1
|
Zubrzycka A, Migdalska-Sęk M, Jędrzejczyk S, Brzeziańska-Lasota E. Assessment of BMP7, SMAD4, and CDH1 Expression Profile and Regulatory miRNA-542-3p in Eutopic and Ectopic Endometrium of Women with Endometriosis. Int J Mol Sci 2023; 24:ijms24076637. [PMID: 37047609 PMCID: PMC10095043 DOI: 10.3390/ijms24076637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Alterations in the expression of numerous genes and the miRNAs that are recognized as their regulators in the endometrial cells of women with endometriosis may disrupt the intracellular signaling pathways associated with epithelial–mesenchymal transition (EMT). So far, the functional role of BMP7 in endometrial physiology has been confirmed, especially in the context of fertility, but the role of the activation of a specific mechanism operating through the BMP–SMAD–CDH1 axis in the formation of endometrial lesions remains unexplored. The aim of this study was to evaluate the expression profile of miR-542-3p and the EMT markers (BMP7, SMAD4, CDH1) in matched eutopic endometrium (EUE) and ectopic endometrium (ECE) samples from women with endometriosis in relation to healthy women. The levels of expression of the studied genes and miRNA in peripheral blood mononuclear cells (PBMCs) obtained from women diagnosed with endometriosis and those without the disease were also evaluated. Fifty-four patients (n = 54: with endometriosis—n = 29 and without endometriosis—n = 25) were included in the study. A comparative analysis of the relative mean expression values (RQ) of the studied mRNA and miRNA assessed by RT-qPCR demonstrated downregulation of BMP7, SMAD4, and CDH1 expression in ectopic lesions and upregulation in the eutopic endometrium compared with the control group. In the eutopic tissue of women with endometriosis, miR-542-3p expression was similar to that of the control but significantly lower than in endometrial lesions. We also confirmed a trend towards a negative correlation between miR-542-3p and BMP7 in ectopic tissue, and in PBMC, a significant negative correlation of miR-542-3p with further BMP signaling genes, i.e., SMAD4 and CDH1, was observed. These results indicate that the miRNA selected by us may be a potential negative regulator of BMP7-SMAD4-CDH1 signaling associated with EMT. The different patterns of BMP7, SMAD4, and CDH1 gene expression in ECE, EUE, and the control endometrium observed by us suggests the loss of the endometrial epithelium phenotype in women with endometriosis and demonstrates their involvement in the pathogenesis and pathomechanism of this disease.
Collapse
Affiliation(s)
- Anna Zubrzycka
- Department of Biomedicine and Genetics, Medical University of Lodz, St. Pomorska 251, C-5, 92-213 Lodz, Poland
| | - Monika Migdalska-Sęk
- Department of Biomedicine and Genetics, Medical University of Lodz, St. Pomorska 251, C-5, 92-213 Lodz, Poland
| | - Sławomir Jędrzejczyk
- Institute of Medical Expertises, St. Aleksandrowska 67/93, 91-205 Lodz, Poland
- Operative and Conservative Gynecology Ward, Dr. K. Jonscher Municipal Medical Centre, St. Milionowa 14, 93-113 Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, St. Pomorska 251, C-5, 92-213 Lodz, Poland
| |
Collapse
|
2
|
Zubrzycka A, Migdalska-Sęk M, Jędrzejczyk S, Brzeziańska-Lasota E. The Expression of TGF-β1, SMAD3, ILK and miRNA-21 in the Ectopic and Eutopic Endometrium of Women with Endometriosis. Int J Mol Sci 2023; 24:ijms24032453. [PMID: 36768775 PMCID: PMC9917033 DOI: 10.3390/ijms24032453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023] Open
Abstract
The molecular pathogenesis of endometriosis has been associated with pathological alterations of protein expression via disturbances in homeostatic genes, miRNA expression profiles, and signaling pathways that play an essential role in the epithelial-mesenchymal transition (EMT) process. TGF-β1 has been hypothesized to play a key role in the development and progression of endometriosis, but the activation of a specific mechanism via the TGF-β-SMAD-ILK axis in the formation of endometriotic lesions is poorly understood. The aim of this study was to assess the expression of EMT markers (TGF-β1, SMAD3, ILK) and miR-21 in ectopic endometrium (ECE), in its eutopic (EUE) counterpart, and