1
|
Yadav AJ, Bhagat K, Padhi AK. Integrated computational characterization of valosin-containing protein double-psi β-barrel domain: Insights into structural stability, binding mechanisms, and evolutionary significance. Int J Biol Macromol 2024; 283:137865. [PMID: 39566806 DOI: 10.1016/j.ijbiomac.2024.137865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Valosin-containing protein (VCP) plays a crucial role in various cellular processes, yet the molecular mechanisms and structural dynamics of its double-psi β-barrel (DPBB) domain, particularly in human, remain insufficiently explored. While previous studies have characterized the VCP_DPBB domain in other organisms, such as thermoplasma acidophilum and methanopyrus kandleri, its evolutionary conservation, binding potential, and stability in human require further investigation. To address this gap, we first employed all-atom molecular dynamics (AAMD) simulations to examine the structural dynamics of the human VCP_DPBB domain. We also assessed its amino acid interaction energies, stability, folding enthalpy, evolutionary conservation, solubility, and crystallizability using various computational frameworks. Additionally, to uncover the plausible biological function, protein-peptide docking was performed to evaluate the interactions between the DPBB domain and the C-terminal gp78 peptide of the E3 ubiquitin ligase. Further, AAMD and coarse-grained molecular dynamics (CGMD) simulations explored the binding preferences, fluctuations, and stability of human VCP_DPBB-gp78 complexes. Our findings indicate that, while thermoplasma acidophilum VCP_DPBB-gp78 showed stronger initial binding, the human VCP_DPBB-gp78 complex exhibited superior stability, binding affinity, and more stabilizing interactions. This integrated analysis provides valuable insights into the evolutionary significance and functionality of the DPBB domain, with potential therapeutic implications for VCP-related diseases.
Collapse
Affiliation(s)
- Amar Jeet Yadav
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Khushboo Bhagat
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Zhang J, Vancea AI, Arold ST. Targeting plant UBX proteins: AI-enhanced lessons from distant cousins. TRENDS IN PLANT SCIENCE 2022; 27:1099-1108. [PMID: 35718708 DOI: 10.1016/j.tplants.2022.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Across all eukaryotic kingdoms, ubiquitin regulatory X (UBX) domain-containing adaptor proteins control the segregase cell division control protein 48 (CDC48), and thereby also control cellular proteostasis and adaptation. The structures and biological roles of UBX proteins in animals and fungi have garnered considerable attention. However, their counterparts in plants remain markedly understudied. Since 2021, the artificial intelligence (AI)-based algorithm AlphaFold has provided predictions of protein structural features that can be highly accurate. Predictions of the proteomes of all major model organisms are now freely accessible to the entire research community through user-friendly web interfaces. We propose that the combination of cross-kingdom comparison with AF analysis produces a wealth of testable hypotheses to inspire and guide experimental research on plant UBX domain-containing (PUX) proteins.
Collapse
Affiliation(s)
- Junrui Zhang
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Alexandra I Vancea
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia; Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France.
| |
Collapse
|
3
|
Zhang Y, Xie X, Wang X, Wen T, Zhao C, Liu H, Zhao B, Zhu Y. Discovery of novel pyrimidine molecules containing boronic acid as VCP/p97 Inhibitors. Bioorg Med Chem 2021; 38:116114. [PMID: 33831696 DOI: 10.1016/j.bmc.2021.116114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 01/08/2023]
Abstract
Valine-containing protein (VCP) is a member of the adenosine triphosphate family involved in a variety of cellular activities. VCP/p97 is capable of maintaining protein homeostasis and mediating the degradation of misfolded polypeptides by the ubiquitin-proteasome system (UPS). In this manuscript, a series of novel p97 inhibitors with pyrimidine as core structure were designed, synthesized and biologically evaluated. Based on the enzymatic results, a detailed structure-activity relationship discussion of the synthesized compounds was carried out. Furthermore, cellular activities of the compounds with enzymatic potency of less than 200 nM were investigated by using A549 and RPMI8226 cell lines. Among the screened inhibitors, compound 17 (IC50, 54.7 nM) showed good enzymatic activity. Investigation of cellular activities with non-small cell lung cancer A549 and multiple myeloma (MM) RPMI8226 further confirmed the potency of 17 with the IC50 values of 2.80 μM and 0.86 μM, respectively. Compound 17 is now being developed as a candidate. Finally, docking studies were carried out to explore the possible binding mode between the active inhibitor 17 and p97.
Collapse
Affiliation(s)
- Yonglei Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, PR China
| | - Xiaomin Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, PR China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Tiantian Wen
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Chi Zhao
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Hailong Liu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, PR China.
