1
|
Zazhytska M, Kodra A, Hoagland DA, Frere J, Fullard JF, Shayya H, McArthur NG, Moeller R, Uhl S, Omer AD, Gottesman ME, Firestein S, Gong Q, Canoll PD, Goldman JE, Roussos P, tenOever BR, Jonathan B Overdevest, Lomvardas S. Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell 2022; 185:1052-1064.e12. [PMID: 35180380 PMCID: PMC8808699 DOI: 10.1016/j.cell.2022.01.024] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/06/2021] [Accepted: 01/26/2022] [Indexed: 12/22/2022]
Abstract
SARS-CoV-2 infects less than 1% of cells in the human body, yet it can cause severe damage in a variety of organs. Thus, deciphering the non-cell-autonomous effects of SARS-CoV-2 infection is imperative for understanding the cellular and molecular disruption it elicits. Neurological and cognitive defects are among the least understood symptoms of COVID-19 patients, with olfactory dysfunction being their most common sensory deficit. Here, we show that both in humans and hamsters, SARS-CoV-2 infection causes widespread downregulation of olfactory receptors (ORs) and of their signaling components. This non-cell-autonomous effect is preceded by a dramatic reorganization of the neuronal nuclear architecture, which results in dissipation of genomic compartments harboring OR genes. Our data provide a potential mechanism by which SARS-CoV-2 infection alters the cellular morphology and the transcriptome of cells it cannot infect, offering insight to its systemic effects in olfaction and beyond.
Collapse
Affiliation(s)
- Marianna Zazhytska
- Mortimer B. Zuckerman Mind, and Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Albana Kodra
- Mortimer B. Zuckerman Mind, and Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Genetics and Development, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Daisy A Hoagland
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Justin Frere
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Hani Shayya
- Mortimer B. Zuckerman Mind, and Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Genetics and Development, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Natalie G McArthur
- Department of Biological Sciences, Columbia University New York, NY 10027, USA
| | - Rasmus Moeller
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Skyler Uhl
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Arina D Omer
- Baylor Genetics, 2450 Holcombe Blvd, Houston, TX 77021, USA
| | - Max E Gottesman
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Stuart Firestein
- Department of Biological Sciences, Columbia University New York, NY 10027, USA
| | - Qizhi Gong
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Peter D Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| | - Jonathan B Overdevest
- Department of Otolaryngology, Head and Neck Surgery, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Stavros Lomvardas
- Mortimer B. Zuckerman Mind, and Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
2
|
Lakshmanan HG, Miller E, White-Canale A, McCluskey LP. Immune responses in the injured olfactory and gustatory systems: a role in olfactory receptor neuron and taste bud regeneration? Chem Senses 2022; 47:bjac024. [PMID: 36152297 PMCID: PMC9508897 DOI: 10.1093/chemse/bjac024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sensory cells that specialize in transducing olfactory and gustatory stimuli are renewed throughout life and can regenerate after injury unlike their counterparts in the mammalian retina and auditory epithelium. This uncommon capacity for regeneration offers an opportunity to understand mechanisms that promote the recovery of sensory function after taste and smell loss. Immune responses appear to influence degeneration and later regeneration of olfactory sensory neurons and taste receptor cells. Here we review surgical, chemical, and inflammatory injury models and evidence that immune responses promote or deter chemosensory cell regeneration. Macrophage and neutrophil responses to chemosensory receptor injury have been the most widely studied without consensus on their net effects on regeneration. We discuss possible technical and biological reasons for the discrepancy, such as the difference between peripheral and central structures, and suggest directions for progress in understanding immune regulation of chemosensory regeneration. Our mechanistic understanding of immune-chemosensory cell interactions must be expanded before therapies can be developed for recovering the sensation of taste and smell after head injury from traumatic nerve damage and infection. Chemosensory loss leads to decreased quality of life, depression, nutritional challenges, and exposure to environmental dangers highlighting the need for further studies in this area.
Collapse
Affiliation(s)
- Hari G Lakshmanan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Elayna Miller
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - AnnElizabeth White-Canale
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lynnette P McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
3
|
Khan AS, Hichami A, Khan NA. Obesity and COVID-19: Oro-Naso-Sensory Perception. J Clin Med 2020; 9:E2158. [PMID: 32650509 PMCID: PMC7408951 DOI: 10.3390/jcm9072158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Through a recent upsurge of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, the clinical assessment of most of the coronavirus disease 19 (COVID-19) patients clearly presents a health condition with the loss of oro-naso-sensory (ONS) perception, responsible for the detection of flavor and savor. These changes include anosmia and dysgeusia. In some cases, these clinical manifestations appear even before the general flu-like symptoms, e.g., sore throat, thoracic oppression and fever. There is no direct report available on the loss of these chemical senses in obese COVID-19 patients. Interestingly, obesity has been shown to be associated with low ONS cues. These alterations in obese subjects are due to obesity-induced altered expression of olfacto-taste receptors. Besides, obesity may further aggravate the SARS-CoV-2 infection, as this pathology is associated with a high degree of inflammation/immunosuppression and reduced protection against viral infections. Hence, obesity represents a great risk factor for SARS-CoV-2 infection, as it may hide the viral-associated altered ONS symptoms, thus leading to a high mortality rate in these subjects.
