1
|
Armeni E, Lambrinoudaki I. Menopause, androgens, and cardiovascular ageing: a narrative review. Ther Adv Endocrinol Metab 2022; 13:20420188221129946. [PMID: 36325501 PMCID: PMC9619256 DOI: 10.1177/20420188221129946] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide; however, women tend to be less affected than men during their reproductive years. The female cardiovascular risk increases significantly around the time of the menopausal transition. The loss of the protective action of ovarian oestrogens and the circulating androgens has been implicated in possibly inducing subclinical and overt changes in the cardiovascular system after the menopausal transition. In vitro studies performed in human or animal cell lines demonstrate an adverse effect of testosterone on endothelial cell function and nitric oxide bioavailability. Cohort studies evaluating associations between testosterone and/or dehydroepiandrosterone and subclinical vascular disease and clinical cardiovascular events show an increased risk for women with more pronounced androgenicity. However, a mediating effect of insulin resistance is possible. Data on cardiovascular implications following low-dose testosterone treatment in middle-aged women or high-dose testosterone supplementation for gender affirmatory purposes remain primarily inconsistent. It is prudent to consider the possible adverse association between testosterone and endothelial function during the decision-making process of the most appropriate treatment for a postmenopausal woman.
Collapse
Affiliation(s)
| | - Irene Lambrinoudaki
- Second Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Zhang S, Zhou J, Li L, Pan X, Lin J, Li C, Leung WT, Wang L. Effect of dehydroepiandrosterone on atherosclerosis in postmenopausal women. Biosci Trends 2021; 15:353-364. [PMID: 34759119 DOI: 10.5582/bst.2021.01320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In China, cardiovascular disease (CVD) has surpassed malignant tumours to become the disease with the highest mortality rate, and atherosclerosis (AS) is an important pathological cause of CVD. Dehydroepiandrosterone (DHEA) is the most abundant steroid hormone in circulating human blood and is a precursor of estrogen and androgen. DHEA is converted into a series of sex hormones in local peripheral tissues where its acts physiologically. DHEA also acts therapeutically, thereby avoiding the adverse systemic reactions to sex hormones. DHEA inhibits AS, thus inhibiting the development of CVD, and it improves the prognosis for CVD. The incidence of CVD in postmenopausal women is substantially higher than that in premenopausal women, and that incidence is believed to be related to a decrease in ovarian function. The current review analyzes the mechanisms of postmenopausal women's susceptibility to AS. They tend to have dyslipidemia, and their vascular smooth muscle cells (VSMCs) proliferate and migrate more. In addition, oxidative stress and the inflammatory response of endothelial cells (ECs) are more serious in postmenopausal women. This review also discusses how DHEA combats AS by countering these mechanisms, which include regulating the blood lipid status, protecting ECs (including coping with oxidative stress and inflammatory reactions of the vascular endothelium, inhibiting apoptosis of ECs, and inducing NO production) and inhibiting the proliferation and migration of VSMCs. As a result, DHEA has great value in preventing AS and inhibiting its progression in postmenopausal women.
Collapse
Affiliation(s)
- Siwei Zhang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lijuan Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Xinyao Pan
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Lin
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Chuyu Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wing Ting Leung
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
3
|
Naftolin F, Friedenthal J, Nachtigall R, Nachtigall L. Cardiovascular health and the menopausal woman: the role of estrogen and when to begin and end hormone treatment. F1000Res 2019; 8. [PMID: 31543950 PMCID: PMC6733383 DOI: 10.12688/f1000research.15548.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Reports have correlated the use of estrogen for the treatment of menopausal symptoms with beneficial effects on the cardiovascular system. Molecular, biochemical, preclinical, and clinical studies have furnished a wealth of evidence in support of this outcome of estrogen action. The prospective randomized Women's Health Initiative (WHI) and the Early Versus Late Intervention Trial (ELITE) showed that starting menopausal hormone treatment (MHT) within 5 to 10 years of menopause is fundamental to the success of estrogen's cardioprotection in post-menopausal women without adverse effects. Age stratification of the WHI data has shown that starting hormone treatment within the first decade after menopause is both safe and effective, and the long-term WHI follow-up studies are supportive of cardioprotection. This is especially true in estrogen-treated women who underwent surgical menopause. A critique of the WHI and other relevant studies is presented, supporting that the timely use of estrogens protects against age- and hormone-related cardiovascular complications. Salutary long-term hormone treatment for menopausal symptoms and prevention of complications has been widely reported, but there are no prospective trials defining the correct length to continue MHT. At present, women undergoing premature menopause receive estrogen treatment (ET) until evidence of hormone-related complications intervenes. Normal women started on MHT who receive treatment for decades without hormone-related complications have been reported, and the WHI follow-up studies are promising of long-term post-treatment cardioprotection. A prevention-based holistic approach is proposed for timely and continuing MHT/ET administration as part of the general management of the menopausal woman. But this should be undertaken only with scheduled, annual patient visits including evaluations of cardiovascular status. Because of the continued occurrence of reproductive cancers well into older ages, these visits should include genital and breast cancer screening.