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China.
| |
Collapse
|
4
|
UBXN7 cofactor of CRL3 KEAP1 and CRL2 VHL ubiquitin ligase complexes mediates reciprocal regulation of NRF2 and HIF-1α proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118963. [PMID: 33444648 DOI: 10.1016/j.bbamcr.2021.118963] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
UBXN7 is a cofactor protein that provides a scaffold for both CRL3KEAP1 and CRL2VHL ubiquitin ligase complexes involved in the regulation of the NRF2 and HIF-1α protein levels respectively. NRF2 and HIF-1α are surveillance transcription factors that orchestrate the cellular response to oxidative stress (NRF2) or to hypoxia (HIF-1α). Since mitochondria are the main oxygen sensors as well as the principal producers of ROS, it can be presumed that they may be able to modulate the activity of CRL3KEAP1 and CRL2VHL complexes in response to stress. We have uncovered a new mechanism of such regulation that involves the UBXN7 cofactor protein and its regulation by mitochondrial MUL1 E3 ubiquitin ligase. High level of UBXN7 leads to HIF-1α accumulation, whereas low level of UBXN7 correlates with an increase in NRF2 protein. The reciprocal regulation of HIF-1α and NRF2 by UBXN7 is coordinated under conditions of oxidative stress or hypoxia. In addition, this molecular mechanism leads to different metabolic states; high level of UBXN7 and accumulation of HIF-1α support glycolysis, whereas inactivation of UBXN7 and activation of NRF2 confer increased OXPHOS. We describe a new mechanism by which MUL1 E3 ubiquitin ligase modulates the UBXN7 cofactor protein level and provides a reciprocal regulation of CRL3KEAP1 and CRL2VHL ubiquitin ligase complexes. Furthermore, we delineate how this regulation is reflected in NRF2 and HIF-1α accumulation and determines the metabolic state as well as the adaptive response to mitochondrial stress.
Collapse
|
5
|
Abstract
p97 belongs to the functional diverse superfamily of AAA+ (ATPases Associated with diverse cellular Activities) ATPases and is characterized by an N-terminal regulatory domain and two stacked hexameric ATPase domains forming a central protein conducting channel. p97 is highly versatile and has key functions in maintaining protein homeostasis including protein quality control mechanisms like the ubiquitin proteasome system (UPS) and autophagy to disassemble polyubiquitylated proteins from chromatin, membranes, macromolecular protein complexes and aggregates which are either degraded by the proteasome or recycled. p97 can use energy derived from ATP hydrolysis to catalyze substrate unfolding and threading through its central channel. The function of p97 in a large variety of different cellular contexts is reflected by its simultaneous association with different cofactors, which are involved in substrate recognition and processing, thus leading to the formation of transient multi-protein complexes. Dysregulation in protein homeostasis and proteotoxic stress are often involved in the development of cancer and neurological diseases and targeting the UPS including p97 in cancer is a well-established pharmacological strategy. In this chapter we will describe structural and functional aspects of the p97 interactome in regulating diverse cellular processes and will discuss the role of p97 in targeted cancer therapy.
Collapse
|
6
|
Khong ZJ, Lai SK, Koh CG, Geifman-Shochat S, Li HY. A novel function of AAA-ATPase p97/VCP in the regulation of cell motility. Oncotarget 2020; 11:74-85. [PMID: 32002125 PMCID: PMC6967774 DOI: 10.18632/oncotarget.27419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/21/2019] [Indexed: 11/25/2022] Open
Abstract
High level of the multifunctional AAA-ATPase p97/VCP is often correlated to the development of cancer; however, the underlying mechanism is not understood completely. Here, we report a novel function of p97/VCP in actin regulation and cell motility. We found that loss of p97/VCP promotes stabilization of F-actin, which cannot be reversed by actin-destabilizing agent, Cytochalasin D. Live-cell imaging demonstrated reduced actin dynamics in p97/VCP-knockdown cells, leading to compromised cell motility. We further examined the underlying mechanism and found elevated RhoA protein levels along with increased phosphorylation of its downstream effectors, ROCK, LIMK, and MLC upon the knockdown of p97/VCP. Since p97/VCP is indispensable in the ubiquitination-dependent protein degradation pathway, we investigated if the loss of p97/VCP hinders the protein degradation of RhoA. Knockdown of p97/VCP resulted in a higher amount of ubiquitinated RhoA, suggesting p97/VCP involvement in the proteasome-dependent protein degradation pathway. Finally, we found that p97/VCP interacts with FBXL19, a molecular chaperone known to guide ubiquitinated RhoA for proteasomal degradation. Reduction of p97/VCP may result in the accumulation of RhoA which, in turn, enhances cytoplasmic F-actin formation. In summary, our study uncovered a novel function of p97/VCP in actin regulation and cell motility via the Rho-ROCK dependent pathway which provides fundamental insights into how p97/VCP is involved in cancer development.