in the endometrium of healthy women. The expression level of the tested genes and miRNA was also evaluated in peripheral blood mononuclear cells (PBMC) in women with and without endometriosis. Fifty-four patients (n = 54; with endometriosis, n = 29, and without endometriosis, n = 25) were enrolled in the study. The expression levels (RQ) of the studied genes and miRNA were evaluated using qPCR. Endometriosis patients manifested higher TGF-β1, SMAD3, and ILK expression levels in the eutopic endometrium and a decreased expression level in the ectopic lesions in relation to control tissue. Compared to the endometrium of healthy participants, miR-21 expression levels did not change in the eutopic endometrium of women with endometriosis, but the RQ was higher in their endometrial implants. In PBMC, negative correlations were found between the expression level of miR-21 and the studied genes, with the strongest statistically significant correlation observed between miR-21 and TGF-β1. Our results suggest the loss of the endometrial epithelial phenotype defined by the differential expression of the TGF-β1, SMAD3 and ILK genes in the eutopic and ectopic endometrium. We concluded that the TGF-β1-SMAD3-ILK signaling pathway, probably via a mechanism related to the EMT, may be important in the pathogenesis of endometriosis. We also identified miR-21 as a possible inhibitor of this TGF-β1-SMAD3-ILK axis.
Collapse
Affiliation(s)
- Anna Zubrzycka
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland
- Operative and Conservative Gynecology Ward, Dr K. Jonscher Municipal Medical Centre, 93-113 Lodz, Poland
- Correspondence: (A.Z.); (M.M.-S.)
| | - Monika Migdalska-Sęk
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.Z.); (M.M.-S.)
| | - Sławomir Jędrzejczyk
- Operative and Conservative Gynecology Ward, Dr K. Jonscher Municipal Medical Centre, 93-113 Lodz, Poland
- Institute of Medical Expertises, 91-205 Lodz, Poland
| | | |
Collapse
|
3
|
Vannuccini S, Clemenza S, Rossi M, Petraglia F. Hormonal treatments for endometriosis: The endocrine background. Rev Endocr Metab Disord 2022; 23:333-355. [PMID: 34405378 PMCID: PMC9156507 DOI: 10.1007/s11154-021-09666-w] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Endometriosis is a benign uterine disorder characterized by menstrual pain and infertility, deeply affecting women's health. It is a chronic disease and requires a long term management. Hormonal drugs are currently the most used for the medical treatment and are based on the endocrine pathogenetic aspects. Estrogen-dependency and progesterone-resistance are the key events which cause the ectopic implantation of endometrial cells, decreasing apoptosis and increasing oxidative stress, inflammation and neuroangiogenesis. Endometriotic cells express AMH, TGF-related growth factors (inhibin, activin, follistatin) CRH and stress related peptides. Endocrine and inflammatory changes explain pain and infertility, and the systemic comorbidities described in these patients, such as autoimmune (thyroiditis, arthritis, allergies), inflammatory (gastrointestinal/urinary diseases) and mental health disorders.The hormonal treatment of endometriosis aims to block of menstruation through an inhibition of hypothalamus-pituitary-ovary axis or by causing a pseudodecidualization with consequent amenorrhea, impairing the progression of endometriotic implants. GnRH agonists and antagonists are effective on endometriosis by acting on pituitary-ovarian function. Progestins are mostly used for long term treatments (dienogest, NETA, MPA) and act on multiple sites of action. Combined oral contraceptives are also used for reducing endometriosis symptoms by inhibiting ovarian function. Clinical trials are currently going on selective progesterone receptor modulators, selective estrogen receptor modulators and aromatase inhibitors. Nowadays, all these hormonal drugs are considered the first-line treatment for women with endometriosis to improve their symptoms, to postpone surgery or to prevent post-surgical disease recurrence. This review aims to provide a comprehensive state-of-the-art on the current and future hormonal treatments for endometriosis, exploring the endocrine background of the disease.