Collapse
Affiliation(s)
- Frederick Naftolin
- Interdisciplinary Program in Menopausal Medicine, Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Jenna Friedenthal
- Interdisciplinary Program in Menopausal Medicine, Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Richard Nachtigall
- Interdisciplinary Program in Menopausal Medicine, Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| | - Lila Nachtigall
- Interdisciplinary Program in Menopausal Medicine, Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Bentley C, Hazeldine J, Greig C, Lord J, Foster M. Dehydroepiandrosterone: a potential therapeutic agent in the treatment and rehabilitation of the traumatically injured patient. BURNS & TRAUMA 2019; 7:26. [PMID: 31388512 PMCID: PMC6676517 DOI: 10.1186/s41038-019-0158-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
Severe injuries are the major cause of death in those aged under 40, mainly due to road traffic collisions. Endocrine, metabolic and immune pathways respond to limit the tissue damage sustained and initiate wound healing, repair and regeneration mechanisms. However, depending on age and sex, the response to injury and patient prognosis differ significantly. Glucocorticoids are catabolic and immunosuppressive and are produced as part of the stress response to injury leading to an intra-adrenal shift in steroid biosynthesis at the expense of the anabolic and immune enhancing steroid hormone dehydroepiandrosterone (DHEA) and its sulphated metabolite dehydroepiandrosterone sulphate (DHEAS). The balance of these steroids after injury appears to influence outcomes in injured humans, with high cortisol: DHEAS ratio associated with increased morbidity and mortality. Animal models of trauma, sepsis, wound healing, neuroprotection and burns have all shown a reduction in pro-inflammatory cytokines, improved survival and increased resistance to pathological challenges with DHEA supplementation. Human supplementation studies, which have focused on post-menopausal females, older adults, or adrenal insufficiency have shown that restoring the cortisol: DHEAS ratio improves wound healing, mood, bone remodelling and psychological well-being. Currently, there are no DHEA or DHEAS supplementation studies in trauma patients, but we review here the evidence for this potential therapeutic agent in the treatment and rehabilitation of the severely injured patient.
Collapse
Affiliation(s)
- Conor Bentley
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB UK
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK
| | - Jon Hazeldine
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB UK
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK
| | - Carolyn Greig
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- NIHR Biomedical Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Janet Lord
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB UK
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK
- NIHR Biomedical Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Mark Foster
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB UK
- Royal Centre for Defence Medicine, Birmingham Research Park, Birmingham, B15 2SQ UK
| |
Collapse
|
5
|
Strubl S, Schubert U, Kühnle A, Rebl A, Ahmadvand N, Fischer S, Preissner KT, Galuska SP. Polysialic acid is released by human umbilical vein endothelial cells (HUVEC) in vitro. Cell Biosci 2018; 8:64. [PMID: 30555678 PMCID: PMC6288938 DOI: 10.1186/s13578-018-0262-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
Background Sialic acids represent common terminal residues on numerous mammalian glycoconjugates, thereby influencing e.g. lumen formation in developing blood vessels. Interestingly, besides monosialylated also polysialylated glycoconjugates are produced by endothelial cells. Polysialic acid (polySia) is formed in several organs during embryonal and postnatal development influencing, for instance, cell migration processes. Furthermore, the function of cytokines like basic fibroblast growth factor (bFGF) is modulated by polySia. Results In this study, we demonstrated that human umbilical vein endothelial cells (HUVEC) also secrete polysialylated glycoconjugates. Furthermore, an interaction between polySia and vascular endothelial growth factor (VEGF) was observed. VEGF modulates like bFGF the migration of HUVEC. Since both growth factors interact with polySia, we examined, if polySia modulates the migration of HUVEC. To this end scratch assays were performed showing that the migration of HUVEC is stimulated, when polySia was degraded. Conclusions Since polySia can interact with bFGF as well as VEGF and the degradation of polySia resulted in an increased cell migration capacity in the applied scratch assay, we propose that polySia may trap these growth factors influencing their biological activity. Thus, polySia might also contribute to the fine regulation of physiological processes in endothelial cells.
