1
|
Grossini E, Surico D, Venkatesan S, Ola Pour MM, Aquino CI, Remorgida V. Extracellular Vesicles and Pregnancy-Related Hypertensive Disorders: A Descriptive Review on the Possible Implications "From Bench to Bedside". BIOLOGY 2025; 14:240. [PMID: 40136497 PMCID: PMC11939443 DOI: 10.3390/biology14030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Pregnancy involves extracellular vesicles (EVs) through mechanisms that are poorly understood to date. Furthermore, it is not surprising that EVs may also be involved in the pathophysiology of pre-eclampsia (PE) and gestational hypertension, two clinical conditions with high morbidity and mortality, given their capacity to mediate intracellular communications and regulate inflammation and angiogenesis. We searched major online scientific search engines (PubMed, Google Scholar, Scopus, WES, Embase, etc.) using the terms "Preeclampsia", "Pregnancy", "Hypertension", "Pregnancy-related hypertension", "Extracellular vesicles", "Biomarkers", "Gestation" AND "Obstetrics". Finding potential early biomarkers of risk or illness progression would be essential for the optimum care of expectant mothers with the aforementioned conditions. Nevertheless, none of the various screening assays that have been discovered recently have shown high predictive values. The analysis of EVs in the peripheral blood starting from the first trimester of pregnancy may hold great promise for the possible correlation with gestational hypertension problems and represent a marker of the early stages of the disease. EVs use may be a novel therapeutic approach for the management of various illnesses, as well. In order to define EVs' function in the physiopathology of pregnancy-associated hypertension and PE, as well as their potential as early biomarkers and therapeutic tools, we have compiled the most recent data in this review.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.V.); (M.M.O.P.)
| | - Daniela Surico
- Gynecology and Obstetrics Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (D.S.); (C.I.A.); (V.R.)
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.V.); (M.M.O.P.)
| | - Mohammad Mostafa Ola Pour
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.V.); (M.M.O.P.)
| | - Carmen Imma Aquino
- Gynecology and Obstetrics Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (D.S.); (C.I.A.); (V.R.)
| | - Valentino Remorgida
- Gynecology and Obstetrics Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (D.S.); (C.I.A.); (V.R.)
| |
Collapse
|
2
|
Sun Q, Chang H, Wang H, Zheng L, Weng Y, Zheng D, Zheng D. Regulatory roles of extracellular vesicles in pregnancy complications. J Adv Res 2025:S2090-1232(25)00108-0. [PMID: 39938794 DOI: 10.1016/j.jare.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are heterogeneous membranous structures released by various cell types, including large vesicles, microvesicles (MVs), and exosomes. These vesicles play crucial roles in intercellular communication within interstitial fluids and are involved in numerous physiological and pathological processes. AIM OF REVIEW This review aims to examine the regulatory roles of EVs in pregnancy complications, focusing on their involvement in gestational diabetes mellitus (GDM), preeclampsia (PE), and preterm birth (PTB). KEY SCIENTIFIC CONCEPTS OF REVIEW Placenta- and embryo-derived EVs have gained significant attention for their biological roles due to their effects on inflammation, immune response and immunomodulation. Recent research highlights the importance of EVs in embryonic development and gestation. During pregnancy, several EVs functioned in complex endocrine regulation and pregnancy complications that can affect both the mother and fetus, with long-term cardiovascular and metabolic risks. This review discusses the current evidence on how EVs modulate pregnancy outcomes and explores their biological roles in the pathology of GDM, PE, and PTB. In spite of the current difficulties in relating these findings to the pathogenesis of pregnancy complications and the insufficient evidence for clinical practice, the potential impact of specific proteins and miRNAs transported by EVs is noteworthy on the emergence of pregnancy complications. Future research should continue to explore the complex interactions mediated by EVs to develop novel diagnostic and therapeutic strategies for pregnancy-related disorders.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China
| | - Hua Chang
- Department Gynecology, The First Hospital of China Medical University, No.155 Nanjing Rd, Heping District, Shenyang 110001, Liaoning, China
| | - Huan Wang
- Department Gynecology, The First Hospital of China Medical University, No.155 Nanjing Rd, Heping District, Shenyang 110001, Liaoning, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province 211198, China.
| | - Yang Weng
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, Shengyang 110032, China.
| | - Donghan Zheng
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Dongming Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
3
|
Popova AK, Vashukova ES, Illarionov RA, Maltseva AR, Pachuliia OV, Postnikova TB, Glotov AS. Extracellular Vesicles as Biomarkers of Pregnancy Complications. Int J Mol Sci 2024; 25:11944. [PMID: 39596014 PMCID: PMC11594130 DOI: 10.3390/ijms252211944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Extracellular vesicles (EVs) are double-membrane vesicles that facilitate intercellular communication and play a pivotal role in both physiological and pathological processes. A substantial body of evidence suggests that EVs play a role in the pathogenesis of various pregnancy complications. Because EVs can be detected in the peripheral blood, they are potential biomarkers for the early diagnosis of pregnancy complications and foetal developmental disorders. The majority of studies have demonstrated a correlation between alterations in the concentration of EVs and changes in their contents and the occurrence of pregnancy complications. Despite the current limitations in establishing a clear link between these findings and the pathogenesis of the disease, as well as the lack of sufficient evidence to support their use in clinical practice, it is noteworthy to highlight the potential role of specific miRNAs carried by EVs in the development of pregnancy complications. These include miR-210 and miR-136-5p for pre-eclampsia and gestational diabetes mellitus, miR-155, miR-26b-5p, miR-181a-5p, miR-495 and miR-374c for pre-eclampsia and preterm birth. The following miRNAs have been identified as potential biomarkers for preterm birth and gestational diabetes mellitus: miR-197-3p and miR-520h, miR-1323, miR-342-3p, miR-132-3p, miR-182-3p, miR-517-3p, miR-222-3p, miR-16-5p and miR-126-3p. Additionally, miR-127-3p has been linked to foetal growth restriction and preterm birth. Nevertheless, it would be premature to propose that EVs can be employed as biomarkers for pregnancy complications. Further research and the accumulation of results obtained using the methods proposed in the MISEV2023 guidelines will enable a definitive conclusion to be reached.