Collapse
Affiliation(s)
- Zi-Jia Khong
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Singapore
| | - Soak-Kuan Lai
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Singapore
| | - Susana Geifman-Shochat
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Singapore
| | - Hoi-Yeung Li
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
7
|
Quantum mechanics/molecular mechanics multiscale modeling of biomolecules. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2020. [DOI: 10.1016/bs.apoc.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Abstract
p97 is an essential hexameric AAA+ ATPase involved in a wide range of cellular processes. Mutations in the enzyme are implicated in the etiology of an autosomal dominant neurological disease in which patients are heterozygous with respect to p97 alleles, containing one copy each of WT and disease-causing mutant genes, so that, in vivo, p97 molecules can be heterogeneous in subunit composition. Studies of p97 have, however, focused on homohexameric constructs, where protomers are either entirely WT or contain a disease-causing mutation, showing that for WT p97, the N-terminal domain (NTD) of each subunit can exist in either a down (ADP) or up (ATP) conformation. NMR studies establish that, in the ADP-bound state, the up/down NTD equilibrium shifts progressively toward the up conformation as a function of disease mutant severity. To understand NTD functional dynamics in biologically relevant p97 heterohexamers comprising both WT and disease-causing mutant subunits, we performed a methyl-transverse relaxation optimized spectroscopy (TROSY) NMR study on a series of constructs in which only one of the protomer types is NMR-labeled. Our results show positive cooperativity of NTD up/down equilibria between neighboring protomers, allowing us to define interprotomer pathways that mediate the allosteric communication between subunits. Notably, the perturbed up/down NTD equilibrium in mutant subunits is partially restored by neighboring WT protomers, as is the two-pronged binding of the UBXD1 adaptor that is affected in disease. This work highlights the plasticity of p97 and how subtle perturbations to its free-energy landscape lead to significant changes in NTD conformation and adaptor binding.
Collapse
|
9
|
Heidelberger JB, Voigt A, Borisova ME, Petrosino G, Ruf S, Wagner SA, Beli P. Proteomic profiling of VCP substrates links VCP to K6-linked ubiquitylation and c-Myc function. EMBO Rep 2018; 19:embr.201744754. [PMID: 29467282 DOI: 10.15252/embr.201744754] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/17/2018] [Accepted: 01/26/2018] [Indexed: 12/20/2022] Open
Abstract
Valosin-containing protein (VCP) is an evolutionarily conserved ubiquitin-dependent ATPase that mediates the degradation of proteins through the ubiquitin-proteasome pathway. Despite the central role of VCP in the regulation of protein homeostasis, identity and nature of its cellular substrates remain poorly defined. Here, we combined chemical inhibition of VCP and quantitative ubiquitin remnant profiling to assess the effect of VCP inhibition on the ubiquitin-modified proteome and to probe the substrate spectrum of VCP in human cells. We demonstrate that inhibition of VCP perturbs cellular ubiquitylation and increases ubiquitylation of a different subset of proteins compared to proteasome inhibition. VCP inhibition globally upregulates K6-linked ubiquitylation that is dependent on the HECT-type ubiquitin E3 ligase HUWE1. We report ~450 putative VCP substrates, many of which function in nuclear processes, including gene expression, DNA repair and cell cycle. Moreover, we identify that VCP regulates the level and activity of the transcription factor c-Myc.
Collapse
Affiliation(s)
| | - Andrea Voigt
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | | | - Stefanie Ruf
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Sebastian A Wagner
- Department of Medicine, Hematology/Oncology, Goethe University School of Medicine, Frankfurt, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany
| |
Collapse
|
10
|
Sowaileh MF, Hazlitt RA, Colby DA. Application of the Pentafluorosulfanyl Group as a Bioisosteric Replacement. ChemMedChem 2017; 12:1481-1490. [PMID: 28782186 DOI: 10.1002/cmdc.201700356] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/29/2017] [Indexed: 11/10/2022]
Abstract
The success of fluorinated molecules in drug design has led medicinal chemists to search for new fluorine-containing substituents. A major recently developed group is the pentafluorosulfanyl group. This group is stable under physiological conditions and displays unique physical and chemical properties. There are currently few synthetic methods to install the SF5 group, yet efforts to integrate this group into lead optimization continue unabated. Typically, the SF5 group has been used as a replacement for trifluoromethyl, tert-butyl, halogen, or nitro groups. In this review, the use of the SF5 group as a bioisosteric replacement for each of these three functionalities is compared and contrasted across various groups of biologically active molecules. The organization and presentation of these data should be instructive to medicinal chemists considering to design synthetic strategies to access SF5 -substituted molecules.
