
| | - Harald Sourij
- Medical University of Graz, 31475, Auenbruggerplatz 15, 8036 Graz, Graz, Austria, 8036;
| | - Othmar Moser
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Universitätsstraße 30, Bayreuth, Bayern, Germany, 95440;
| |
Collapse
|
6
|
Unsworth R, Avari P, Lett AM, Oliver N, Reddy M. Adaptive bolus calculators for people with type 1 diabetes: A systematic review. Diabetes Obes Metab 2023; 25:3103-3113. [PMID: 37488945 DOI: 10.1111/dom.15204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 07/26/2023]
Abstract
AIM To conduct a systematic review of studies assessing adaptive insulin bolus calculators for people with type 1 diabetes (T1D). METHODS Electronic databases (Medline, Embase and Web of Science) were systematically searched from date of inception to 13 October 2022 for single-arm or randomized controlled studies assessing adaptive bolus calculators only, in children or adults with T1D on multiple daily injections or insulin pumps with glycaemic outcomes reported. The Clinicaltrials.gov registry was searched for recently completed studies evaluating decision support in T1D. The quality of extracted studies was assessed using the Standard Quality Assessment criteria and the Cochrane Risk of Bias assessment tool. RESULTS Six studies were identified. Extracted data were synthesized in a descriptive review because of heterogeneity. All the studies were small feasibility studies or were not suitably powered, and all were deemed to be at a high risk of performance and detection bias because they were unblinded. Overall, these studies did not show a significant glycaemic improvement. Two studies showed a reduction in postprandial time below range or an incremental change in blood glucose concentration; however, these were in controlled environments over a short duration. CONCLUSIONS There are limited clinical trials evaluating adaptive bolus calculators. Although results from small trials or in-silico data are promising, further studies are required to support personalized and adaptive management of T1D.
Collapse
Affiliation(s)
- Rebecca Unsworth
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Parizad Avari
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Aaron M Lett
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Nick Oliver
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Monika Reddy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
7
|
Moscoso-Vasquez M, Fabris C, Breton MD. Performance Effect of Adjusting Insulin Sensitivity for Model-Based Automated Insulin Delivery Systems. J Diabetes Sci Technol 2023; 17:1470-1481. [PMID: 37864340 PMCID: PMC10658700 DOI: 10.1177/19322968231206798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
BACKGROUND Model predictive control (MPC) has become one of the most popular control strategies for automated insulin delivery (AID) in type 1 diabetes (T1D). These algorithms rely on a prediction model to determine the best insulin dosing every sampling time. Although these algorithms have been shown to be safe and effective for glucose management through clinical trials, managing the ever-fluctuating relationship between insulin delivery and resulting glucose uptake (aka insulin sensitivity, IS) remains a challenge. We aim to evaluate the effect of informing an AID system with IS on the performance of the system. METHOD The University of Virginia (UVA) MPC control-based hybrid closed-loop (HCL) and fully closed-loop (FCL) system was used. One-day simulations at varying levels of IS were run with the UVA/Padova T1D Simulator. The AID system was informed with an estimated value of IS obtained through a mixed meal glucose tolerance test. Relevant controller parameters are updated to inform insulin dosing of IS. Performance of the HCL/FCL system with and without information of the changing IS was assessed using a novel performance metric penalizing the time outside the target glucose range. RESULTS Feedback in AID systems provides a certain degree tolerance to changes in IS. However, IS-informed bolus and basal dosing improve glycemic outcomes, providing increased protection against hyperglycemia and hypoglycemia according to the individual's physiological state. CONCLUSIONS The proof-of-concept analysis presented here shows the potentially beneficial effects on system performance of informing the AID system with accurate estimates of IS. In particular, when considering reduced IS, the informed controller provides increased protection against hyperglycemia compared with the naïve controller. Similarly, reduced hypoglycemia is obtained for situations with increased IS. Further tailoring of the adaptation schemes proposed in this work is needed to overcome the increased hypoglycemia observed in the more resistant cases and to optimize the performance of the adaptation method.