Collapse
Affiliation(s)
- Anastasiia K. Popova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Elena S. Vashukova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Roman A. Illarionov
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Anastasia R. Maltseva
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Olga V. Pachuliia
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Tatiana B. Postnikova
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute for Obstetrics, Gynecology, and Reproduction, St. Petersburg 199034, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
4
|
Nair S, Razo-Azamar M, Jayabalan N, Dalgaard LT, Palacios-González B, Sørensen A, Kampmann U, Handberg A, Carrion F, Salomon C. Advances in extracellular vesicles as mediators of cell-to-cell communication in pregnancy. Cytokine Growth Factor Rev 2024; 76:86-98. [PMID: 38233286 DOI: 10.1016/j.cytogfr.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Cell-to-cell communication mediated by Extracellular Vesicles (EVs) is a novel and emerging area of research, especially during pregnancy, in which placenta derived EVs can facilitate the feto-maternal communication. EVs comprise a heterogeneous group of vesicle sub-populations with diverse physical and biochemical characteristics and originate by specific biogenesis mechanisms. EVs transfer molecular cargo (including proteins, nucleic acids, and lipids) between cells and are critical mediators of cell communication. There is growing interest among researchers to explore into the molecular cargo of EVs and their functions in a physiological and pathological context. For example, inflammatory mediators such as cytokines are shown to be released in EVs and EVs derived from immune cells play key roles in mediating the immune response as well as immunoregulatory pathways. Pregnancy complications such as gestational diabetes mellitus, preeclampsia, intrauterine growth restriction and preterm birth are associated with altered levels of circulating EVs, with differential EV cargo and bioactivity in target cells. This implicates the intriguing roles of EVs in reprogramming the maternal physiology during pregnancy. Moreover, the capacity of EVs to carry bioactive molecules makes them a promising tool for biomarker development and targeted therapies in pregnancy complications. This review summarizes the physiological and pathological roles played by EVs in pregnancy and pregnancy-related disorders and describes the potential of EVs to be translated into clinical applications in the diagnosis and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia.
| | - Melissa Razo-Azamar
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; Laboratorio de Envejecimiento Saludable del Instituto Nacional de Medicina Genómica (INMEGEN) en el Centro de Investigación sobre Envejecimiento (CIE-CINVESTAV Sede Sur), CDMX, 14330, Mexico
| | - Nanthini Jayabalan
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
| | | | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable del Instituto Nacional de Medicina Genómica (INMEGEN) en el Centro de Investigación sobre Envejecimiento (CIE-CINVESTAV Sede Sur), CDMX, 14330, Mexico
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, and Department of Clinical Medicine, Aarhus University, Denmark
| | - Aase Handberg
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
5
|
Barnes MVC, Pantazi P, Holder B. Circulating extracellular vesicles in healthy and pathological pregnancies: A scoping review of methodology, rigour and results. J Extracell Vesicles 2023; 12:e12377. [PMID: 37974377 PMCID: PMC10654380 DOI: 10.1002/jev2.12377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in pregnancy, revealed by the presence of placental-derived EVs in maternal blood, their in vitro functionality, and their altered cargo in pregnancy pathologies. These EVs are thought to be involved in the development of pregnancy pathologies, such as pre-eclampsia, pre-term birth, and fetal growth restriction, and have been suggested as a source of biomarkers for gestational diseases. However, to accurately interpret their function and biomarker potential, it is necessary to critically evaluate the EV isolation and characterization methodologies used in pregnant cohorts. In this systematic scoping review, we collated the results from 152 studies that have investigated EVs in the blood of pregnant women, and provide a detailed analysis of the EV isolation and characterization methodologies used. Our findings indicate an overall increase in EV concentrations in pregnant compared to non-pregnant individuals, an increased EV count as gestation progresses, and an increased EV count in some pregnancy pathologies. We highlight the need for improved standardization of methodology, greater focus on gestational changes in EV concentrations, and further investigations into the functionality of EVs. Our review suggests that EVs hold great promise as diagnostic and translational tools for gestational diseases. However, to fully realize their potential, it is crucial to improve the standardization and reliability of EV isolation and characterization methodologies, and to gain a better understanding of their functional roles in pregnancy pathologies.
Collapse
Affiliation(s)
- Megan V. C. Barnes
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| | - Paschalia Pantazi
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| | - Beth Holder
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| |
Collapse
|
6
|
Santoyo JM, Noguera JA, Avilés F, Hernández-Caselles T, de Paco-Matallana C, Delgado JL, Cuevas S, Llinás MT, Hernández I. Pravastatin reduces plasma levels of extracellular vesicles in pregnancies at high risk of term preeclampsia. Front Pharmacol 2023; 14:1166123. [PMID: 37426825 PMCID: PMC10323224 DOI: 10.3389/fphar.2023.1166123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: Elevated plasma levels of extracellular vesicles have been associated with impaired placentation, angiogenesis imbalance, intravascular inflammation, and endothelial dysfunction in women with preeclampsia, thus suggesting that circulating vesicles may be a good therapeutic target for the treatment of the disease. Recently, statins have been considered a potential treatment for the prevention of preeclampsia because of their pleiotropic effects, including the improvement of endothelial dysfunction and inhibition of inflammatory responses. However, the effects of these drugs on circulating vesicles concentration in women at risk of preeclampsia have not been established. Herein, we aimed to assess the effects of pravastatin on circulating extracellular vesicle generation in women at high risk of term preeclampsia. Methods: In a sample of 68 singleton pregnant women participating in the multicenter, double-blind, placebo-controlled STATIN trial (Nº EducraCT 2016-005206-19 ISRCTN), 35 women received a placebo and 33 women received a 20 mg/day dose of pravastatin for approximately 3 weeks (from 35 to 37 weeks of gestation until delivery). Large extracellular vesicles were characterized and quantified by flow cytometry using annexin V and cell-specific antibodies directed against platelet, endothelial, leukocyte, and syncytiotrophoblast cell surface markers. Results: In women who received the placebo, a significant increase in the plasma levels of large extracellular vesicles from platelets (34%, p < 0.01), leukocytes (33%, p < 0.01), monocytes (60%, p < 0.01), endothelial cells (40%, p < 0.05), and syncytiotrophoblast cells (22%, p < 0.05) were observed. However, treatment with pravastatin significantly reduced the plasma levels of large extracellular vesicles from platelets (42%, p < 0.001), leukocytes (25%, p < 0.001), monocytes (61%, p < 0.001), endothelial cells (69%, p < 0.001), activated endothelial cells (55%, p < 0.001), and syncytiotrophoblast cells (44%, p < 0.001). Discussion: These results indicate that pravastatin reduces the levels of activated cell-derived membrane vesicles from the maternal vasculature, blood, and placental syncytiotrophoblast of women at high risk of term preeclampsia, suggesting that this statin may be beneficial in reducing endothelial dysfunction and pro-inflammatory and pro-coagulatory state characteristics of the disease.