Collapse
Affiliation(s)
- Munia F Sowaileh
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Robert A Hazlitt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David A Colby
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
11
|
Mohammed SI, Ren W, Flowers L, Rajwa B, Chibwesha CJ, Parham GP, Irudayaraj JMK. Point-of-care test for cervical cancer in LMICs. Oncotarget 2017; 7:18787-97. [PMID: 26934314 PMCID: PMC4951329 DOI: 10.18632/oncotarget.7709] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
Cervical cancer screening using Papanicolaou's smear test has been highly effective in reducing death from this disease. However, this test is unaffordable in low- and middle-income countries, and its complexity has limited wide-scale uptake. Alternative tests, such as visual inspection with acetic acid or Lugol's iodine and human papillomavirus DNA, are sub-optimal in terms of specificity and sensitivity, thus sensitive and affordable tests with high specificity for on-site reporting are needed. Using proteomics and bioinformatics, we have identified valosin-containing protein (VCP) as differentially expressed between normal specimens and those with cervical intra-epithelial neoplasia grade 2/3 (CIN2/CIN3+) or worse. VCP-specific immunohistochemical staining (validated by a point-of-care technology) provided sensitive (93%) and specific (88%) identification of CIN2/CIN3+ and may serve as a critical biomarker for cervical-cancer screening. Future efforts will focus on further refinements to enhance analytic sensitivity and specificity of our proposed test, as well as on prototype development.
Collapse
Affiliation(s)
- Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA.,Bindley Bioscience Center, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | - Wen Ren
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Bindley Bioscience Center, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lisa Flowers
- Department of Gynecology and Obstetrics, Emory University, Atlanta, Georgia 30322, USA
| | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | - Carla J Chibwesha
- Division of Global Women's Health, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Groesbeck P Parham
- Division of Global Women's Health, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joseph M K Irudayaraj
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Bindley Bioscience Center, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
12
|
Arumughan A, Roske Y, Barth C, Forero LL, Bravo-Rodriguez K, Redel A, Kostova S, McShane E, Opitz R, Faelber K, Rau K, Mielke T, Daumke O, Selbach M, Sanchez-Garcia E, Rocks O, Panáková D, Heinemann U, Wanker EE. Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers. Nat Commun 2016; 7:13047. [PMID: 27762274 PMCID: PMC5080433 DOI: 10.1038/ncomms13047] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/29/2016] [Indexed: 12/13/2022] Open
Abstract
Interaction mapping is a powerful strategy to elucidate the biological function of protein assemblies and their regulators. Here, we report the generation of a quantitative interaction network, directly linking 14 human proteins to the AAA+ ATPase p97, an essential hexameric protein with multiple cellular functions. We show that the high-affinity interacting protein ASPL efficiently promotes p97 hexamer disassembly, resulting in the formation of stable p97:ASPL heterotetramers. High-resolution structural and biochemical studies indicate that an extended UBX domain (eUBX) in ASPL is critical for p97 hexamer disassembly and facilitates the assembly of p97:ASPL heterotetramers. This spontaneous process is accompanied by a reorientation of the D2 ATPase domain in p97 and a loss of its activity. Finally, we demonstrate that overproduction of ASPL disrupts p97 hexamer function in ERAD and that engineered eUBX polypeptides can induce cell death, providing a rationale for developing anti-cancer polypeptide inhibitors that may target p97 activity. The AAA+ ATPase p97 is an essential hexameric protein with multiple protein interaction partners and cellular functions. Here, the authors use interaction mapping to examine partner proteins of this large complex, and assess the effects of these proteins on the disassembly of the p97 complex.