Collapse
Affiliation(s)
- Silvia Vannuccini
- Obstetrics and Gynecology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Sara Clemenza
- Obstetrics and Gynecology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Margherita Rossi
- Obstetrics and Gynecology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Felice Petraglia
- Obstetrics and Gynecology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
4
|
Bremm JM, Boquett JA, Silva Michels M, Kowalski TW, Gomes FG, Vianna FSL, Vieira Sanseverino MT, Fraga LR. Investigating the role of EGF-CFC gene family in recurrent pregnancy loss through bioinformatics and molecular approaches. Syst Biol Reprod Med 2021; 67:450-462. [PMID: 34498535 DOI: 10.1080/19396368.2021.1965673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recurrent pregnancy loss (RPL) is the most common reproductive failure, reaching 1-5% of women throughout their lives, and having unknown etiology in 50% of the cases. In humans, EGF-CFC1 (Epidermal Growth Factors & Cripto/FRL-1/Cryptic) gene family is composed by TDGF1 and CFC1, two developmental genes. The aim of this study was to investigate the role of EGF-CFC on RPL. To this, multiple approaches were performed; we conducted an expression analysis of TDGF1 and CFC1 using publicly available data from Gene Omnibus Expression (GEO), systems biology analyses and functional prediction; and a molecular analysis carried out in a case-control study. Our GEO analysis showed a decrease in TDGF1 expression in the endometrium (p=0.049) and CFC1 expression in placenta (p=0.015) of women with RPL. Network analysis, gene ontology and literature pointed to a strong connection between EGF-CFC1 gene family to pathways that play key roles during pregnancy, including TGF-β, c-Src/MAPK/AKT, Notch, TNFα, IFNγ and IL-6. A pathogenicity score developed for this gene family showed that the c.-14+1429T>C (rs3806702) variant in the TDGF1 and the p.Arg47Gln (rs201431919) variant in CFC1 gene would be the ones with the highest deleterious effect for RPL. In the case-control study, which involved 149 women with RPL and 159 controls, no statistical difference was observed in the allele and genotype distributions of the variants studied in the two groups. In this study, we performed extensive bioinformatics analysis for biomarker prioritization followed by experimental validation of proposed selected markers. Although there is no statistical difference in the frequencies of these variants between RPL and controls, the expression analysis results suggest that TDGF1 and CFC1 genes might play a role in RPL. In addition, systems biology analyzes raise the hypothesis that genes in other signaling pathways that may be related to RPL as good candidates for future studies.Abbreviations RPL: recurrent pregnancy loss; EGF-CFC1: Epidermal Growth Factors - Cripto/FRL-1; GEO: Gene Omnibus Expression; KEGG: Kyoto Encyclopedia of Genes and Genomes.
Collapse
Affiliation(s)
- João Matheus Bremm
- Post-graduate Program in Genetics and Molecular Biology, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliano André Boquett
- Post-graduate Program in Genetics and Molecular Biology, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Post-graduate Program in Child and Adolescent Health, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcus Silva Michels
- Post-graduate Program in Genetics and Molecular Biology, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thayne Woycinck Kowalski
- Post-graduate Program in Genetics and Molecular Biology, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Flávia Gobetti Gomes
- Post-graduate Program in Genetics and Molecular Biology, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Post-graduate Program in Genetics and Molecular Biology, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Post-Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maria Teresa Vieira Sanseverino
- Post-graduate Program in Genetics and Molecular Biology, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Post-Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Morphological Science, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Oliveira FR, Casalechi M, Carneiro MM, de Ávila I, Dela Cruz C, Del Puerto HL, Camargos AF, Abrão MS, Reis FM. Immunolocalization of stem/progenitor cell biomarkers Oct-4, C-kit and Musashi-1 in endometriotic lesions. Mol Biol Rep 2021; 48:6863-6870. [PMID: 34468911 DOI: 10.1007/s11033-021-06685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Human endometrium harbors stem/progenitor cells (SPCs) that may contribute to the establishment of endometriosis when seeded outside the uterus. Oct-4, C-kit and Musashi-1 are some of the many proteins used to characterize SPCs, but their association with endometriosis is uncertain. OBJECTIVE AND DESIGN In this study, specimens of normal endometrium (n = 12), eutopic endometrium from women with endometriosis (n = 9), superficial peritoneal endometriosis (SUP, n = 12) and deep endometriosis (DE, n = 13) lesions were evaluated for localization and intensity of immunostaining for Oct-4, C-kit and Musashi-1. RESULTS The three markers were abundantly expressed in normal endometrium, eutopic endometrium from endometriosis patients, SUP and DE specimens. Oct-4 and C-kit expression did not vary across groups as regards intensity or frequency. C-kit staining signal was seldom detected in vascular endothelium of normal or eutopic endometrium from endometriosis patients; however, it was positive in 67% of the SUP lesions and in 25% of the DE lesions (p = 0.042). Musashi-1 was expressed in some endometriotic glands as cell clusters, but its signal was similar between the four types of tissue (p = 0.971) CONCLUSION: The wide distribution of Oct-4, C-kit and Musashi-1 in endometria of patients with and without endometriosis and in SUP and DE endometriotic lesions suggests that these markers are not suitable for the in situ characterization of endometrial SPCs and should not be taken as surrogates for the study of SPCs in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Flavia R Oliveira