Collapse
Affiliation(s)
- Jean Michell Santoyo
- Department of Physiology, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - José Antonio Noguera
- Institute of Biomedical Research (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Francisco Avilés
- Institute of Biomedical Research (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Trinidad Hernández-Caselles
- Department of Biochemistry and Molecular Biology “B” and Immunology, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - Catalina de Paco-Matallana
- Institute of Biomedical Research (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Juan Luis Delgado
- Institute of Biomedical Research (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Santiago Cuevas
- Molecular Inflammation Group, Institute of Biomedical Research (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - M. Teresa Llinás
- Department of Physiology, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - Isabel Hernández
- Department of Physiology, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| |
Collapse
|
7
|
Koltsova EM, Martyanov AA, Podoplelova NA. Procoagulant Properties of Extracellular Vesicles in Normal and Pathological Pregnancy. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2023. [DOI: 10.1134/s1990747822060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Chakraborty P, Chatterjee S, Chatterjee I, Mitra I, Kalapahar S, Sharma S, Chattopadhyay R, Haldar R, Chaudhury K, Chakravarty B. Attenuation of placental pyruvate kinase M2 promotes oxidative imbalance and enhances inflammatory- apoptosis cross talk in rats with hyperhomocysteinemia associated pregnancy loss.. [DOI: 10.21203/rs.3.rs-1997950/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Abstract
10-15% of clinically recognized pregnancies end in miscarriage. Hyperhomocysteinemia in pregnant women has been associated with deep venous thrombosis, recurrent miscarriage, preeclampsia to name a few. Impaired placental function due to overt oxidative stress is one of the key mechanisms in development of pregnancy loss. Paucity of pathway–based microarray approach in embryonic–endometrial communication warrants elucidation of distinct profile of miRNAs in hyperhomocysteinemia-associated pregnancy loss (HAPL). Hyperhomocysteinemia was induced at a dose of 100mg/kg body-weight/day for D1-D18 of pregnancy. Placental histology by haematoxylin-eosin staining documented thrombus with reduced area of spongiotropoblasts in chorionic plate vessel. Placental mRNA was subjected to microarray analysis followed by pathway-analysis using Ingenuity Pathway Analysis (IPA). Genes involved in reproductive physiology, inflammatory pathways, immune responses, homocysteine metabolism, glucose metabolism, and oxidative stress were differentially expressed in HAPL. 21 pathways documented by IPA, were skewed to 10 by recursive feature elimination highlighting possible deregulation/s. Expression/s was re-confirmed by quantitative real- time PCR (qRT-PCR), western blot and flow cytometric analysis (FACS). Nine priori molecules (PKM2, AKT, PI3K, NF-κB, COX-2, sflt-1, HIF-1α, bax, caspase 9) were specifically modulated in HAPL as demonstrated by protein and mRNA expression. A parallel increase in insulin signaling (PI3K+,AKT+), inflammation (COX2+,NF-κB+), hypoxia (sflt-1+,HIF-1α+), apoptosis (bax+,caspase9+) with concomitant decrease in pyruvate kinase M2 in hyperhomocysteinemic placental cells by FACS with CD56, a marker for pregnancy loss was documented. The findings provide evidence that an oxidative stress-mediated placental damage perhaps represents the pathogenesis of HAPL, which may explore pathway-based therapeutic options for recurrent miscarriage.10–15% of clinically recognized pregnancies end in miscarriage. Hyperhomocysteinemia in pregnant women has been associated with deep venous thrombosis, recurrent miscarriage, preeclampsia to name a few. Impaired placental function due to overt oxidative stress is one of the key mechanisms in development of pregnancy loss. Paucity of pathway–based microarray approach in embryonic–endometrial communication warrants elucidation of distinct profile of miRNAs in hyperhomocysteinemia-associated pregnancy loss (HAPL). Hyperhomocysteinemia was induced at a dose of 100mg/kg body-weight/day for D1-D18 of pregnancy. Placental histology by haematoxylin-eosin staining documented thrombus with reduced area of spongiotropoblasts in chorionic plate vessel. Placental mRNA was subjected to microarray analysis followed by pathway-analysis using Ingenuity Pathway Analysis (IPA). Genes involved in reproductive physiology, inflammatory pathways, immune responses, homocysteine metabolism, glucose metabolism, and oxidative stress were differentially expressed in HAPL. 21 pathways documented by IPA, were skewed to 10 by recursive feature elimination highlighting possible deregulation/s. Expression/s was re-confirmed by quantitative real- time PCR (qRT-PCR), western blot and flow cytometric analysis (FACS). Nine priori molecules (PKM2, AKT, PI3K, NF-κB, COX-2, sflt-1, HIF-1α, bax, caspase 9) were specifically modulated in HAPL as demonstrated by protein and mRNA expression. A parallel increase in insulin signaling (PI3K+,AKT+), inflammation (COX2+,NF-κB+), hypoxia (sflt-1+,HIF-1α+), apoptosis (bax+,caspase9+) with concomitant decrease in pyruvate kinase M2 in hyperhomocysteinemic placental cells by FACS with CD56, a marker for pregnancy loss was documented. The findings provide evidence that an oxidative stress-mediated placental damage perhaps represents the pathogenesis of HAPL, which may explore pathway-based therapeutic options for recurrent miscarriage.
Collapse
Affiliation(s)
| | - Sujan Chatterjee
- Molecular Biology and Tissue Culture Laboratory, Post Graduate Department of Zoology, Vidyasagar College, Kolkata- 700006
| | | | - Imon Mitra
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | | | | | | | - Rajen Haldar
- Department of Physiology, UCSTA, University of Calcutta
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | | |
Collapse
|
9
|
Brown PA. Differential and targeted vesiculation: pathologic cellular responses to elevated arterial pressure. Mol Cell Biochem 2022; 477:1023-1040. [PMID: 34989921 DOI: 10.1007/s11010-021-04351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles are small membrane-enclosed particles released during cell activation or injury. They have been investigated for several decades and found to be secreted in various diseases. Their pathogenic role is further supported by the presence of several important molecules among their cargo, including proteins, lipids, and nucleic acids. Many studies have reported enhanced and targeted extracellular vesicle biogenesis in diseases that involve chronic or transient elevation of arterial pressure resulting in endothelial dysfunction, within either the general circulatory system or specific local vascular beds. In addition, several associated pathologic processes have been studied and reported. However, the role of elevated pressure as a common pathogenic trigger across vascular domains and disease chronicity has not been previously described. This review will therefore summarize our current knowledge of the differential and targeted biogenesis of extracellular vesicles in major diseases that are characterized by elevated arterial pressure leading to endothelial dysfunction and propose a unified theory of pressure-induced extracellular vesicle-mediated pathogenesis.
Collapse
Affiliation(s)
- Paul A Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Kingston 7, Jamaica.
| |
Collapse
|
10
|
Extracellular Vesicles and Antiphospholipid Syndrome: State-of-the-Art and Future Challenges. Int J Mol Sci 2021; 22:ijms22094689. [PMID: 33925261 PMCID: PMC8125219 DOI: 10.3390/ijms22094689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 01/08/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by thromboembolism, obstetric complications, and the presence of antiphospholipid antibodies (aPL). Extracellular vesicles (EVs) play a key role in intercellular communication and connectivity and are known to be involved in endothelial and vascular pathologies. Despite well-characterized in vitro and in vivo models of APS pathology, the field of EVs remains largely unexplored. This review recapitulates recent findings on the role of EVs in APS, focusing on their contribution to endothelial dysfunction. Several studies have found that APS patients with a history of thrombotic events have increased levels of EVs, particularly of endothelial origin. In obstetric APS, research on plasma levels of EVs is limited, but it appears that levels of EVs are increased. In general, there is evidence that EVs activate endothelial cells, exhibit proinflammatory and procoagulant effects, interact directly with cell receptors, and transfer biological material. Future studies on EVs in APS may provide new insights into APS pathology and reveal their potential as biomarkers to identify patients at increased risk.