Collapse
Affiliation(s)
- Anup Arumughan
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Yvette Roske
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Carolin Barth
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Laura Lleras Forero
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Kenny Bravo-Rodriguez
- Max-Planck-Institute for Coal Research, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Alexandra Redel
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Simona Kostova
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Erik McShane
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Robert Opitz
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Katja Faelber
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Kirstin Rau
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14194 Berlin, Germany
| | - Oliver Daumke
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Elsa Sanchez-Garcia
- Max-Planck-Institute for Coal Research, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Oliver Rocks
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Daniela Panáková
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Udo Heinemann
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Erich E Wanker
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| |
Collapse
|
13
|
Rezvani K. UBXD Proteins: A Family of Proteins with Diverse Functions in Cancer. Int J Mol Sci 2016; 17:ijms17101724. [PMID: 27754413 PMCID: PMC5085755 DOI: 10.3390/ijms17101724] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/24/2016] [Accepted: 10/08/2016] [Indexed: 12/15/2022] Open
Abstract
The UBXD family is a diverse group of UBX (ubiquitin-regulatory X) domain-containing proteins in mammalian cells. Members of this family contain a UBX domain typically located at the carboxyl-terminal of the protein. In contrast to the UBX domain shared by all members of UBXD family, the amino-terminal domains are diverse and appear to carry out different roles in a subcellular localization-dependent manner. UBXD proteins are principally associated with the endoplasmic reticulum (ER), where they positively or negatively regulate the ER-associated degradation machinery (ERAD). The distinct protein interaction networks of UBXD proteins allow them to have specific functions independent of the ERAD pathway in a cell type- and tissue context-dependent manner. Recent reports have illustrated that a number of mammalian members of the UBXD family play critical roles in several proliferation and apoptosis pathways dysregulated in selected types of cancer. This review covers recent advances that elucidate the therapeutic potential of selected members of the UBXD family that can contribute to tumor growth.
Collapse
Affiliation(s)
- Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA.
| |
Collapse
|
14
|
Trusch F, Kowski K, Bravo-Rodriguez K, Beuck C, Sowislok A, Wettig B, Matena A, Sanchez-Garcia E, Meyer H, Schrader T, Bayer P. Molecular tweezers target a protein–protein interface and thereby modulate complex formation. Chem Commun (Camb) 2016; 52:14141-14144. [DOI: 10.1039/c6cc08039a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular binders select few residues on a protein surface and by their unique complexation mode disrupt a critical protein–protein interaction.
Collapse
|
15
|
Alverez C, Arkin MR, Bulfer SL, Colombo R, Kovaliov M, LaPorte MG, Lim C, Liang M, Moore WJ, Neitz RJ, Yan Y, Yue Z, Huryn DM, Wipf P. Structure-Activity Study of Bioisosteric Trifluoromethyl and Pentafluorosulfanyl Indole Inhibitors of the AAA ATPase p97. ACS Med Chem Lett 2015; 6:1225-30. [PMID: 26713109 DOI: 10.1021/acsmedchemlett.5b00364] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022] Open
Abstract
Exploratory SAR studies of a new phenyl indole chemotype for p97 inhibition revealed C-5 indole substituent effects in the ADPGlo assay that did not fully correlate with either electronic or steric factors. A focused series of methoxy-, trifluoromethoxy-, methyl-, trifluoromethyl-, pentafluorosulfanyl-, and nitro-analogues was found to exhibit IC50s from low nanomolar to double-digit micromolar. Surprisingly, we found that the trifluoromethoxy-analogue was biochemically a better match of the trifluoromethyl-substituted lead structure than a pentafluorosulfanyl-analogue. Moreover, in spite of their almost equivalent strongly electron-depleting effect on the indole core, pentafluorosulfanyl- and nitro-derivatives were found to exhibit a 430-fold difference in p97 inhibitory activities. Conversely, the electronically divergent C-5 methyl- and nitro-analogues both showed low nanomolar activities.