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maíra Casalechi
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Márcia M Carneiro
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ivete de Ávila
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cynthia Dela Cruz
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helen L Del Puerto
- Department of Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aroldo F Camargos
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maurício S Abrão
- Gynecologic Division, BP - A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
- Obstetrics and Gynecology Department, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando M Reis
- Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Hospital das Clínicas, UFMG, Av. Alfredo Balena, 110, 9˚ andar, Belo Horizonte, MG, 30130-100, Brazil.
| |
Collapse
|
6
|
Matheus Bremm J, Michels M, Duarte Rengel B, Gomes FG, Fraga LR, Sanseverino MTV. Genetic and in silico analysis show a role of SMAD3 on recurrent pregnancy loss. HUM FERTIL 2021; 25:754-763. [PMID: 34030553 DOI: 10.1080/14647273.2021.1922764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recurrent pregnancy loss (RPL) is one of the most common reproductive failures affecting 1-5% of couples. Smad3 is an effector of signalling of the Transforming Growth Factors-β superfamily (TGF-β), regulating the transcription of several target genes of these cytokines. The objective of this study was to evaluate the influence of a variant on SMAD3 (rs17293443) in RPL. A case-control study was carried out with 149 women who experienced RPL and 159 controls, as well as bioinformatics tools to determine the role of this variant in this condition. Our study showed an allelic (p = 0.023) and genotypic (p < 0.01) association of this variant with the RPL. Our functional in silico predictions suggest that this variant causes a change in SMAD3 expression levels. Alterations in the expression of this gene can directly compromise the Smad3-dependent signalling pathway that is fundamental for key processes for gestation such as steroid hormone regulation and implantation, as demonstrated by ontologies analyses performed and the literature. Our findings regarding the involvement of Smad3 on RPL are a novelty in this field, and they seem to be promising to the clinical management of this condition.
Collapse
Affiliation(s)
- João Matheus Bremm
- Departament of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcus Michels
- Departament of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Duarte Rengel
- Departament of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Flavia Gobetti Gomes
- Departament of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Departament of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Teresa Vieira Sanseverino
- Departament of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,School of Medicine, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
7
|
Maternal Cripto is critical for proper development of the mouse placenta and the placental vasculature. Placenta 2021; 107:13-23. [PMID: 33730615 DOI: 10.1016/j.placenta.2021.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The growth and survival of the mammalian fetus is highly dependent on the placenta. Several research groups have demonstrated the involvement of different transforming growth factor-beta (TGFβ) superfamily members and their related receptors in placentation. Cripto is a member of the epidermal growth factor-Cripto1/FRL1/Cryptic protein family and plays a critical role in embryonic development, stem cell maintenance and tumor progression through TGFβ-dependent and independent pathways. Several studies have suggested that Cripto may also have a role in female reproduction and pregnancy maintenance, but its specific role remains elusive. METHODS We used a conditional knockout mouse model in which Cripto is deleted from the uterus using a loxP-Cre system. Cripto cKO females were mated with wildtype males and dissections were performed at different timepoints during pregnancy for assessment of the number and size of the implantation sites, resorption sites, fetal weight and placental development. Histology, IF staining and quantitative PCR were employed to analyze the placentation process. RESULTS We found that loss of maternal Cripto results in defective placentation, decreased vascularization within the placental labyrinth and leads to intrauterine growth restriction and fetal death. We further demonstrated that components of the VEGF and Notch signaling pathways are downregulated in Cripto cKO decidua and placenta potentially contributing to defects in the development of the vasculature at maternal-fetal interface. DISCUSSION These findings demonstrate that maternal Cripto is involved in the maternal-fetal communications required for proper development of the placenta and placental vasculature.