Collapse
|
11
|
Nair S, Ormazabal V, Lappas M, McIntyre HD, Salomon C. Extracellular vesicles and their potential role inducing changes in maternal insulin sensitivity during gestational diabetes mellitus. Am J Reprod Immunol 2021; 85:e13361. [PMID: 33064367 DOI: 10.1111/aji.13361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common endocrine disorders during gestation and affects around 15% of all pregnancies worldwide, paralleling the global increase in obesity and type 2 diabetes. Normal pregnancies are critically dependent on the development of maternal insulin resistance balanced by an increased capacity to secrete insulin, which allows for the allocation of nutrients for adequate foetal growth and development. Several factors including placental hormones, inflammatory mediators and nutrients have been proposed to alter insulin sensitivity and insulin response and underpin the pathological outcomes of GDM. However, other factors may also be involved in the regulation of maternal metabolism and a complete understanding of GDM pathophysiology requires the identification of these factors, and the mechanisms associated with them. Recent studies highlight the potential utility of tissue-specific extracellular vesicles (EVs) in the diagnosis of disease onset and treatment monitoring for several pregnancy-related complications, including GDM. To date, there is a paucity of data defining changes in the release, content, bioactivity and diagnostic utility of circulating EVs in pregnancies complicated by GDM. Placental EVs may engage in paracellular interactions including local cell-to-cell communication between the cell constituents of the placenta and contiguous maternal tissues, and/or distal interactions involving the release of placental EVs into biological fluids and their transport to a remote site of action. Hence, the aim of this review is to discuss the biogenesis, isolation methods and role of EVs in the physiopathology of GDM, including changes in maternal insulin sensitivity during pregnancy.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, Australia
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Vic., Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Vic., Australia
| | - H David McIntyre
- Mater Research, The University of Queensland, South Brisbane, Qld, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, Australia.,Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| |
Collapse
|
12
|
Abstract
Preeclampsia (PE) is associated with long-term morbidity in mothers and lifelong morbidities for their children, ranging from cerebral palsy and cognitive delay in preterm infants, to hypertension, diabetes and obesity in adolescents and young adults. There are several processes that are critical for development of materno-fetal exchange, including establishing adequate perfusion of the placenta by maternal blood, and the formation of the placental villous vascular tree. Recent studies provide persuasive evidence that placenta-derived extracellular vesicles (EVs) represent a significant intercellular communication pathway, and that they may play an important role in placental and endothelial cell (both fetal and maternal) function. These functions are known to be altered in PE. EVs can carry and transport a wide range of bioactive molescules that have potential to be used as biomarkers and therapeutic delivery tools for PE. EV content is often parent cell specific, thus providing an insight or "thumbprint" of the intracellular environment of the originating cell (e.g., human placenta). EV have been identified in plasma under both normal and pathological conditions, including PE. The concentration of EVs and their content in plasma has been reported to increase in association with disease severity and/or progression. Placenta-derived EVs have been identified in maternal plasma during normal pregnancy and PE pregnancies. They contain placenta-specific proteins and miRNAs and, as such, may be differentiated from maternally-derived EVs. The aim of this review, thus, is to describe the potential roles of EVs in preecmpatic pregnancies, focussing on EVs secreted from placental cells. The biogenesis, specificity of placental EVs, and methods used to characterise EVs in the context of PE pregnancies will be also discussed.
Collapse
|
13
|
Mohseni Z, Derksen E, Oben J, Al-Nasiry S, Spaanderman MEA, Ghossein-Doha C. Cardiac dysfunction after preeclampsia; an overview of pro- and anti-fibrotic circulating effector molecules. Pregnancy Hypertens 2020; 23:140-154. [PMID: 33388730 DOI: 10.1016/j.preghy.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/29/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023]
Abstract
Preeclampsia (PE) is strongly associated with heart failure (HF) later in life. The aberrant cardiac remodelling is likely initiated or amplified during preeclamptic pregnancy. Aberrant remodelling often persists after delivery and is known to relate strongly to cardiac fibrosis. This review provides an overview of pro- and anti- fibrotic circulating effector molecules that are involved in cardiac fibrosis and their association with PE. Women with PE complicated pregnancies show increased ANG-II sensitivity and elevated levels of the pro-fibrotic factors IL-6, TNF-α, TGs and FFAs compared to uncomplicated pregnancies. In the postpartum period, PE pregnancies compared to uncomplicated pregnancies have increased ANG-II sensitivity, elevated levels of the pro-fibrotic factors IL-6, TNF-α, LDL cholesterol and leptin, as well as decreased levels of the anti-fibrotic factor adiponectin. The review revealed several profibrotic molecules that associate to cardiac fibrosis during and after PE. The role that these fibrotic factors have on the heart during and after PE may improve the understanding of the link between PE and HF. Furthermore they may provide insight into the pathways in which the relation between both diseases can be understood as potential mechanisms which interfere in the process of cardiovascular disease (CVD). Unravelling the molecular mechanism and pathways involved might bring the diagnostic and therapeutic abilities of those factors a step closer.
Collapse
Affiliation(s)
- Zenab Mohseni
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC+), The Netherlands.
| | - Elianne Derksen
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC+), The Netherlands
| | - Jolien Oben
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC+), The Netherlands
| | - Salwan Al-Nasiry
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC+), The Netherlands
| | - Marc E A Spaanderman
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC+), The Netherlands; Department of Obstetrics and Gynecology, Radboud University Nijmegen Medical Center, The Netherlands
| | - Chahinda Ghossein-Doha
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC+), The Netherlands; Department of Cardiology, Maastricht University Medical Centre (MUMC+), The Netherlands
| |
Collapse
|
14
|
Abstract
Background: Numerous changes in maternal physiology occur during pregnancy that are critical in controlling and maintaining the maternal metabolic adaptations and fetal development. The placenta is the key source through which the fetus receives nutrients, blood, and oxygen for growth. The human placenta releases several molecules into maternal circulation that include hormones, proteins, RNA, and DNA throughout the course of pregnancy. Additionally, extracellular vesicles (EVs) originating from the placenta have been found in the maternal circulation. Methods: In this review, we discuss the role of EVs in maternal-fetal communication during pregnancy. Results: EVs originating from the placenta can be divided into 3 categories based on their size and/or origin: exosomes (50 to 150 nm), microvesicles (nm to several μm), and apoptotic bodies or syncytial nuclear aggregates (>1 μm). The cellular microenvironment—such as oxygen tension and glucose concentration—have been found to control EV release from the placenta and their bioactivity on target cells. Furthermore, maternal EVs can stimulate cytokine release from endothelial cells and are involved in several physiologic and pathologic events in pregnancy. Conclusion: Exosomes provide a way to identify the function and metabolic state of cell origin through their ability to reflect the microenvironment that they are released from. Further understanding of how EVs regulate key events in pregnancy may help elucidate how maternal-fetal communication is established in both normal and pathologic conditions.