Collapse
Affiliation(s)
| | - Chiara Fabris
- Center for Diabetes Technology,
University of Virginia, Charlottesville, VA, USA
| | - Marc D. Breton
- Center for Diabetes Technology,
University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Deshpande S, Doyle FJ, Dassau E. Glucose Rate-of-Change and Insulin-on-Board Jointly Weighted Zone Model Predictive Control. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY : A PUBLICATION OF THE IEEE CONTROL SYSTEMS SOCIETY 2023; 31:2261-2274. [PMID: 38525198 PMCID: PMC10958373 DOI: 10.1109/tcst.2023.3291573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
We present design and evaluation of closed-loop insulin delivery using zone model predictive control (MPC) featuring an adaptive weighting scheme to address prolonged hyperglycemia due to changes in insulin sensitivity, underdelivery from profile mismatch, and meal composition. In the MPC cost function, the penalty on predicted glucose deviation from the upper zone boundary is weighted by a joint function of predicted glucose rate-of-change (ROC) and insulin-on-board (IOB). The asymmetric weighting gradually increases when glucose ROC and IOB were jointly low, independent of glucose magnitude, to limit hyperglycemia while aggressively reduces for negative glucose ROC to avoid hypoglycemia. The proposed controller was evaluated using two simulation scenarios: an induced resistance scenario and a nominal scenario to highlight the performance over a reference zone MPC with glucose ROC weighting only. The continuous adaption scheme resulted in consistent improvement for the entire glucose range without incurring additional risk of hypoglycemia. For the induced resistance and no feedforward bolus scenario, the percent time in 70-180 mg/dL was higher (53.5% versus 48.9%, p<0.001) with larger improvement in the overnight percent time in tighter glucose range 70-140 mg/dL (70.9% versus 52.9%, p<0.001). The results from extensive simulations, as well as clinical validation in three different outpatient studies demonstrate the utility and safety of the proposed zone MPC.
Collapse
Affiliation(s)
- Sunil Deshpande
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Eyal Dassau
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| |
Collapse
|
9
|
Navalta JW, Davis DW, Malek EM, Carrier B, Bodell NG, Manning JW, Cowley J, Funk M, Lawrence MM, DeBeliso M. Heart rate processing algorithms and exercise duration on reliability and validity decisions in biceps-worn Polar Verity Sense and OH1 wearables. Sci Rep 2023; 13:11736. [PMID: 37474743 PMCID: PMC10359261 DOI: 10.1038/s41598-023-38329-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Consumer wearable technology use is widespread and there is a need to validate measures obtained in uncontrolled settings. Because no standard exists for the treatment of heart rate data during exercise, the effect of different approaches on reliability (Coefficient of Variation [CV], Intraclass Correlation Coefficient [ICC]) and validity (Mean Absolute Percent Error [MAPE], Lin's Concordance Correlation Coefficient [CCC)] were determined in the Polar Verity Sense and OH1 during trail running. The Verity Sense met the reliability (CV < 5%, ICC > 0.7) and validity thresholds (MAPE < 5%, CCC > 0.9) in all cases. The OH1 met reliability thresholds in all cases except entire session average (ICC = 0.57). The OH1 met the validity MAPE threshold in all cases (3.3-4.1%), but not CCC (0.6-0.86). Despite various heart rate data processing methods, the approach may not affect reliability and validity interpretation provided adequate data points are obtained. It is also possible that a large volume of data will artificially inflate metrics.
Collapse
Affiliation(s)
- James W Navalta
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| | - Dustin W Davis
- Interdisciplinary Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Elias M Malek
- Interdisciplinary Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Bryson Carrier
- Interdisciplinary Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Nathaniel G Bodell
- Department of Kinesiology, California State University, San Bernardino, San Bernardino, CA, USA
| | - Jacob W Manning
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT, USA
| | - Jeffrey Cowley
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT, USA
| | - Merrill Funk
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT, USA
| | - Marcus M Lawrence
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT, USA
| | - Mark DeBeliso
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT, USA
| |
Collapse
|
10
|
Non-invasive method for blood glucose monitoring using ECG signal. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2023. [DOI: 10.2478/pjmpe-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Introduction: Tight glucose monitoring is crucial for diabetic patients by using a Continuous Glucose Monitor (CGM). The existing CGMs measure the Blood Glucose Concentration (BGC) from the interstitial fluid. These technologies are quite expensive, and most of them are invasive. Previous studies have demonstrated that hypoglycemia and hyperglycemia episodes affect the electrophysiology of the heart. However, they did not determine a cohort relationship between BGC and ECG parameters.
Material and method: In this work, we propose a new method for determining the BGC using surface ECG signals. Recurrent Convolutional Neural Networks (RCNN) were applied to segment the ECG signals. Then, the extracted features were employed to determine the BGC using two mathematical equations. This method has been tested on 04 patients over multiple days from the D1namo dataset, using surface ECG signals instead of intracardiac signal.
Results: We were able to segment the ECG signals with an accuracy of 94% using the RCNN algorithm. According to the results, the proposed method was able to estimate the BGC with a Mean Absolute Error (MAE) of 0.0539, and a Mean Squared Error (MSE) of 0.1604. In addition, the linear relationship between BGC and ECG features has been confirmed in this paper.