Collapse
|
4
|
Na M, Liu MT, Nguyen MQ, Ryan K. Single-Neuron Comparison of the Olfactory Receptor Response to Deuterated and Nondeuterated Odorants. ACS Chem Neurosci 2019; 10:552-562. [PMID: 30343564 DOI: 10.1021/acschemneuro.8b00416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mammalian olfactory receptors (ORs) constitute a large subfamily of the Class A G-protein coupled receptors (GPCRs). The molecular details of how these receptors convert odorant chemical information into neural signal are unknown, but are predicted by analogy to other GPCRs to involve stabilization of the activated form of the OR by the odorant. An alternative hypothesis maintains that the vibrational modes of an odorant's bonds constitute the main determinant for OR activation, and that odorants containing deuterium in place of hydrogen should activate different sets of OR family members. Experiments using heterologously expressed ORs have failed to show different responses for deuterated odorants, but experiments in the sensory neuron environment have been lacking. We tested the response to deuterated and nondeuterated versions of p-cymene, 1-octanol, 1-undecanol, and octanal in dissociated mouse olfactory receptor neurons (ORNs) by calcium imaging. In all, we tested 23 812 cells, including a subset expressing recombinant mouse olfactory receptor 2 ( Olfr2/OR-I7 ), and found that nearly all of the 1610 odorant-responding neurons were unable to distinguish the D- and H-odorants. These results support the conclusion that if mammals can perceive deuterated odorants differently, the difference arises from the receptor-independent steps of olfaction. Nevertheless, 0.81% of the responding ORNs responded differently to D- and H-odorants, and those in the octanal experiments responded selectively to H-octanal at concentrations from 3 to 100 μM. The few ORs responding differently to H and D may be hypersensitive to one of the several H/D physicochemical differences, such as the difference in H/D hydrophobicity.
Collapse
Affiliation(s)
- Mihwa Na
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Min Ting Liu
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Minh Q. Nguyen
- Taste and Smell Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kevin Ryan
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
5
|
Abstract
Odor discrimination requires differential expression of odor detectors. In fact, olfactory input to the brain is organized in units (glomeruli) innervated only by olfactory sensory neurons that express the same odorant receptor (OR). Therefore, discriminatory capacity is maximized if each sensory neuron expresses only one allele of a single OR gene, a postulate sometimes canonized as the "one neuron-one receptor rule." OR gene choice appears to result from a hierarchy of processes: differential availability of the alleles of each OR gene, zonal exclusion (or selection), OR gene switching during the initiation of OR gene transcription, and OR-dependent feedback to solidify the choice of one OR gene. The mechanisms underlying these processes are poorly understood, though a few elements are known or suspected. For example, the mechanism of activation of OR gene transcription appears to work in part through a few homeobox transcription factors (Emx2, and perhaps Lhx2) and the Ebf family of transcription factors. Further insights will probably come from several directions, but a promising hypothesis is that epigenetic mechanisms contribute to all levels of the hierarchical control of OR gene expression, especially the repressive events that seem to be necessary to achieve the singularity of OR gene choice.
Collapse
Affiliation(s)
- Timothy S McClintock
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA.
| |
Collapse
|
7
|
Reisert J, Restrepo D. Molecular tuning of odorant receptors and its implication for odor signal processing. Chem Senses 2009; 34:535-45. [PMID: 19525317 DOI: 10.1093/chemse/bjp028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The discovery of the odorant receptor (OR) family by Buck and Axel in 1991 provided a quantum jump in our understanding of olfactory function. However, the study of the responsiveness of ORs to odor ligands was challenging due to the difficulties in deorphanizing the receptors. In this manuscript, we review recent findings of OR responsiveness that have come about through improved OR deorphanization methods, site-directed mutagenesis, structural modeling studies, and studies of OR responses in situ in olfactory sensory neurons. Although there has been a major leap in our understanding of receptor-ligand interactions and how these contribute to the input to the olfactory system, an improvement of our understanding of receptor structure and dynamics and interactions with intracellular and extracellular proteins is necessary.
Collapse
Affiliation(s)
- Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|