Collapse
|
15
|
Nair S, Salomon C. Extracellular vesicles as critical mediators of maternal-fetal communication during pregnancy and their potential role in maternal metabolism. Placenta 2020; 98:60-68. [PMID: 33039033 DOI: 10.1016/j.placenta.2020.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023]
Abstract
Extracellular vesicles (EVs) have been implicated in the pathophysiology of metabolic disorders by transferring biologically active molecules such as miRNAs and proteins to recipient cells, and influencing their metabolic pathways. Pregnancy is one of the greatest metabolic challenges faced by both the mother and the growing fetus, and this is fine-tuned by several factors, including hormones, soluble molecules, and molecules encapsulated in EVs released from the placenta. A wide range of EVs originating from the placenta are present in maternal circulation, and changes in their circulating levels and bioactivity (i.e., capacity to induce changes in the target cells) have been associated with several complications of pregnancies, including gestational diabetes mellitus (GDM), preeclampsia, preterm birth, and fetal growth restriction. Complications of pregnancies are associated with maternal metabolic dysfunction with short- and long-term consequences for both mother and child. However, the potential roles of circulating EVs originating from the placenta and other tissues (e.g. adipose tissue), on changes in maternal metabolism during normal and pregnancy complications have not been fully described. The aim of this brief review, thus, is to discuss the diversity of EVs, and their potential roles in the metabolic alterations during pregnancy, with a special focus on GDM.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia; Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile.
| |
Collapse
|
16
|
Han C, Han L, Huang P, Chen Y, Wang Y, Xue F. Syncytiotrophoblast-Derived Extracellular Vesicles in Pathophysiology of Preeclampsia. Front Physiol 2019; 10:1236. [PMID: 31632289 PMCID: PMC6779799 DOI: 10.3389/fphys.2019.01236] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia is a common obstetric complication associated with pregnancy and it endangers lives of the mother and the infant. The histopathological changes associated with preeclampsia include systemic endothelial dysfunction, persistent inflammatory state, and coagulation and fibrinolysis dysregulations. Preeclampsia is considered to be caused by the systemic vasoconstriction of small arteries and disruption of the endothelial integrity, resulting in hypertension, proteinuria, and multiple organ dysfunction. However, mediators that trigger or propagate the pathology of preeclampsia remain poorly defined. Syncytiotrophoblast-derived extracellular vesicles (SDEVs) are increasingly recognized as a key mediator for the development of preeclampsia, but the underlying mechanisms through which these SDEVs are released and induce systemic responses are not fully understood. This review focuses on multiple roles of SDEVs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Cha Han
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lulu Han
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Pengzhu Huang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanyuan Chen
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
|
18
|
Morgan TK. Cell- and size-specific analysis of placental extracellular vesicles in maternal plasma and pre-eclampsia. Transl Res 2018; 201:40-48. [PMID: 30176238 PMCID: PMC8592038 DOI: 10.1016/j.trsl.2018.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
Despite decades of investigation, we cannot predict, prevent, or adequately treat the most common and deadly complications of pregnancy, including pre-eclampsia (pregnancy-induced hypertension). The current working hypothesis for the repeated failures of several multicenter studies that measured a wide variety of biomarkers is common pregnancy complications like pre-eclampsia are most likely heterogeneous syndromes with various etiologies; therefore, no combination of blood-based biomarkers will provide predictive power. Although the clinical syndrome of pre-eclampsia may have various causes, the current dogma is most cases share similar placental pathology, including accelerated chorionic villous maturation and an increased frequency of malperfusion-related infarctions. This pathology is thought to begin in the late first trimester of pregnancy. The challenge has been to develop an approach to monitor placental health in vivo. New contrast-enhanced imaging studies of blood flow to the placenta are providing insights, but rapid liquid-based assays using maternal blood would be more cost-effective. Recently, there has been a growing interest in placental extracellular vesicles (EVs) to determine if these complex lipid-based spheres involved in intercellular communication offer clues to the early pathophysiology of placental damage. Most EVs are nanoscale-sized exosomes (∼60-120 nm) that retain cell-specific plasma membrane surface markers. Their concentration, composition, and relative size distribution may provide clinical predictive power, but more investigation is needed. A major obstacle to advancement in this field has been the lack of EV imaging and isolation assays that can provide both cell- and size-specificity. Nanoscale multiplex high-resolution flow cytometry being developed in a number of laboratories may provide a solution. It is a potential means to quantitate both cell- and size-specific EVs from various cell sources, including the placenta.
Collapse
Affiliation(s)
- Terry K Morgan
- Departments of Pathology and Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
19
|
Nadkarni NA, Rajakumar A, Mokhashi N, Burke SD, Rana S, Salahuddin S, Dang Q, Thadhani R, Krishnan R, Stossel TP, Karumanchi SA. Gelsolin is an endogenous inhibitor of syncytiotrophoblast extracellular vesicle shedding in pregnancy. Pregnancy Hypertens 2016; 6:333-339. [PMID: 27939478 DOI: 10.1016/j.preghy.2016.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Preeclampsia, a pregnancy-specific inflammatory disorder, is characterized by high levels of anti-angiogenic protein, soluble fms-like tyrosine kinase 1 (sFlt1), in the maternal circulation. sFlt1 producing molecular machinery is present in syncytiotrophoblast extracellular vesicles that are released by the placenta into maternal plasma during normal pregnancy, a process greatly accelerated in preeclampsia. We hypothesized that syncytiotrophoblast extracellular vesicles exposes cytoplasmic actin to plasma resulting in depletion of plasma gelsolin (pGSN), an abundant plasma protein that scavenges circulating actin and other pro-inflammatory mediators. OBJECTIVE To test whether pGSN levels would be lower in preeclampsia and to assess whether recombinant human plasma gelsolin (rhpGSN) may promote placental health by decreasing shedding of syncytiotrophoblast extracellular vesicles. METHODS We tested pGSN levels in third trimester plasma samples from women with preeclampsia and non-hypertensive pregnancies. We then assessed whether rhpGSN may act as a negative regulator of syncytial shedding in placental explant culture and dynamic mechanical stretch studies. RESULTS pGSN levels fall in late pregnancy and decline further in preeclampsia patients. Recombinant human pGSN (rhpGSN) at 100μg/ml limits spontaneous syncytiotrophoblast vesicle release and sFlt1 protein dissemination by normal placental explants. Higher rhpGSN doses (500μg/ml) also limit syncytiotrophoblast vesicle and sFlt1 dissemination from preeclamptic placental explants. rhpGSN also mitigates syncytiotrophoblast vesicle during dynamic mechanical stretch. CONCLUSIONS 1) pGSN, an anti-inflammatory factor of maternal origin is reduced in preeclampsia and may contribute to disease progression and 2) exogenous rhpGSN supplementation can limit the dissemination of toxic syncytiotrophoblast vesicle that characterizes the disease state.