Conclusion: In this paper, we propose the potential use of ECG features to determine the BGC. Additionally, we confirmed the linear relationship between BGC and ECG features. That fact will open new perspectives for further research, namely physiological models. Furthermore, the findings point to the possible application of ECG wearable devices for non-invasive continuous blood glucose monitoring via machine learning.
Collapse
|
11
|
Dermawan D, Kenichi Purbayanto MA. An overview of advancements in closed-loop artificial pancreas system. Heliyon 2022; 8:e11648. [PMID: 36411933 PMCID: PMC9674553 DOI: 10.1016/j.heliyon.2022.e11648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/15/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes (T1D) is one of the world's health problems with a prevalence of 1.1 million for children and young adults under the age of 20. T1D is a health problem characterized by autoimmunity and the destruction of pancreatic cells that produce insulin. The available treatment is to maintain blood glucose within the desired normal range. To meet bolus and basal requirements, T1D patients may receive multiple daily injections (MDI) of fast-acting and long-acting insulin once or twice daily. In addition, insulin pumps can deliver multiple doses a day without causing injection discomfort in individuals with T1D. T1D patients have also monitored their blood glucose levels along with insulin replacement treatment using a continuous glucose monitor (CGM). However, this CGM has some drawbacks, like the sensor needs to be replaced after being inserted under the skin for seven days and needs to be calibrated (for some CGMs). The treatments and monitoring devices mentioned creating a lot of workloads to maintain blood glucose levels in individuals with T1D. Therefore, to overcome these problems, closed-loop artificial pancreas (APD) devices are widely used to manage blood glucose in T1D patients. Closed-loop APD consists of a glucose sensor, an insulin infusion device, and a control algorithm. This study reviews the progress of closed-loop artificial pancreas systems from the perspective of device properties, uses, testing procedures, regulations, and current market conditions.
Collapse
Affiliation(s)
- Doni Dermawan
- Applied Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | | |
Collapse
|
12
|
Paldus B, Morrison D, Lee M, Zaharieva DP, Riddell MC, O'Neal DN. Strengths and Challenges of Closed-Loop Insulin Delivery During Exercise in People With Type 1 Diabetes: Potential Future Directions. J Diabetes Sci Technol 2022:19322968221088327. [PMID: 35466723 DOI: 10.1177/19322968221088327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exercise has many physical and psychological benefits and is recommended for people with type 1 diabetes; however, there are many barriers to exercise, including glycemic instability and fear of hypoglycemia. Closed-loop (CL) systems have shown benefit in the overall glycemic management of type 1 diabetes, including improving HbA1c levels and reducing the incidence of nocturnal hypoglycemia; however, these systems are challenged by the rapidly changing insulin needs with exercise. This commentary focuses on the principles, strengths, and challenges of CL in the management of exercise, and discusses potential approaches, including the use of additional physiological signals, to address their shortcomings in the pursuit of fully automated CL systems.
Collapse
Affiliation(s)
- Barbora Paldus
- Department of Medicine, The University of Melbourne, Victoria, Australia
- Department of Endocrinology & Diabetes, St. Vincent's Hospital Melbourne, Victoria, Australia
| | - Dale Morrison
- Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Melissa Lee
- Department of Medicine, The University of Melbourne, Victoria, Australia
- Department of Endocrinology & Diabetes, St. Vincent's Hospital Melbourne, Victoria, Australia
| | - Dessi P Zaharieva
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, CA, USA
| | - Michael C Riddell
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - David N O'Neal
- Department of Medicine, The University of Melbourne, Victoria, Australia
- Department of Endocrinology & Diabetes, St. Vincent's Hospital Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Hettiarachchi C, Daskalaki E, Desborough J, Nolan CJ, O'Neal D, Suominen H. Integrating Multiple Inputs Into an Artificial Pancreas System: Narrative Literature Review. JMIR Diabetes 2022; 7:e28861. [PMID: 35200143 PMCID: PMC8914747 DOI: 10.2196/28861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/07/2021] [Accepted: 01/01/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a chronic autoimmune disease in which a deficiency in insulin production impairs the glucose homeostasis of the body. Continuous subcutaneous infusion of insulin is a commonly used treatment method. Artificial pancreas systems (APS) use continuous glucose level monitoring and continuous subcutaneous infusion of insulin in a closed-loop mode incorporating a controller (or control algorithm). However, the operation of APS is challenging because of complexities arising during meals, exercise, stress, sleep, illnesses, glucose sensing and insulin action delays, and the cognitive burden. To overcome these challenges, options to augment APS through integration of additional inputs, creating multi-input APS (MAPS), are being investigated. OBJECTIVE The aim of this