1
|
Chen Z, Liu X, Li S, Wu Z, Tan H, Yu F, Wang D, Bo Y. Machine learning for the prediction of diabetes-related amputation: a systematic review and meta-analysis of diagnostic test accuracy. Clin Exp Med 2025; 25:151. [PMID: 40348887 PMCID: PMC12065772 DOI: 10.1007/s10238-025-01697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
Although machine learning is frequently used in medicine for predictive purposes, its accuracy in diabetes-related amputation (DRA) remains unclear. From establishing the database until December 2024, we conducted a comprehensive search of PubMed, Web of Science (WoS), Embase, Scopus, Cochrane Library, Wanfang, and the China National Knowledge Index (CNKI). The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), area under the curve (AUC), and Fagan plot analysis were used to assess the overall test performance of machine learning. Moreover, subgroup analysis and meta-regression were performed to search for possible sources of heterogeneity. Finally, sensitivity analysis and Deeks' funnel plot asymmetry test were used to evaluate the stability and publication bias, respectively. In the end, seven publications were included in this meta-analysis. The overall pooled diagnostic data were as follows: sensitivity, 0.72 (95% CI 0.69-0.75); specificity, 0.89 (95% CI 0.84-0.93); PLR, 3.62 (95% CI 3.36-3.89); NLR, 0.32 (95% CI 0.30-0.35); DOR, 13.55 (95% CI 11.72-15.67). The AUC was 0.81 (95% CI 0.77-0.84). The Fagan plot analysis showed that the positive post-test probability is 62% and the negative post-test probability is 7%. Subgroup analysis and meta-regression showed that both the level of bias and the year of publication were sources of heterogeneity in sensitivity and specificity. Sensitivity analysis confirmed the robustness of the results after excluding three outlier studies. The Deeks' funnel plot suggests that publication bias has no statistical significance (P > 0.05). In summary, our results suggest the moderate accuracy of machine learning in predicting DRA.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Gastrointestinal Surgery, Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Wujin District, Changzhou City, 213000, Jiangsu, China
| | - Xinliang Liu
- Department of Radiation Oncology, Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Simeng Li
- Department of Gastrointestinal Surgery, Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Wujin District, Changzhou City, 213000, Jiangsu, China
| | - Zhenheng Wu
- Department of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Haifen Tan
- Department of Oral Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Fuqian Yu
- Gastroenterology Department, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China
| | - Dongmei Wang
- Department of Gastrointestinal Surgery, Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, No. 68 Gehu Road, Wujin District, Changzhou City, 213000, Jiangsu, China.
| | - Yawen Bo
- Department of Endocrinology, Changzhou Second People's Hospital, Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, The Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, No. 29 Xinglong Road, ChangzhouJiangsu, 213000, China.
| |
Collapse
|
2
|
Tao H, You L, Huang Y, Chen Y, Yan L, Liu D, Xiao S, Yuan B, Ren M. An interpreting machine learning models to predict amputation risk in patients with diabetic foot ulcers: a multi-center study. Front Endocrinol (Lausanne) 2025; 16:1526098. [PMID: 40201760 PMCID: PMC11975565 DOI: 10.3389/fendo.2025.1526098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Background Diabetic foot ulcers (DFUs) constitute a significant complication among individuals with diabetes and serve as a primary cause of nontraumatic lower-extremity amputation (LEA) within this population. We aimed to develop machine learning (ML) models to predict the risk of LEA in DFU patients and used SHapley additive explanations (SHAPs) to interpret the model. Methods In this retrospective study, data from 1,035 patients with DFUs at Sun Yat-sen Memorial Hospital were utilized as the training cohort to develop the ML models. Data from 297 patients across multiple tertiary centers were used for external validation. We then used least absolute shrinkage and selection operator analysis to identify predictors of amputation. We developed five ML models [logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbors (KNN) and extreme gradient boosting (XGBoost)] to predict LEA in DFU patients. The performance of these models was evaluated using several metrics, including the area under the receiver operating characteristic curve (AUC), decision curve analysis (DCA), precision, recall, accuracy, and F1 score. Finally, the SHAP method was used to ascertain the significance of the features and to interpret the model. Results In the final cohort comprising 1332 individuals, 600 patients underwent amputation. Following hyperparameter optimization, the XGBoost model achieved the best amputation prediction performance with an accuracy of 0.94, a precision of 0.96, an F1 score of 0.94 and an AUC of 0.93 for the internal validation set on the basis of the 17 features. For the external validation set, the model attained an accuracy of 0.78, a precision of 0.93, an F1 score of 0.78, and an AUC of 0.83. Through SHAP analysis, we identified white blood cell counts, lymphocyte counts, and blood urea nitrogen levels as the model's main predictors. Conclusion The XGBoost algorithm-based prediction model can be used to dynamically estimate the risk of LEA in DFU patients, making it a valuable tool for preventing the progression of DFUs to amputation.