Collapse
Affiliation(s)
- Neil A Nadkarni
- Department of Neurology, McGaw Northwestern Memorial Hospital, Chicago, IL, United States; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Augustine Rajakumar
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA, United States
| | - Nikita Mokhashi
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Suzanne D Burke
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sarosh Rana
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology University of Chicago, Chicago, IL, United States; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States
| | - Saira Salahuddin
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States
| | - Quynh Dang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Emergency Medicine, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ravi Thadhani
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Emergency Medicine, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States
| | - Thomas P Stossel
- Hematology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - S Ananth Karumanchi
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
20
|
Promising prognostic markers of Preeclampsia: New avenues in waiting. Thromb Res 2015; 136:189-95. [DOI: 10.1016/j.thromres.2015.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022]
|
21
|
Tong M, Chamley LW. Placental extracellular vesicles and feto-maternal communication. Cold Spring Harb Perspect Med 2015; 5:a023028. [PMID: 25635060 DOI: 10.1101/cshperspect.a023028] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human placenta is an anatomically unique structure that extrudes a variety of extracellular vesicles into the maternal blood (including syncytial nuclear aggregates, microvesicles, and nanovesicles). Large quantities of extracellular vesicles are produced by the placenta in both healthy and diseased pregnancies. Since their first description more than 120 years ago, placental extracellular vesicles are only now being recognized as important carriers for proteins, lipids, and nucleic acids, which may play a crucial role in feto-maternal communication. Here, we summarize the current literature on the cargos of placental extracellular vesicles and the known effects of such vesicles on maternal cells/systems, especially those of the maternal immune and vascular systems.
Collapse
Affiliation(s)
- M Tong
- Department of Obstetrics and Gynecology, University of Auckland, Grafton, Auckland 1142, New Zealand
| | - L W Chamley
- Department of Obstetrics and Gynecology, University of Auckland, Grafton, Auckland 1142, New Zealand
| |
Collapse
|
22
|
Li JYZ, Yong TY, Michael MZ, Gleadle JM. MicroRNAs: are they the missing link between hypoxia and pre-eclampsia? Hypertens Pregnancy 2013; 33:102-14. [PMID: 24354525 DOI: 10.3109/10641955.2013.832772] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pre-eclampsia is a multisystem disorder that occurs in the second half of pregnancy affecting 5% of pregnancies. It remains the leading cause of maternal and perinatal mortality and morbidity worldwide. Impaired placental implantation, hypoxia, endothelial dysfunction and systemic inflammation are thought to have a role in the pathogenesis of pre-eclampsia. MicroRNAs (miRNAs) are short non-coding RNAs. They are important regulators of gene expression and have been found to affect cell development, proliferation, differentiation and function. Specific patterns of miRNAs have been detected in the placenta and there is altered miRNA expression in the placenta of patients with pre-eclampsia to but their role in the pathogenesis remains unclear. Furthermore, deregulated miRNAs have also been reported in human villous trophoblasts during hypoxic stress. One of the more consistently elevated miRNAs by hypoxia and in the placenta of patients with pre-eclampsia is miR-210. Whether such miRNAs are bystander markers of hypoxia, or are directly involved in the pathogenesis of pre-eclampsia, needs to be clarified. There is potential for miRNAs to be used as predictors, markers or therapy in pre-eclampsia. This review provides current knowledge about miRNAs, particularly hypoxia-related miRNAs and the interaction of hypoxia, miRNAs and placenta in pre-eclampsia.
Collapse
|
23
|
Cerdeira AS, Karumanchi SA. Angiogenic factors in preeclampsia and related disorders. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a006585. [PMID: 23125198 DOI: 10.1101/cshperspect.a006585] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During fetal development, the human placenta undergoes high levels of both angiogenesis and vasculogenesis. Additionally, the developing placenta undergoes a process of vascular mimicry (referred to as pseudovasculogenesis) as cytotrophoblasts convert from an epithelial to an endothelial phenotype. The initiation, maturation, and maintenance of the placental vasculature are of critical importance. Failure to do so can lead to adverse obstetric outcomes such as preeclampsia and/or intrauterine growth restriction (IUGR). Furthermore, the foundation of many aspects of adult health is laid in utero. In this context, normal placental function is not only critical for normal fetal development but can also permanently influence long-term health and disease. Understanding the mechanisms that regulate placental vasculogenesis and angiogenesis is therefore of critical importance. This chapter will focus on placental vascular development with a particular emphasis on the role of angiogenic factors in the pathogenesis of the maternal syndrome of preeclampsia and related disorders.
Collapse
Affiliation(s)
- Ana Sofia Cerdeira
- Department of Medicine, Obstetrics & Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
24
|
Umans JG. Obstetric Nephrology: Preeclampsia—The Nephrologist’s Perspective. Clin J Am Soc Nephrol 2012; 7:2107-13. [DOI: 10.2215/cjn.05470512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Holder BS, Tower CL, Forbes K, Mulla MJ, Aplin JD, Abrahams VM. Immune cell activation by trophoblast-derived microvesicles is mediated by syncytin 1. Immunology 2012; 136:184-91. [PMID: 22348442 DOI: 10.1111/j.1365-2567.2012.03568.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Envelope glycoproteins of human endogenous retrovirus (HERV), such as syncytin 1 (HERV-W), are highly expressed in the placenta and some family members have immunomodulatory properties. Placental microvesicles (MV), which are shed into the maternal circulation during pregnancy, have been demonstrated to induce immune cell activation. Therefore, the aim of this study was to investigate the immunological properties of the highly expressed placental HERV-W protein, syncytin 1, and its potential involvement in placental MV modulation of immune cell activity. The MV shed from first trimester, normal term and pre-eclamptic term placentas, and from the BeWo trophoblast cell line, all contain syncytin 1. Recombinant syncytin 1 and syncytin 1-positive BeWo trophoblast MV both induced peripheral blood mononuclear cell (PBMC) activation, indicated through production of cytokines and chemokines. Reducing syncytin 1 content in BeWo MV inhibited PBMC activation. Recombinant syncytin 1 and syncytin-1-positive BeWo MV dampened PBMC responses to lipopolysaccharide challenge. Our findings suggest that syncytin 1 is shed from the placenta into the maternal circulation in association with MV, and modulates immune cell activation and the responses of immune cells to subsequent lipopolysaccharide stimulation. These studies implicate placental MV-associated HERV in fetal regulation of the maternal immune system.