Collapse
|
8
|
Shafiei S, Farah O, Dufort D. Maternal Cripto is required for proper uterine decidualization and peri-implantation uterine remodeling. Biol Reprod 2021; 104:1045-1057. [PMID: 33590845 DOI: 10.1093/biolre/ioab020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/19/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cripto encodes for a cell surface receptor whose role in embryonic development and stem cell maintenance has been studied. Cripto mRNA and protein have been detected in the human uterus at all stages of the menstrual cycle. To date, there is not much known about Cripto's role in female reproduction. As Cripto null Knockout (KO) is embryonic lethal, we created a conditional KO (cKO) mouse model in which Cripto is deleted only in the reproductive tissues using a Cre-loxP system. Pregnancy rate and number of pups per litter were evaluated as general fertility indices. We observed a significant decrease in pregnancy rate and litter size with loss of uterine Cripto indicating that Cripto cKO females are subfertile. We showed that although the preimplantation period is normal in Cripto cKO females, 20% of cKO females fail to establish pregnancy and an additional 20% of females undergo full litter loss after implantation between day 5.5 postcoitum (d5.5pc) and d8.5pc. We showed that subfertility caused by loss of uterine Cripto is due to defects in uterine decidualization, remodeling, and luminal closure and is accompanied by significant downregulation of Bmp2, Wnt4 and several components of Notch signaling pathway which all are known to be important factors in uterine remodeling and decidualization. Our study demonstrates that Cripto is expressed in the uterus during critical stages of early pregnancy and its deletion results in subfertility due to implantation failure, impaired peri-implantation uterine remodeling and impaired uterine decidualization.
Collapse
Affiliation(s)
- Shiva Shafiei
- Division of Experimental Medicine, McGill University, Montreal, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Omar Farah
- Division of Experimental Medicine, McGill University, Montreal, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Daniel Dufort
- Division of Experimental Medicine, McGill University, Montreal, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada.,Department of Obstetrics and Gynecology, McGill University , Montreal, Canada.,Department of Biology, McGill University, Montreal, Canada
| |
Collapse
|
9
|
Bernacchioni C, Capezzuoli T, Vannuzzi V, Malentacchi F, Castiglione F, Cencetti F, Ceccaroni M, Donati C, Bruni P, Petraglia F. Sphingosine 1-phosphate receptors are dysregulated in endometriosis: possible implication in transforming growth factor β-induced fibrosis. Fertil Steril 2020; 115:501-511. [PMID: 32907751 DOI: 10.1016/j.fertnstert.2020.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To study the molecular mechanisms involved in the appearance of the fibrotic trait in endometriosis by investigating whether the signaling pathway of the bioactive sphingolipid sphingosine 1-phosphate (S1P) was altered in endometriotic lesions. DESIGN Case-control laboratory study. SETTING University research institute and university hospital. PATIENT(S) A total of 75 women, with and without endometriosis, were included in the study. INTERVENTIONS(S) Endometrial samples were obtained from women affected (n = 15 endometrioma [OMA]; n = 30 deep infiltrating endometriosis [DIE]) and not (n = 30) by endometriosis by means of laparoscopic surgery, followed by clinical and imaging investigation and checking for the expression of fibrosis markers and genes implicated in S1P metabolism and signaling by means of real-time polymerase chain reaction. MAIN OUTCOME MEASURE(S) The role of the S1P signaling axis in endometriosis-associated fibrosis was studied in vitro, where RNA interference approaches were used to investigate if S1P synthesis by sphingosine kinases (SKs) and specific S1P receptors (S1PRs) are implicated in the profibrotic effect of the cytokine transforming growth factor (TGF) β1. RESULT(S) mRNA expression analysis of S1PR demonstrated a deep dysregulation of S1P signaling in endometriosis, characterized by increased expression of fibrosis markers: S1P1 was transcriptionally more expressed in OMA, and S1P3 and S1P5 mRNA levels were significantly augmented in both OMA and DIE. SK1 and its activating protein calcium- and integrin-binding protein 1 (CIB1) were significantly up-regulated in OMA and DIE. A crucial role for the SK/S1PR axis in the profibrotic effect elicited by TGFβ1 was highlighted in vitro. CONCLUSION(S) The S1P signaling axis may represent a useful biomarker or innovative pharmacologic target for endometriosis.