survey is to identify and analyze input data, control architectures, and validation methods of MAPS to better understand the complexities and current state of such systems. This is expected to be valuable in developing improved systems to enhance the quality of life of people with T1D. METHODS A literature survey was conducted using the Scopus, PubMed, and IEEE Xplore databases for the period January 1, 2005, to February 10, 2020. On the basis of the search criteria, 1092 articles were initially shortlisted, of which 11 (1.01%) were selected for an in-depth narrative analysis. In addition, 6 clinical studies associated with the selected studies were also analyzed. RESULTS Signals such as heart rate, accelerometer readings, energy expenditure, and galvanic skin response captured by wearable devices were the most frequently used additional inputs. The use of invasive (blood or other body fluid analytes) inputs such as lactate and adrenaline were also simulated. These inputs were incorporated to switch the mode of the controller through activity detection, directly incorporated for decision-making and for the development of intermediate modules for the controller. The validation of the MAPS was carried out through the use of simulators based on different physiological models and clinical trials. CONCLUSIONS The integration of additional physiological signals with continuous glucose level monitoring has the potential to optimize glucose control in people with T1D through addressing the identified limitations of APS. Most of the identified additional inputs are related to wearable devices. The rapid growth in wearable technologies can be seen as a key motivator regarding MAPS. However, it is important to further evaluate the practical complexities and psychosocial aspects associated with such systems in real life.
Collapse
Affiliation(s)
- Chirath Hettiarachchi
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| | - Elena Daskalaki
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| | - Jane Desborough
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Christopher J Nolan
- Australian National University Medical School, College of Health and Medicine, The Australian National University, Canberra, Australia
- John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - David O'Neal
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Australia
| | - Hanna Suominen
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
- Data61, Commonwealth Industrial and Scientific Research Organisation, Canberra, Australia
- Department of Computing, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Idili A, Montón H, Medina-Sánchez M, Ibarlucea B, Cuniberti G, Schmidt OG, Plaxco KW, Parolo C. Continuous monitoring of molecular biomarkers in microfluidic devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:295-333. [PMID: 35094779 DOI: 10.1016/bs.pmbts.2021.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The ability to monitor molecular targets is crucial in fields ranging from healthcare to industrial processing to environmental protection. Devices employing biomolecules to achieve this goal are called biosensors. Over the last half century researchers have developed dozens of different biosensor approaches. In this chapter we analyze recent advances in the biosensing field aiming at adapting these to the problem of continuous molecular monitoring in complex sample streams, and how the merging of these sensors with lab-on-a-chip technologies would be beneficial to both. To do so we discuss (1) the components that comprise a biosensor, (2) the challenges associated with continuous molecular monitoring in complex sample streams, (3) how different sensing strategies deal with (or fail to deal with) these challenges, and (4) the implementation of these technologies into lab-on-a-chip architectures.
Collapse
Affiliation(s)
- Andrea Idili
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Department of Chemical Science and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Helena Montón
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | | | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany; Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz, Germany; School of Science, TU Dresden, Dresden, Germany
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Interdepartmental Program in Biomolecular Science and Engineering University of California, Santa Barbara, CA, United States
| | - Claudio Parolo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Barcelona Institute for Global Health (ISGlobal) Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
15
|
Nguyen TTP, Jacobs PG, Castle JR, Wilson LM, Kuehl K, Branigan D, Gabo V, Guillot F, Riddell MC, Haidar A, El Youssef J. Separating insulin-mediated and non-insulin-mediated glucose uptake during and after aerobic exercise in type 1 diabetes. Am J Physiol Endocrinol Metab 2021; 320:E425-E437. [PMID: 33356994 PMCID: PMC7988786 DOI: 10.1152/ajpendo.00534.