Collapse
Affiliation(s)
- Celeste Alverez
- Department
of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Stacie L. Bulfer
- Department
of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Raffaele Colombo
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Marina Kovaliov
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew G. LaPorte
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chaemin Lim
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mary Liang
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - William J. Moore
- Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - R. Jeffrey Neitz
- Department
of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Yongzhao Yan
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhizhou Yue
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Donna M. Huryn
- Department
of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department
of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Chemical
Diversity Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
16
|
Nadeau MÈ, Rico C, Tsoi M, Vivancos M, Filimon S, Paquet M, Boerboom D. Pharmacological targeting of valosin containing protein (VCP) induces DNA damage and selectively kills canine lymphoma cells. BMC Cancer 2015; 15:479. [PMID: 26104798 PMCID: PMC4479320 DOI: 10.1186/s12885-015-1489-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 06/14/2015] [Indexed: 12/20/2022] Open
Abstract
Background Valosin containing protein (VCP) is a critical mediator of protein homeostasis and may represent a valuable therapeutic target for several forms of cancer. Overexpression of VCP occurs in many cancers, and often in a manner correlating with malignancy and poor outcome. Here, we analyzed VCP expression in canine lymphoma and assessed its potential as a therapeutic target for this disease. Methods VCP expression in canine lymphomas was evaluated by immunoblotting and immunohistochemistry. The canine lymphoma cell lines CLBL-1, 17–71 and CL-1 were treated with the VCP inhibitor Eeyarestatin 1 (EER-1) at varying concentrations and times and were assessed for viability by trypan blue exclusion, apoptosis by TUNEL and caspase activity assays, and proliferation by propidium iodide incorporation and FACS. The mechanism of EER-1 action was determined by immunoblotting and immunofluorescence analyses of Lys48 ubiquitin and markers of ER stress (DDIT3), autophagy (SQSTM1, MAP1LC3A) and DNA damage (γH2AFX). TRP53/ATM-dependent signaling pathway activity was assessed by immunoblotting for TRP53 and phospho-TRP53 and real-time RT-PCR measurement of Cdkn1a mRNA. Results VCP expression levels in canine B cell lymphomas were found to increase with grade. EER-1 treatment killed canine lymphoma cells preferentially over control peripheral blood mononuclear cells. EER-1 treatment of CLBL-1 cells was found to both induce apoptosis and cell cycle arrest in G1. Unexpectedly, EER-1 did not appear to act either by inducing ER stress or inhibiting the aggresome-autophagy pathway. Rather, a rapid and dramatic increase in γH2AFX expression was noted, indicating that EER-1 may act by promoting DNA damage accumulation. Increased TRP53 phosphorylation and Cdkn1a mRNA levels indicated an activation of the TRP53/ATM DNA damage response pathway in response to EER-1, likely contributing to the induction of apoptosis and cell cycle arrest. Conclusions These results correlate VCP expression with malignancy in canine B cell lymphoma. The selective activity of EER-1 against lymphoma cells suggests that VCP will represent a clinically useful therapeutic target for the treatment of lymphoma. We further suggest a mechanism of EER-1 action centered on the DNA repair response that may be of central importance for the design and characterization of VCP inhibitory compounds for therapeutic use. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1489-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie-Ève Nadeau
- Département des Sciences Cliniques, Université de Montréal, Saint-Hyacinthe, QC, J2S7C6, Canada.
| | - Charlène Rico
- Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, J2S7C6, Canada.
| | - Mayra Tsoi
- Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, J2S7C6, Canada.
| | - Mélanie Vivancos
- Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, J2S7C6, Canada.
| | - Sabin Filimon
- Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, J2S7C6, Canada.
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, J2S7C6, Canada.
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, J2S7C6, Canada.
| |
Collapse
|
17
|
Chapman E, Maksim N, de la Cruz F, La Clair JJ. Inhibitors of the AAA+ chaperone p97. Molecules 2015; 20:3027-49. [PMID: 25685910 PMCID: PMC4576884 DOI: 10.3390/molecules20023027] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/03/2015] [Indexed: 12/22/2022] Open
Abstract
It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA) more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®), which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+) chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and physiology.
Collapse
Affiliation(s)
- Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| | - Nick Maksim
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| | - Fabian de la Cruz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| | - James J La Clair
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| |
Collapse
|
18
|
Cheng YL, Chen RH. Assembly and quality control of protein phosphatase 1 holoenzyme involve Cdc48-Shp1 chaperone. J Cell Sci 2015; 128:1180-92. [DOI: 10.1242/jcs.165159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein phosphatase 1 (PP1) controls many aspects of cell physiology, which depends on its correct targeting in the cell. Nuclear localization of Glc7, the catalytic subunit of PP1 in budding yeast, requires the AAA-ATPase Cdc48 and its adaptor Shp1 through an unknown mechanism. Herein, we show that mutations in SHP1 cause misfolding of Glc7 that co-aggregates with Hsp104 and Hsp42 chaperones and requires the proteasome for clearance. Mutation or depletion of the PP1 regulatory subunits Sds22 and Ypi1 that are involved in nuclear targeting of Glc7 also produce Glc7 aggregates, indicating that association with regulatory subunits stabilizes Glc7 conformation. Use of a substrate-trap Cdc48QQ mutant reveals that Glc7-Sds22-Ypi1 transiently associates with and is the major target of Cdc48-Shp1. Furthermore, Cdc48-Shp1 binds and prevents misfolding of PP1-like phosphatases Ppz2 and Ppq1, but not other types of phosphatases. Our data propose that Cdc48-Shp1 functions as a molecular chaperone for the structural integrity of PP1 complex in general and that it specifically promotes the assembly of Glc7-Sds22-Ypi1 for nuclear import.