Collapse
Affiliation(s)
- Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Tommaso Capezzuoli
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Valentina Vannuzzi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Francesca Malentacchi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Francesca Castiglione
- Histopathology and Molecular Diagnostics, Careggi University Hospital, Florence, Italy
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Marcello Ceccaroni
- Department of Obstetrics and Gynaecology, Gynaecologic Oncology, and Minimally Invasive Pelvic Surgery, International School of Surgical Anatomy, Sacred Heart Hospital, Negrar, Verona, Italy
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy.
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences "M. Serio," University of Florence, Florence, Italy
| |
Collapse
|
10
|
Rodrigues Sousa E, Zoni E, Karkampouna S, La Manna F, Gray PC, De Menna M, Kruithof-de Julio M. A Multidisciplinary Review of the Roles of Cripto in the Scientific Literature Through a Bibliometric Analysis of its Biological Roles. Cancers (Basel) 2020; 12:cancers12061480. [PMID: 32517087 PMCID: PMC7352664 DOI: 10.3390/cancers12061480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Cripto is a small glycosylphosphatidylinisitol (GPI)-anchored and secreted oncofetal protein that plays important roles in regulating normal physiological processes, including stem cell differentiation, embryonal development, and tissue growth and remodeling, as well as pathological processes such as tumor initiation and progression. Cripto functions as a co-receptor for TGF-β ligands such as Nodal, GDF1, and GDF3. Soluble and secreted forms of Cripto also exhibit growth factor-like activity and activate SRC/MAPK/PI3K/AKT pathways. Glucose-Regulated Protein 78 kDa (GRP78) binds Cripto at the cell surface and has been shown to be required for Cripto signaling via both TGF-β and SRC/MAPK/PI3K/AKT pathways. To provide a comprehensive overview of the scientific literature related to Cripto, we performed, for the first time, a bibliometric analysis of the biological roles of Cripto as reported in the scientific literature covering the last 10 years. We present different fields of knowledge in comprehensive areas of research on Cripto, ranging from basic to translational research, using a keyword-driven approach. Our ultimate aim is to aid the scientific community in conducting targeted research by identifying areas where research has been conducted so far and, perhaps more importantly, where critical knowledge is still missing.