Collapse
Affiliation(s)
- Beth S Holder
- Maternal and Fetal Health Research Group, Academic Health Sciences Centre, University of Manchester, St Mary's Hospital, Manchester, UK
| | | | | | | | | | | |
Collapse
|
26
|
Holder BS, Tower CL, Jones CJP, Aplin JD, Abrahams VM. Heightened pro-inflammatory effect of preeclamptic placental microvesicles on peripheral blood immune cells in humans. Biol Reprod 2012; 86:103. [PMID: 22205696 DOI: 10.1095/biolreprod.111.097014] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Normal pregnancy is associated with the presence of circulating placental microvesicles (MVs). Increased MV shedding and altered immune activation are seen in patients with preeclampsia, suggesting that placental MVs may play a role in the pathophysiology of this disease. Therefore, the aim of this study was to investigate the activation of peripheral blood mononuclear cells (PBMCs) by MVs shed by first-trimester, normal term, and preeclamptic term placenta. First-trimester and preeclamptic term, but not normal term, placental-derived MVs activated PBMCs, as evidenced by elevated IL1B. Significant changes were also seen with several other cytokines and chemokines, and in general when compared to normal term MVs, preeclamptic MVs induced a greater pro-inflammatory response in PBMCs. Pretreatment of PBMCs with first-trimester or normal term placental MVs resulted in a dampened IL1B response to a subsequent lipopolysaccharide (LPS) challenge. In contrast, treatment of PBMCs with preeclamptic term placental MVs exacerbated the LPS response. This was also the case for several other cytokines and chemokines. These studies suggest that placental MVs can modulate basal peripheral immune cell activation and responsiveness to LPS during normal pregnancy, and that in preeclampsia this effect is exacerbated.
Collapse
Affiliation(s)
- Beth S Holder
- Maternal and Fetal Health Research Group, University of Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Gardiner C, Tannetta DS, Simms CA, Harrison P, Redman CWG, Sargent IL. Syncytiotrophoblast microvesicles released from pre-eclampsia placentae exhibit increased tissue factor activity. PLoS One 2011; 6:e26313. [PMID: 22022598 PMCID: PMC3194796 DOI: 10.1371/journal.pone.0026313] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/23/2011] [Indexed: 12/11/2022] Open
Abstract
Background Pre-eclampsia is a complication of pregnancy associated with activation of coagulation. It is caused by the placenta, which sheds increased amounts of syncytiotrophoblast microvesicles (STBM) into the maternal circulation. We hypothesized that STBM could contribute to the haemostatic activation observed in pre-eclampsia. Methodology/Principal Findings STBM were collected by perfusion of the maternal side of placentae from healthy pregnant women and women with pre-eclampsia at caesarean section. Calibrated automated thrombography was used to assess thrombin generation triggered by STBM-borne tissue factor in platelet poor plasma (PPP). No thrombin was detected in PPP alone but the addition of STBM initiated thrombin generation in 14/16 cases. Pre-eclampsia STBM significantly shortened the lag time (LagT, P = 0.01) and time to peak thrombin generation (TTP, P = 0.005) when compared to normal STBM. Blockade of tissue factor eliminated thrombin generation, while inhibition of tissue factor pathway inhibitor significantly shortened LagT (p = 0.01) and TTP (P<0.0001), with a concomitant increase in endogenous thrombin potential. Conclusions/Significance STBM triggered thrombin generation in normal plasma in a tissue factor dependent manner, indicating that TF activity is expressed by STBM. This is more pronounced in STBM shed from pre-eclampsia placentae. As more STBM are shed in pre-eclampsia these observations give insight into the disordered haemostasis observed in this condition.
Collapse
Affiliation(s)
- Chris Gardiner
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
28
|
Alijotas-Reig J, Palacio-Garcia C, Farran-Codina I, Ruiz-Romance M, Llurba E, Vilardell-Tarres M. Circulating cell-derived microparticles in severe preeclampsia and in fetal growth restriction. Am J Reprod Immunol 2011; 67:140-51. [PMID: 21992597 DOI: 10.1111/j.1600-0897.2011.01072.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PROBLEM The behavior of the circulating microparticles (cMP) in severe preeclampsia (PE) and fetal growth restriction (FGR) is disputed. METHOD OF STUDY Non-matched case-control study. Seventy cases of severe PE/HELLP/FGR were compared to 38 healthy pregnant women. Twenty healthy non-pregnant women acted as a control. cMP were analyzed using flow cytometry. Results are given as total (annexin-A5-ANXA5+), platelet (CD41+), leukocyte (CD45+), endothelial (CD144+CD31+//CD41-), and CD41-negative cMP/μL of plasma. Antiphospholipid antibodies (aPL) were analyzed through usual methods. RESULTS Platelet and endothelial cMP increased in healthy pregnant women. PE whole group (PE±FGR) showed an increase in endothelial and CD41-negative, but not in platelet-derived, cMP. Comparing PE whole group versus healthy pregnant, we found cMP levels of endothelial and CD41- had increased. The cMP results obtained in PE group were similar to those of the PE whole group. Comparing PE group to isolated FGR, significant CD41-negative cMP increase was found in PE. According to its aPL positivity, a trend to decrease in leukocyte and endothelial-derived cMP was found in PE group. CONCLUSION Normal pregnancy is accompanied by endothelial and platelet cell activation. Endothelial cell activation has been shown in PE but not in isolated FGR. In PE, aPL may contribute to endothelial and possibly to leukocyte cell activation.
Collapse
Affiliation(s)
- Jaume Alijotas-Reig
- Systemic Autoimmune Disease Unit, Department of Internal Medicine I, Vall d'Hebron University Hospital, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
29
|
Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation 2011; 123:2856-69. [PMID: 21690502 PMCID: PMC3148781 DOI: 10.1161/circulationaha.109.853127] [Citation(s) in RCA: 720] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Rank A, Nieuwland R, Delker R, Pihusch V, Wilkowski R, Toth B, Kolb HJ, Pihusch R. Surveillance of megakaryocytic function by measurement of CD61-exposing microparticles in allogeneic hematopoietic stem cell recipients. Clin Transplant 2011; 25:E233-42. [PMID: 21303416 DOI: 10.1111/j.1399-0012.2011.01406.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing evidence suggests that circulating microparticles (MP) exposing CD61 originate predominantly from megakaryocytes. Dramatic changes in megakaryocytic homeostasis are regularly observed following allogeneic hematopoietic stem cell transplantation (HSCT) and associated with transplantation-associated complications. We studied MP plasma levels prospectively in healthy subjects (n = 10) and allogeneic HSCT recipients (n = 19) twice weekly from the start of conditioning therapy up to day 30. A total of 224 measurement points were evaluated. MP were isolated, double-stained with annexin V and anti-CD61, and analyzed by flow cytometry. In uncomplicated HSCT, we found a correlation between platelet and CD61-exposing MP count, which resulted in a constant ratio of MP per platelet. The ratio was increased in patients with active hematological malignancies before transplantation and normalized during conditioning therapy. After take, the MP ratio increased, whereas infections and microangiopathic hemolytic anemia did not affect the ratio. In patients with GvHD, a decreased MP ratio was observed depending on the grade of GvHD, possibly indicating megakaryocytic damage. The MP ratio was able to discriminate between toxic, septic, and GvHD-induced hyperbilirubinemia. We first describe CD61+ MP levels during allogeneic HSCT and postulate that the MP ratio might be a useful biomarker for the surveillance of megakaryocytes during HSCT.