Collapse
|
19
|
Yılmaz ZB, Kofahl B, Beaudette P, Baum K, Ipenberg I, Weih F, Wolf J, Dittmar G, Scheidereit C. Quantitative dissection and modeling of the NF-κB p100-p105 module reveals interdependent precursor proteolysis. Cell Rep 2014; 9:1756-1769. [PMID: 25482563 DOI: 10.1016/j.celrep.2014.11.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 10/20/2014] [Accepted: 11/08/2014] [Indexed: 12/26/2022] Open
Abstract
The mechanisms that govern proteolytic maturation or complete destruction of the precursor proteins p100 and p105 are fundamental to homeostasis and activation of NF-κB; however, they remain poorly understood. Using mass-spectrometry-based quantitative analysis of noncanonical LTβR-induced signaling, we demonstrate that stimulation induces simultaneous processing of both p100 and p105. The precursors not only form hetero-oligomers but also interact with the ATPase VCP/p97, and their induced proteolysis strictly depends on the signal response domain (SRD) of p100, suggesting that the SRD-targeting proteolytic machinery acts in cis and in trans. Separation of cellular pools by isotope labeling revealed synchronous dynamics of p105 and p100 proteolysis. The generation of p50 and p52 from their precursors depends on functional VCP/p97. We have developed quantitative mathematical models that describe the dynamics of the system and predict that p100-p105 complexes are signal responsive.
Collapse
Affiliation(s)
- Zekiye Buket Yılmaz
- Signal Transduction Laboratory, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| | - Bente Kofahl
- Mathematical Modeling Group, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Patrick Beaudette
- Signal Transduction Laboratory, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Katharina Baum
- Mathematical Modeling Group, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Inbal Ipenberg
- Signal Transduction Laboratory, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Falk Weih
- Leibniz-Institute for Age Research-Fritz-Lipmann-Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Jana Wolf
- Mathematical Modeling Group, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Gunnar Dittmar
- Mass Spectrometry Group, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction Laboratory, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| |
Collapse
|
20
|
Sane S, Abdullah A, Boudreau DA, Autenried RK, Gupta BK, Wang X, Wang H, Schlenker EH, Zhang D, Telleria C, Huang L, Chauhan SC, Rezvani K. Ubiquitin-like (UBX)-domain-containing protein, UBXN2A, promotes cell death by interfering with the p53-Mortalin interactions in colon cancer cells. Cell Death Dis 2014; 5:e1118. [PMID: 24625977 PMCID: PMC3973214 DOI: 10.1038/cddis.2014.100] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/02/2014] [Accepted: 02/07/2014] [Indexed: 02/08/2023]
Abstract
Mortalin (mot-2) induces inactivation of the tumor suppressor p53's transcriptional and apoptotic functions by cytoplasmic sequestration of p53 in select cancers. The mot-2-dependent cytoprotective function enables cancer cells to support malignant transformation. Abrogating the p53-mot-2 interaction can control or slow down the growth of cancer cells. In this study, we report the discovery of a ubiquitin-like (UBX)-domain-containing protein, UBXN2A, which binds to mot-2 and consequently inhibits the binding between mot-2 and p53. Genetic analysis showed that UBXN2A binds to mot-2's substrate binding domain, and it partly overlaps p53's binding site indicating UBXN2A and p53 likely bind to mot-2 competitively. By binding to mot-2, UBXN2A releases p53 from cytosolic sequestration, rescuing the tumor suppressor functions of p53. Biochemical analysis and functional assays showed that the overexpression of UBXN2A and the functional consequences of unsequestered p53 trigger p53-dependent apoptosis. Cells expressing shRNA against UBXN2A showed the opposite effect of that seen with UBXN2A overexpression. The expression of UBXN2A and its apoptotic effects were not observed in normal colonic epithelial cells and p53-/- colon cancer cells. Finally, significant reduction in tumor volume in a xenograft mouse model in response to UBXN2A expression was verified in vivo. Our results introduce UBXN2A as a home defense response protein, which can reconstitute inactive p53-dependent apoptotic pathways. Inhibition of mot-2-p53 interaction by UBXN2A is an attractive therapeutic strategy in mot-2-elevated tumors.