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aerobic exercise in type 1 diabetes (T1D) causes rapid increase in glucose utilization due to muscle work during exercise, followed by increased insulin sensitivity after exercise. Better understanding of these changes is necessary for models of exercise in T1D. Twenty-six individuals with T1D underwent three sessions at three insulin rates (100%, 150%, 300% of basal). After 3-h run-in, participants performed 45 min aerobic exercise (moderate or intense). We determined area under the curve for endogenous glucose production (AUCEGP) and rate of glucose disappearance (AUCRd) over 45 min from exercise start. A novel application of linear regression of Rd across the three insulin sessions allowed separation of insulin-mediated from non-insulin-mediated glucose uptake before, during, and after exercise. AUCRd increased 12.45 mmol/L (CI = 10.33-14.58, P < 0.001) and 13.13 mmol/L (CI = 11.01-15.26, P < 0.001) whereas AUCEGP increased 1.66 mmol/L (CI = 1.01-2.31, P < 0.001) and 3.46 mmol/L (CI = 2.81-4.11, P < 0.001) above baseline during moderate and intense exercise, respectively. AUCEGP increased during intense exercise by 2.14 mmol/L (CI = 0.91-3.37, P < 0.001) compared with moderate exercise. There was significant effect of insulin infusion rate on AUCRd equal to 0.06 mmol/L per % above basal rate (CI = 0.05-0.07, P < 0.001). Insulin-mediated glucose uptake rose during exercise and persisted hours afterward, whereas non-insulin-mediated effect was limited to the exercise period. To our knowledge, this method of isolating dynamic insulin- and non-insulin-mediated uptake has not been previously employed during exercise. These results will be useful in informing glucoregulatory models of T1D. The study has been registered at www.clinicaltrials.gov as NCT03090451.NEW & NOTEWORTHY Separating insulin and non-insulin glucose uptake dynamically during exercise in type 1 diabetes has not been done before. We use a multistep process, including a previously described linear regression method, over three insulin infusion sessions, to perform this separation and can graph these components before, during, and after exercise for the first time.
Collapse
Affiliation(s)
- Thanh-Tin P Nguyen
- School of Medicine, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Peter G Jacobs
- Department of Biomedical Engineering, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Jessica R Castle
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon
| | - Leah M Wilson
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon
| | - Kerry Kuehl
- Department of Sports Medicine, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Deborah Branigan
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon
| | - Virginia Gabo
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon
| | - Florian Guillot
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon
| | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Ahmad Haidar
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Joseph El Youssef
- Department of Biomedical Engineering, Oregon Health & Science University (OHSU), Portland, Oregon
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
16
|
Qian F, Schumacher PJ. Latest Advancements in Artificial Intelligence-Enabled Technologies in Treating Type 1 Diabetes. J Diabetes Sci Technol 2021; 15:195-197. [PMID: 32840141 PMCID: PMC7782992 DOI: 10.1177/1932296820949940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Feng Qian
- Department of Health Policy, Management, and Behavior, School of Public Health, University at Albany-State University of New York, Rensselaer, NY, USA
- Feng Qian, MD, PhD, MBA, One University Place, GEC Rm169, Rensselaer, NY 12144-3445, USA.
| | - Patrick J. Schumacher
- Department of Health Policy, Management, and Behavior, School of Public Health, University at Albany-State University of New York, Rensselaer, NY, USA
| |
Collapse
|
17
|
Continuous Glucose and Heart Rate Monitoring in Young People with Type 1 Diabetes: An Exploratory Study about Perspectives in Nocturnal Hypoglycemia Detection. Metabolites 2020; 11:metabo11010005. [PMID: 33374113 PMCID: PMC7824609 DOI: 10.3390/metabo11010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
A combination of information from blood glucose (BG) and heart rate (HR) measurements has been proposed to investigate the HR changes related to nocturnal hypoglycemia (NH) episodes in pediatric subjects with type 1 diabetes (T1D), examining whether they could improve hypoglycemia prediction. We enrolled seventeen children and adolescents with T1D, monitored on average for 194 days. BG was detected by flash glucose monitoring devices, and HR was measured by wrist-worn fitness trackers. For each subject, we compared HR values recorded in the hour before NH episodes (before-hypoglycemia) with HR values recorded during sleep intervals without hypoglycemia (no-hypoglycemia). Furthermore, we investigated the behavior after the end of NH. Nine participants (53%) experienced at least three NH. Among these nine subjects, six (67%) showed a statistically significant difference between the before-hypoglycemia HR distribution and the no-hypoglycemia HR distribution. In all these six cases, the before-hypoglycemia HR median value was higher than the no-hypoglycemia HR median value. In almost all cases, HR values after the end of hypoglycemia remained higher compared to no-hypoglycemia sleep intervals. This exploratory study support that HR modifications occur during NH in T1D subjects. The identification of specific HR patterns can be helpful to improve NH detection and prevent fatal events.
Collapse
|
18
|
Taylor KA, Forlenza GP. Use of Machine Learning and Hybrid Closed Loop Insulin Delivery at Diabetes Camps. Diabetes Technol Ther 2020; 22:535-537. [PMID: 32058821 DOI: 10.1089/dia.2020.0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|