Collapse
Affiliation(s)
- Elisa Rodrigues Sousa
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Eugenio Zoni
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Sofia Karkampouna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Federico La Manna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Marta De Menna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Marianna Kruithof-de Julio
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
11
|
An M, Li D, Yuan M, Li Q, Zhang L, Wang G. Different macrophages equally induce EMT in endometria of adenomyosis and normal. Reproduction 2017; 154:79-92. [DOI: 10.1530/rep-17-0174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/07/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022]
Abstract
Endometrial cells and microenvironment are two important factors in the pathogenesis of adenomyosis. Our previous study demonstrated that macrophages can induce eutopic epithelial cells of adenomyosis to suffer from epithelial–mesenchymal transition (EMT). The aim of this study is to detect whether macrophages interacting with epithelial cells equally induce the EMT process in normal and eutopic endometria of healthy and adenomyotic patients; and whether macrophages parallelly polarize to M2. We investigated the expression levels of epithelial cadherin (E-cadherin), neural cadherin (N-cadherin), cytokeratin7 (CK7), vimentin, transforming growth factor-β1 (TGFB1), SMAD3 and pSMAD3 using immunohistochemistry and western blot, and then estimated the genetic levels of CD163, IL10 and MMP12 using real-time quantitative polymerase chain reaction (RT-PCR) in macrophages. Eutopic and normal endometrial tissues were obtained from 20 patients with adenomyosis and 11 control patients without adenomyosis, respectively. The immunohistochemical analysis shows distinct EMT in eutopic endometria in secretory phase; the expression levels of TGFB1, SMAD3 and pSMAD3 that indicate signal pathway of EMT were also higher in secretory phase. Macrophages can induce EMT process in primary endometrial epithelial cells derived from normal and eutopic endometria. After co-culturing, THP-1-derived macrophages polarized to M2. Compared with the eutopic endometrium group, further polarization to M2 was observed in the normal endometrium group. These results indicate that adenomyosis may be promoted by the pathologic EMT of epithelial cells, which is induced by macrophages that incapably polarize to M2.
Collapse
|
12
|
Carrarelli P, Luddi A, Funghi L, Arcuri F, Batteux F, Dela Cruz C, Tosti C, Reis FM, Chapron C, Petraglia F. Urocortin and corticotrophin-releasing hormone receptor type 2 mRNA are highly expressed in deep infiltrating endometriotic lesions. Reprod Biomed Online 2016; 33:476-483. [PMID: 27567427 DOI: 10.1016/j.rbmo.2016.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
Abstract
Ovarian endometrioma (OMA) and deep infiltrating endometriosis (DIE) are the most severe forms of endometriosis, but different pathogenetic mechanisms and clinical symptoms distinguish these two forms. Corticotrophin-releasing hormone (CRH) and urocortin (Ucn) are endometrial neuropeptides involved in tissue differentiation and inflammation. The expression of CRH, Ucn, Ucn2, CRH-receptors (type-1 and type-2) and inflammatory enzymes phospholipase-A2 group IIA (PLA2G2A) and cycloxygenase-2 (COX2) were evaluated in OMA (n = 22) and DIE (n = 26). The effect of CRH or Ucn on COX2 mRNA expression was evaluated in cultured human endometrial stromal cells. In DIE lesions, CRH, Ucn and CRH-R2 mRNA levels were significantly higher than in OMA (P < 0.01, P < 0.001 and P < 0.05, respectively); DIE lesions showed a higher expression of COX2 (P < 0.01) and PLA2G2A (P < 0.05) mRNA than OMA, which was positively correlated with CRH-R2 mRNA expression (P < 0.05). Intense immunostaining for CRH and Ucn was shown in DIE. Treatment of cultured endometrial stromal cells with Ucn significantly increased COX2 mRNA expression (P < 0.01); this effect was reversed by the CRH-R2 antagonist astressin-2B. In DIE, DIE lesions highly express neuropeptide and enzyme mRNAs, supporting a strong activation of inflammatory pathways.
Collapse
Affiliation(s)
- Patrizia Carrarelli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Lucia Funghi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Felice Arcuri
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Frederic Batteux
- Department of Immunology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), 75014 Paris, France; Sorbonne Paris Cité, Inserm, Unité de Recherche U1016, Institut Cochin, CNRS (UMR 8104), Université Paris Descartes, Paris, France
| | - Cynthia Dela Cruz
- Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Claudia Tosti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Fernando M Reis
- Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Charles Chapron
- Sorbonne Paris Cité, Inserm, Unité de Recherche U1016, Institut Cochin, CNRS (UMR 8104), Université Paris Descartes, Paris, France; Sorbone Paris Cité, Faculté de Médecine, Assistance Publique - Hôpitaux de Paris (AP-HP), Groupe Hospitalier Universitaire (GHU) Ouest, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine (Profesor Chapron), Université Paris Descartes, Paris France
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy.