Collapse
Affiliation(s)
- Sebastian Strubl
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany.,2Department II of Internal Medicine, Center for Molecular Medicine Cologne, University Cologne, Kerpener Str. 62, 50931 Cologne, Germany
| | - Uwe Schubert
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Andrea Kühnle
- 3Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexander Rebl
- 4Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Negah Ahmadvand
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany.,Excellence Cluster Cardio Pulmonary System (ECCPS), Aulweg 130, 35392 Giessen, Germany
| | - Silvia Fischer
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Klaus T Preissner
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Sebastian P Galuska
- 1Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392 Giessen, Germany.,3Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
6
|
|
7
|
Blakemore J, Naftolin F. Aromatase: Contributions to Physiology and Disease in Women and Men. Physiology (Bethesda) 2017; 31:258-69. [PMID: 27252161 DOI: 10.1152/physiol.00054.2015] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aromatase (estrogen synthetase; EC 1.14.14.1) catalyzes the demethylation of androgens' carbon 19, producing phenolic 18-carbon estrogens. Aromatase is most widely known for its roles in reproduction and reproductive system diseases, and as a target for inhibitor therapy in estrogen-sensitive diseases including cancer, endometriosis, and leiomyoma (141, 143). However, all tissues contain estrogen receptor-expressing cells, the majority of genes have a complete or partial estrogen response element that regulates their expression (61), and there are plentiful nonreceptor effects of estrogens (79); therefore, the effect of aromatase through the provision of estrogen is almost universal in terms of health and disease. This review will provide a brief but comprehensive overview of the enzyme, its role in steroidogenesis, the problems that arise with its functional mutations and mishaps, the roles in human physiology of aromatase and its product estrogens, its current clinical roles, and the effects of aromatase inhibitors. While much of the story is that of the consequences of the formation of its product estrogens, we also will address alternative enzymatic roles of aromatase as a demethylase or nonenzymatic actions of this versatile molecule. Although this short review is meant to be thorough, it is by no means exhaustive; rather, it is meant to reflect the cutting-edge, exciting properties and possibilities of this ancient enzyme and its products.
Collapse
|
8
|
Abstract
Atherosclerosis is the main cause of death in men and women. This so-called "hardening of the arteries" results from advanced atherogenesis, the accumulation and death of subendothelial fat-laden macrophages (vascular plaque). The macrophages are attracted as the result of signals from injured vessels recruiting and activating cells to quell the injury by inflammation. Among the recruited cells are circulating monocytes that may be captured by the formation of neural cell adhesion molecule (nCAM) tethers between the monocytes and vascular endothelium; the tethers are dependent on electrostatic binding between distal segments of apposed nCAM molecules. The capture of monocytes is followed by their entry into the subendothelial area as macrophages, many of which will remain and become the fat-laden foam cells in vascular plaque. Neural cell adhesion molecules are subject to sialylation that blocks their electrostatic binding. We showed that estradiol-induced nCAM sialylases are present in vascular endothelial cells and tested whether sex steroid pretreatment of human vascular endothelium could inhibit the capture of monocytes. Using in vitro techniques, pretreatment of human arterial endothelial cells with estradiol, testosterone, dehydroepiandrosterone and dihydrotestosterone all induced sialylation of endothelial cells and, in a dose-response manner, reduced the capture of monocytes. Steroid hormones are protective against atherogenesis and its sequellae. Sex steroid depletion is associated with atherosclerosis. Based on this knowledge plus our results using sex steroid pretreatment of endothelial cells, we propose that the blockade of the initial step in atherogenesis by sex steroid-induced nCAM sialylation may be crucial to hormonal prevention of atherosclerosis.