Collapse
Affiliation(s)
- Haoran Tao
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Lili You
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Yuhan Huang
- Department of Endocrinology, Shantou Central Hospital, Shantou, China
| | - Yunxiang Chen
- Department of Endocrinology, Dongguan People’s Hospital Puji Branch, Dongguan, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Dan Liu
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Shan Xiao
- Department of Endocrinology, People’s Hospital of Shenzhen Baoan District, Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Bichai Yuan
- Department of Endocrinology, Jieyang People’s Hospital, Jieyang, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou Key Laboratory for Metabolic Diseases, Guangzhou, China
| |
Collapse
|
3
|
Matsinhe C, Kagodora SB, Mukheli T, Mokoena TP, Malebati WK, Moeng MS, Luvhengo TE. Machine Learning Algorithm-Aided Determination of Predictors of Mortality from Diabetic Foot Sepsis at a Regional Hospital in South Africa During the COVID-19 Pandemic. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1718. [PMID: 39459505 PMCID: PMC11509229 DOI: 10.3390/medicina60101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/26/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Diabetic foot sepsis (DFS) accounts for approximately 60% of hospital admissions in patients with diabetes mellitus (DM). Individuals with DM are at risk of severe COVID-19. This study investigated factors associated with major amputation and mortality in patients admitted with DFS during the COVID-19 pandemic. Materials and Methods: Demographic information, COVID-19 and HIV status, clinical findings, laboratory results, treatment and outcome from records of patients with diabetic foot sepsis, were collected and analysed. Supervised machine learning algorithms were used to compare their ability to predict mortality due to diabetic foot sepsis. Results: Overall, 114 records were found and 57.9% (66/114) were of male patients. The mean age of the patients was 55.7 (14) years and 47.4% (54/114) and 36% (41/114) tested positive for COVID-19 and HIV, respectively. The median c-reactive protein was 168 mg/dl, urea 7.8 mmol/L and creatinine 92 µmol/L. The mean potassium level was 4.8 ± 0.9 mmol, and glycosylated haemoglobin 11.2 ± 3%. The main outcomes included major amputation in 69.3% (79/114) and mortality of 37.7% (43/114) died. AI. The levels of potassium, urea, creatinine and HbA1c were significantly higher in the deceased. Conclusions: The COVID-19 pandemic led to an increase in the rate of major amputation and mortality in patients with DFS. The in-hospital mortality was higher in patients above 60 years of age who tested positive for COVID-19. The Random Forest algorithm of ML can be highly effective in predicting major amputation and death in patients with DFS.
Collapse
Affiliation(s)
- Carlos Matsinhe
- Department of Surgery, Thelle Mogoerane Hospital, University of the Witwatersrand, Johannesburg 2017, South Africa;
| | | | - Tshifhiwa Mukheli
- Directorate of Oral Health and Therapeutic Services, Gauteng Province Department of Health, Johannesburg 2001, South Africa;
| | - Tshepo Polly Mokoena
- Department of Podiatry, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg 2193, South Africa;
| | - William Khabe Malebati
- Nursing Department, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg 2193, South Africa;
| | - Maeyane Stephens Moeng
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg 2193, South Africa;
| | | |
Collapse
|
4
|
Huang J, Yang J, Qi H, Xu M, Xu X, Zhu Y. Prediction models for amputation after diabetic foot: systematic review and critical appraisal. Diabetol Metab Syndr 2024; 16:126. [PMID: 38858732 PMCID: PMC11163763 DOI: 10.1186/s13098-024-01360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Numerous studies have developed or validated prediction models aimed at estimating the likelihood of amputation in diabetic foot (DF) patients. However, the quality and applicability of these models in clinical practice and future research remain uncertain. This study conducts a systematic review and assessment of the risk of bias and applicability of amputation prediction models among individuals with DF. METHODS A comprehensive search was conducted across multiple databases, including PubMed, Web of Science, EBSCO CINAHL Plus, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang, Chinese Biomedical Literature Database (CBM), and Weipu (VIP) from their inception to December 24, 2023. Two investigators independently screened the literature and extracted data using the checklist for critical appraisal and data extraction for systematic reviews of prediction modeling studies. The Prediction Model Risk of Bias Assessment Tool (PROBAST) checklist was employed to evaluate both the risk of bias and applicability. RESULTS A total of 20 studies were included in this analysis, comprising 17 development studies and three validation studies, encompassing 20 prediction models and 11 classification systems. The incidence of amputation in patients with DF ranged from 5.9 to 58.5%. Machine learning-based methods were employed in more than half of the studies. The reported area under the curve (AUC) varied from 0.560 to 0.939. Independent predictors consistently identified by multivariate models included age, gender, HbA1c, hemoglobin, white blood cell count, low-density lipoprotein cholesterol, diabetes duration, and Wagner's Classification. All studies were found to exhibit a high risk of bias, primarily attributed to inadequate handling of outcome events and missing data, lack of model performance assessment, and overfitting. CONCLUSIONS The assessment using PROBAST revealed a notable risk of bias in the existing prediction models for amputation in patients with DF. It is imperative for future studies to concentrate on enhancing the robustness of current prediction models or constructing new models with stringent methodologies.