Collapse
Affiliation(s)
- Andreas Rank
- Medizinische Klinik III - Großhadern, Klinikum der Ludwig Maximilians-Universität München, München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Guller S, Tang Z, Ma YY, Di Santo S, Sager R, Schneider H. Protein composition of microparticles shed from human placenta during placental perfusion: Potential role in angiogenesis and fibrinolysis in preeclampsia. Placenta 2010; 32:63-9. [PMID: 21074265 DOI: 10.1016/j.placenta.2010.10.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/15/2010] [Accepted: 10/22/2010] [Indexed: 11/29/2022]
Abstract
Shedding of syncytiotrophoblast microparticles (MPs) from placenta to maternal blood occurs in normal pregnancy and is enhanced during preeclampsia (PE). The syncytiotrophoblast synthesizes plasminogen activator inhibitors (PAIs) which regulate fibrinolysis, as well as soluble forms of the fms-like tyrosine kinase (sFlt-1) and endoglin, which exert anti-angiogenic actions. An increase in the ratio of PAI-1/PAI-2 and elevated levels of sFlt-1 and sEng in maternal serum are linked to placental damage and maternal endothelial cell dysfunction in PE. The goal of the current study was to determine whether MPs released to maternal perfusate during dual perfusion contain these factors associated with placental pathophysiology in PE. Initially, high levels of alkaline phosphatase activity and Annexin V binding were found in MPs isolated by sequential centrifugation of maternal perfusates at 10,000 and 150,000×g(10 K and 150 K MPs), indicating their plasma membrane origin. ELISA revealed the presence of these factors at the following relative levels: Eng>PAI-2⋙PAI-1>sFlt-1. Based on comparisons of their concentration in perfusates, MPs, and MP-free 150 K supernatants, we determined that MPs constitute a significant portion of Eng released by placenta. Flow cytometric analysis of 10 K MPs supported the levels of expression found by ELISA and indicated that Eng and PAI-2 were almost exclusively localized to the surface of MPs, a site with biological potential. These results indicate that MPs shed from the syncytial surface express factors which may alter the fibrinolytic and angiogenic balance at the maternal-fetal interface and play a role in the pathophysiology of PE.
Collapse
Affiliation(s)
- S Guller
- Department of Obstetrics Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven CT, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Lok CAR, Van der Post JAM, Sturk A, Sargent IL, Nieuwland R. The functions of microparticles in preeclampsia. Pregnancy Hypertens 2010; 1:59-65. [PMID: 26104232 DOI: 10.1016/j.preghy.2010.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circulating blood cells, trophoblast cells and endothelial cells release microparticles (MP) into the maternal blood by membrane shedding. This process occurs upon activation or apoptosis of these cells. Evidence is accumulating that MP play a role in the development of thrombotic diseases. In recent years, the importance of changes in circulating MP numbers and in composition in preeclampsia has been recognized and research is now directed to discover the functional consequences of these changes. In this review we will discuss the structure and function of MP, with special emphasis on the changes in MP numbers, composition and function in pregnancy and preeclampsia.
Collapse
Affiliation(s)
- Christine A R Lok
- Department of Obstetrics and Gynaecology, Academic Medical Center, Amsterdam, The Netherlands
| | - Joris A M Van der Post
- Department of Obstetrics and Gynaecology, Academic Medical Center, Amsterdam, The Netherlands
| | - Augueste Sturk
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Ian L Sargent
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Rank A, Nieuwland R, Delker R, Köhler A, Toth B, Pihusch V, Wilkowski R, Pihusch R. Cellular origin of platelet-derived microparticles in vivo. Thromb Res 2010; 126:e255-9. [DOI: 10.1016/j.thromres.2010.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 07/15/2010] [Accepted: 07/16/2010] [Indexed: 12/20/2022]
|
34
|
Macey MG, Bevan S, Alam S, Verghese L, Agrawal S, Beski S, Thuraisingham R, MacCallum PK. Platelet activation and endogenous thrombin potential in pre-eclampsia. Thromb Res 2009; 125:e76-81. [PMID: 19822350 DOI: 10.1016/j.thromres.2009.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/04/2009] [Accepted: 09/21/2009] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Platelets and the coagulation system may be involved in the pathogenesis of pre-eclampsia. We investigated whether platelet and coagulation activation markers, are elevated in pre-eclampsia. MATERIALS/METHODS Case-control study in which activated platelets, platelet-monocyte/ neutrophil aggregates, platelet microparticles (measured by flow cytometry) and four markers of thrombin generation capacity (endogenous thrombin potential (ETP), peak height, lag time and time to peak) using the Calibrated Automated Thrombogram system were assessed in pregnant women of similar gestational age with (n=46) and without (n=46) pre-eclampsia, and in healthy non-pregnant women (n=42). RESULTS The percentage of, CD62P+ platelets (p=0.013), CD62P+ platelet microparticles (p=0.029) and platelet-monocyte aggregates (p=0.019) were significantly higher in women with pre-eclampsia than the pregnant controls. Both groups of pregnant women had significantly higher ETP and peak height (p <0.001) than the healthy non pregnant group and the women with pre-eclampsia had significantly higher ETP and peak height (p<0.001) than the normotensive pregnant controls. CONCLUSION In the most comprehensive laboratory analysis to date, we found evidence of both platelet and coagulation activation in women with pre-eclampsia.
Collapse
Affiliation(s)
- M G Macey
- Department of Haematology, Barts and the London NHS Trust, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Orozco AF, Jorgez CJ, Ramos-Perez WD, Popek EJ, Yu X, Kozinetz CA, Bischoff FZ, Lewis DE. Placental release of distinct DNA-associated micro-particles into maternal circulation: reflective of gestation time and preeclampsia. Placenta 2009; 30:891-7. [PMID: 19692120 DOI: 10.1016/j.placenta.2009.06.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND The aim of this study was to determine whether DNA-associated micro-particles (MPs) in maternal plasma express fetal-derived human leukocyte antigen-G (HLA-G) or placental alkaline phosphatase (PLAP) and whether the levels differ between women with normotensive pregnancies and preeclampsia. METHODS DNA-associated MPs expressing HLA-G or PLAP were examined in the plasma of normal pregnant women and preeclamptic patients using flow cytometric analysis. RESULTS DNA-associated HLA-G(+) MPs were significantly increased in maternal plasma compared to plasma from non-pregnant controls (p<0.005), with highest levels found in the first and second trimesters. DNA-associated PLAP(+) MPs were also increased in maternal plasma compared to plasma from non-pregnant controls (p<0.006), with highest levels in the second and third trimesters. Term preeclamptic women had higher levels of DNA-associated MPs than control pregnant women. HLA-G(+) MPs from the plasma of preeclamptic women had more DNA per MP than HLA-G(+) MPs from the plasma of normal pregnant women (p<0.03). CONCLUSIONS HLA-G(+) and PLAP(+) MPs increase in maternal circulation at different times during gestation. DNA amounts per HLA-G(+) MP increase in preeclamptic women which might indicate dysfunctional extravillous cytotrophoblasts.
Collapse
Affiliation(s)
- A F Orozco
- Department of Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|