Collapse
Affiliation(s)
- Frederick Naftolin
- Department of Obstetrics and Gynecology, New York University, New York, NY, USA
| | - Holly Mehr
- Department of Obstetrics and Gynecology, New York University, New York, NY, USA
| | - Ahmed Fadiel
- Department of Obstetrics and Gynecology, New York University, New York, NY, USA
| |
Collapse
|
9
|
Mannic T, Viguie J, Rossier MF. In vivo and in vitro evidences of dehydroepiandrosterone protective role on the cardiovascular system. Int J Endocrinol Metab 2015; 13:e24660. [PMID: 25926854 PMCID: PMC4389253 DOI: 10.5812/ijem.24660] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/05/2014] [Accepted: 02/14/2015] [Indexed: 02/06/2023] Open
Abstract
CONTEXT Dehydroepiandrosterone (DHEA) and its sulfate ester, Dehydroepiandrosterone Sulfate (DHEA-S) have been considered as putative anti-aging hormones for many years. Indeed, while DHEAS is the most abundant circulating hormone, its concentration is markedly decreased upon aging and early epidemiologic trials have revealed a strong inverse correlation between the hormone concentrations and the occurrence of several dysfunctions frequently encountered in the elderly. Naturally, hormonal supplementation has been rapidly suggested to prevent DHEA (S) deficiency and therefore, age-related development of these pathologies, using the same strategy as estrogen replacement therapy proposed in postmenopausal women. EVIDENCE ACQUISITION All references were searched using PubMed and the following strategy: our initial selection included all articles in English and we sorted them with the following keywords: "DHEA or DHEA-S" and "heart or vascular or endothelium or cardiovascular disease". The search was limited to neither the publication date nor specific journals. The final selection was made according to the relevance of the article content with the aims of the review. According to these criteria, fewer than 10% of the articles retrieved at the first step were discarded. RESULTS In this short review, we have focused on the cardiovascular action of DHEA. We started by analyzing evidences in favor of a strong inverse association between DHEA (S) levels and the cardiovascular risk as demonstrated in multiple observational epidemiologic studies for several decades. Then we discussed the different trials aimed at supplementing DHEA (S), both in animals and human, for preventing cardiovascular diseases and we analyzed the possible reasons for the discrepancy observed among the results of some studies. Finally, we presented putative molecular mechanisms of action for DHEA (S), demonstrated in vitro in different models of vascular and cardiac cells, highlighting the complexity of the involved signaling pathways. CONCLUSIONS The identification of the beneficial cardiovascular effects of DHEA (S) and a better understanding of the involved mechanisms should be helpful to develop new strategies or pharmacologic approaches for many lethal diseases in Western countries.
Collapse
Affiliation(s)
- Tiphaine Mannic
- Department of Human Protein Science, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Genetics and laboratory Medicine, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
- Corresponding author: Tiphaine Mannic, Department of Genetics and laboratory Medicine, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland. Tel: +41-223795775, Fax: +41-223795502, E-mail:
| | - Joanna Viguie
- Department of Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michel Florian Rossier
- Department of Human Protein Science, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Service of Clinical Chemistry and Toxicology, Central Institute of the Hospital of Valais, Sion, Switzerland
| |
Collapse
|
10
|
Dehydroepiandrosterone protects endothelial cells against inflammatory events induced by urban particulate matter and titanium dioxide nanoparticles. BIOMED RESEARCH INTERNATIONAL 2013; 2013:382058. [PMID: 23484113 PMCID: PMC3581121 DOI: 10.1155/2013/382058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 01/01/2023]
Abstract
Particulate matter (PM) and nanoparticles (NPs) induce activation and dysfunction of endothelial cells characterized by inhibition of proliferation, increase of adhesion and adhesion molecules expression, increase of ROS production, and death. DHEA has shown anti-inflammatory and antioxidant properties in HUVEC activated with proinflammatory agents. We evaluated if DHEA could protect against some inflammatory events produced by PM10 and TiO2 NPs in HUVEC. Adhesion was evaluated by a coculture with U937 cells, proliferation by crystal violet staining, and oxidative stress through DCFDA and Griess reagent. PM10 and TiO2 NPs induced adhesion and oxidative stress and inhibited proliferation of HUVEC; however, when particles were added in combination with DHEA, the effects previously observed were abolished independently from the tested concentrations and the time of addition of DHEA to the cultures. These results indicate that DHEA exerts significant anti-inflammatory and antioxidative effects on the damage induced by particles in HUVEC, suggesting that DHEA could be useful to counteract the harmful effects and inflammatory diseases induced by PM and NPs.
Collapse
|