Collapse
Affiliation(s)
- Jingying Huang
- Postanesthesia Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Yang
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiou Qi
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Miaomiao Xu
- Orthopedics Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Xu
- Operating Room, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiting Zhu
- Postanesthesia Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Guan H, Wang Y, Niu P, Zhang Y, Zhang Y, Miao R, Fang X, Yin R, Zhao S, Liu J, Tian J. The role of machine learning in advancing diabetic foot: a review. Front Endocrinol (Lausanne) 2024; 15:1325434. [PMID: 38742201 PMCID: PMC11089132 DOI: 10.3389/fendo.2024.1325434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Background Diabetic foot complications impose a significant strain on healthcare systems worldwide, acting as a principal cause of morbidity and mortality in individuals with diabetes mellitus. While traditional methods in diagnosing and treating these conditions have faced limitations, the emergence of Machine Learning (ML) technologies heralds a new era, offering the promise of revolutionizing diabetic foot care through enhanced precision and tailored treatment strategies. Objective This review aims to explore the transformative impact of ML on managing diabetic foot complications, highlighting its potential to advance diagnostic accuracy and therapeutic approaches by leveraging developments in medical imaging, biomarker detection, and clinical biomechanics. Methods A meticulous literature search was executed across PubMed, Scopus, and Google Scholar databases to identify pertinent articles published up to March 2024. The search strategy was carefully crafted, employing a combination of keywords such as "Machine Learning," "Diabetic Foot," "Diabetic Foot Ulcers," "Diabetic Foot Care," "Artificial Intelligence," and "Predictive Modeling." This review offers an in-depth analysis of the foundational principles and algorithms that constitute ML, placing a special emphasis on their relevance to the medical sciences, particularly within the specialized domain of diabetic foot pathology. Through the incorporation of illustrative case studies and schematic diagrams, the review endeavors to elucidate the intricate computational methodologies involved. Results ML has proven to be invaluable in deriving critical insights from complex datasets, enhancing both the diagnostic precision and therapeutic planning for diabetic foot management. This review highlights the efficacy of ML in clinical decision-making, underscored by comparative analyses of ML algorithms in prognostic assessments and diagnostic applications within diabetic foot care. Conclusion The review culminates in a prospective assessment of the trajectory of ML applications in the realm of diabetic foot care. We believe that despite challenges such as computational limitations and ethical considerations, ML remains at the forefront of revolutionizing treatment paradigms for the management of diabetic foot complications that are globally applicable and precision-oriented. This technological evolution heralds unprecedented possibilities for treatment and opportunities for enhancing patient care.
Collapse
Affiliation(s)
- Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ping Niu
- Department of Encephalopathy, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jun Liu
- Department of Hand Surgery, Second Hospital of Jilin University, Changchun, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Shiraishi M, Lee H, Kanayama K, Moriwaki Y, Okazaki M. Appropriateness of Artificial Intelligence Chatbots in Diabetic Foot Ulcer Management. INT J LOW EXTR WOUND 2024:15347346241236811. [PMID: 38419470 DOI: 10.1177/15347346241236811] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Type 2 diabetes is a significant global health concern. It often causes diabetic foot ulcers (DFUs), which affect millions of people and increase amputation and mortality rates. Despite existing guidelines, the complexity of DFU treatment makes clinical decisions challenging. Large language models such as chat generative pretrained transformer (ChatGPT), which are adept at natural language processing, have emerged as valuable resources in the medical field. However, concerns about the accuracy and reliability of the information they provide remain. We aimed to assess the accuracy of various artificial intelligence (AI) chatbots, including ChatGPT, in providing information on DFUs based on established guidelines. Seven AI chatbots were asked clinical questions (CQs) based on the DFU guidelines. Their responses were analyzed for accuracy in terms of answers to CQs, grade of recommendation, level of evidence, and agreement with the reference, including verification of the authenticity of the references provided by the chatbots. The AI chatbots showed a mean accuracy of 91.2% in answers to CQs, with discrepancies noted in grade of recommendation and level of evidence. Claude-2 outperformed other chatbots in the number of verified references (99.6%), whereas ChatGPT had the lowest rate of reference authenticity (66.3%). This study highlights the potential of AI chatbots as tools for disseminating medical information and demonstrates their high degree of accuracy in answering CQs related to DFUs. However, the variability in the accuracy of these chatbots and problems like AI hallucinations necessitate cautious use and further optimization for medical applications. This study underscores the evolving role of AI in healthcare and the importance of refining these technologies for effective use in clinical decision-making and patient education.