| |
Collapse
|
13
|
Li P, Sun D, Li X, He Y, Li W, Zhao J, Wang Y, Wang H, Xin Y. Elevated expression of Nodal and YAP1 is associated with poor prognosis of gastric adenocarcinoma. J Cancer Res Clin Oncol 2016; 142:1765-73. [PMID: 27325246 PMCID: PMC4954832 DOI: 10.1007/s00432-016-2188-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE To investigate the correlation between Nodal and YAP1 expression and the clinicopathological characteristics of gastric adenocarcinoma (GAC). METHODS Quantitative real-time RT-PCR, Western blot, and immunohistochemistry were performed to measure Nodal and YAP1 mRNA and protein in 20 fresh frozen samples and 220 paraffin-embedded GAC tissues with their paired non-tumor mucosa (PNTM). The prognostic values of Nodal and YAP1 were evaluated in 161 GAC patients using univariate and multivariate analyses. RESULTS Both mRNA and protein expression of Nodal and YAP1 were significantly increased in GAC compared to PNTM (P < 0.05). Immunohistochemistry showed that Nodal was more highly expressed in 56.4 % GAC samples compared to PNTM; additionally, Nodal expression correlated with depth of tumor invasion, lymph node metastasis, and distant metastasis (all P < 0.05). There was no association between Nodal and YAP1 in GAC (P = 0.171). Kaplan-Meier analysis showed that the outcome of Nodal-high patients was significantly worse than those with low Nodal expression (χ (2) = 30.452, P < 0.001). Cox multivariate regression showed that high Nodal expression was an independent risk factor affecting the prognosis of GAC patients (P = 0.000, RR = 2.976). Furthermore, patients with tumors in which both Nodal and YAP1 were expressed at high levels had the worst prognosis. CONCLUSIONS Elevated Nodal expression is a marker of poor prognosis in gastric cancer. Patient outcome is further worsened if Nodal and YAP1 are both expressed in the same tumor. The datas we present here suggest that the inhibition of Nodal signaling may represent a new therapeutic strategy for the treatment of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Dan Sun
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xiaoting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yingjian He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Wenhui Li
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Jing Zhao
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Ying Wang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Huan Wang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Yan Xin
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
14
|
Naqvi H, Mamillapalli R, Krikun G, Taylor HS. Endometriosis Located Proximal to or Remote From the Uterus Differentially Affects Uterine Gene Expression. Reprod Sci 2015; 23:186-91. [PMID: 26516123 DOI: 10.1177/1933719115613449] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanisms that lead to the altered uterine gene expression in women with endometriosis are poorly understood. Are these changes in gene expression mediated by proximity to endometriotic lesions or is endometriosis a systemic disease where the effect is independent of proximity to the uterus? To answer this question, we created endometriosis in a murine model either in the peritoneal cavity (proximal) or at a subcutaneous remote site (distal). The expression of several genes that are involved in endometrial receptivity (homeobox A10 [Hoxa10], homeobox A11 [Hoxa11], insulin-like growth factor binding protein 1 [Igfbp1], Kruppel-like factor 9 [Klf9], and progesterone receptor [Pgr]) was measured in the eutopic endometrium of mice transplanted with either proximal or distal endometriosis lesions. Decreased expression of Hoxa10, Igfbp1, Klf9, and total Pgr genes was observed in the eutopic endometrium of mice with peritoneal endometriosis. In the mice with distal lesions, overall expression of these genes was not as severely affected, however, Igfbp1 expression was similarly decreased and the effect on Pgr was more pronounced. Endometriosis does have a systemic effect that varies with distance to the end organ. However, even remote disease selectively and profoundly alters the expression of genes such as Pgr. This is the first controlled experiment demonstrating that endometriosis is not simply a local peritoneal disease. Selective alteration of genes critical for endometrial receptivity and endometriosis propagation may be systemic. Similarly, systemic effects of endometriosis on other organs may also be responsible for the widespread manifestations of the disease.
Collapse
Affiliation(s)
- Hanyia Naqvi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Graciela Krikun
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Maduro MR. In the Spotlight. Reprod Sci 2015. [DOI: 10.1177/1933719115578655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|