Collapse
Affiliation(s)
- Makoto Shiraishi
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Haesu Lee
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Koji Kanayama
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Yuta Moriwaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Mutsumi Okazaki
- Department of Plastic and Reconstructive Surgery, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Oei CW, Chan YM, Zhang X, Leo KH, Yong E, Chong RC, Hong Q, Zhang L, Pan Y, Tan GWL, Mak MHW. Risk Prediction of Diabetic Foot Amputation Using Machine Learning and Explainable Artificial Intelligence. J Diabetes Sci Technol 2024:19322968241228606. [PMID: 38288696 PMCID: PMC11571574 DOI: 10.1177/19322968241228606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) are serious complications of diabetes which can lead to lower extremity amputations (LEAs). Risk prediction models can identify high-risk patients who can benefit from early intervention. Machine learning (ML) methods have shown promising utility in medical applications. Explainable modeling can help its integration and acceptance. This study aims to develop a risk prediction model using ML algorithms with explainability for LEA in DFU patients. METHODS This study is a retrospective review of 2559 inpatient DFU episodes in a tertiary institution from 2012 to 2017. Fifty-one features including patient demographics, comorbidities, medication, wound characteristics, and laboratory results were reviewed. Outcome measures were the risk of major LEA, minor LEA and any LEA. Machine learning models were developed for each outcome, with model performance evaluated using receiver operating characteristic (ROC) curves, balanced-accuracy and F1-score. SHapley Additive exPlanations (SHAP) was applied to interpret the model for explainability. RESULTS Model performance for prediction of major, minor, and any LEA event achieved ROC of 0.820, 0.637, and 0.756, respectively, with XGBoost, XGBoost, and Gradient Boosted Trees algorithms demonstrating best results for each model, respectively. Using SHAP, key features that contributed to the predictions were identified for explainability. Total white cell (TWC) count, comorbidity score and red blood cell count contributed highest weightage to major LEA event. Total white cell, eosinophils, and necrotic eschar in the wound contributed most to any LEA event. CONCLUSIONS Machine learning algorithms performed well in predicting the risk of LEA in a patient with DFU. Explainability can help provide clinical insights and identify at-risk patients for early intervention.
Collapse
Affiliation(s)
- Chien Wei Oei
- Management Information Department, Office of Clinical Epidemiology, Analytics and Knowledge, Tan Tock Seng Hospital, Singapore
- Department of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Yam Meng Chan
- Department of General Surgery, Vascular Surgery Service, Tan Tock Seng Hospital, Singapore
| | - Xiaojin Zhang
- Management Information Department, Office of Clinical Epidemiology, Analytics and Knowledge, Tan Tock Seng Hospital, Singapore
| | - Kee Hao Leo
- Management Information Department, Office of Clinical Epidemiology, Analytics and Knowledge, Tan Tock Seng Hospital, Singapore
| | - Enming Yong
- Department of General Surgery, Vascular Surgery Service, Tan Tock Seng Hospital, Singapore
| | - Rhan Chaen Chong
- Department of General Surgery, Vascular Surgery Service, Tan Tock Seng Hospital, Singapore
| | - Qiantai Hong
- Department of General Surgery, Vascular Surgery Service, Tan Tock Seng Hospital, Singapore
| | - Li Zhang
- Department of General Surgery, Vascular Surgery Service, Tan Tock Seng Hospital, Singapore
| | - Ying Pan
- Department of General Surgery, Vascular Surgery Service, Tan Tock Seng Hospital, Singapore
| | - Glenn Wei Leong Tan
- Department of General Surgery, Vascular Surgery Service, Tan Tock Seng Hospital, Singapore
| | - Malcolm Han Wen Mak
- Department of General Surgery, Vascular Surgery Service, Tan Tock Seng Hospital, Singapore
| |
Collapse
|