Collapse
Affiliation(s)
- S Sane
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - A Abdullah
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - D A Boudreau
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - R K Autenried
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - B K Gupta
- Department of Pharmaceutical Sciences, Cancer Research Center, University of Tennessee Health Science Center, 19S Manassas Avenue, Memphis, TN, USA
| | - X Wang
- Departments of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - H Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - E H Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - D Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - C Telleria
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - L Huang
- Departments of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - S C Chauhan
- Department of Pharmaceutical Sciences, Cancer Research Center, University of Tennessee Health Science Center, 19S Manassas Avenue, Memphis, TN, USA
| | - K Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| |
Collapse
|
21
|
Cdc48: a swiss army knife of cell biology. JOURNAL OF AMINO ACIDS 2013; 2013:183421. [PMID: 24167726 PMCID: PMC3791797 DOI: 10.1155/2013/183421] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022]
Abstract
Cdc48 (also called VCP and p97) is an abundant protein that plays essential regulatory functions in a broad array of cellular processes. Working with various cofactors, Cdc48 utilizes its ATPase activity to promote the assembly and disassembly of protein complexes. Here, we review key biological functions and regulation of Cdc48 in ubiquitin-related events. Given the broad employment of Cdc48 in cell biology and its intimate ties to human diseases (e.g., amyotrophic lateral sclerosis), studies of Cdc48 will bring significant insights into the mechanism and function of ubiquitin in health and diseases.
Collapse
|
22
|
Biniossek ML, Lechel A, Rudolph KL, Martens UM, Zimmermann S. Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. J Proteomics 2013; 91:515-35. [PMID: 23969227 DOI: 10.1016/j.jprot.2013.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/25/2013] [Accepted: 08/07/2013] [Indexed: 02/08/2023]
Abstract
UNLABELLED Telomerase inhibition causes progressive telomere shortening and cellular senescence, which constitutes a universal barrier to tumor growth and therefore an attractive target for tumor therapy. To expand our previous studies, we investigated the global effects of telomere dysfunction on the proteome of tumor cells in order to find novel senescence biomarkers. Telomerase-deficient HCT-116 cell clones were analyzed by a quantitative proteomic approach using isotope-coded protein labeling (ICPL) and nanoflow-HPLC-MS/MS. Stringent reduction of the extensive proteomic data from this tumor cell model revealed a list of 59 markers including proteins identified in our former studies and a number of novel proteins involved in tumorigenesis and metastasis such as SFN, S100A4, ANXA2, and LGALS1. A loss of the chromatin protein HMGB2 was demonstrated not only in various telomerase-inhibited clones of different tumor cell lines, but also in normal human fibroblasts undergoing replicative senescence and in aging telomerase knockout mice. Impressively, a coherent and dense network of protein-protein interactions for the bulk of the markers and their implementation in signaling pathways involving key regulators for tumorigenesis were revealed. These results have an impact on the understanding of telomere- and senescence-related signal transduction in tumor cells in consideration of the general lack of senescence markers. BIOLOGICAL SIGNIFICANCE Induction of cellular senescence constitutes a potent concept for tumor therapy which interferes with immortalization and additional hallmarks of cancer. The application of a powerful quantitative proteomic approach using isotope-coded protein labeling to an approved model for senescence represented by telomerase inhibited tumor cells led to the identification of novel candidate biomarkers for telomere dysfunction and replicative senescence. Thereby, the identified markers not only fit in the context of the investigated processes with a relevance for additional hallmarks of cancer but are also involved in a strong interaction network and integrated in canonical pathways centered around key cancer-relevant proteins. These potential markers alone or in combination will significantly extend the view on telomere-associated signal transduction in tumor cells and contribute to the field of cellular senescence and aging in consideration of the general lack of biomarkers in this regard.
Collapse
Affiliation(s)
- Martin L Biniossek
- Institute of Molecular Medicine Cell Research, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
23
|
Kolawa N, Sweredoski MJ, Graham RLJ, Oania R, Hess S, Deshaies RJ. Perturbations to the ubiquitin conjugate proteome in yeast δubx mutants identify Ubx2 as a regulator of membrane lipid composition. Mol Cell Proteomics 2013; 12:2791-803. [PMID: 23793018 PMCID: PMC3790291 DOI: 10.1074/mcp.m113.030163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Cdc48 (p97/VCP in human cells) is a hexameric AAA ATPase that is thought to use ATP hydrolysis to power the segregation of ubiquitin-conjugated proteins from tightly bound partners. Current models posit that Cdc48 is linked to its substrates through adaptor proteins, including a family of seven proteins (13 in human) that contain a Cdc48-binding UBX domain. However, few substrates for specific UBX proteins are known, and hence the generality of this hypothesis remains untested. Here, we use mass spectrometry to identify ubiquitin conjugates that accumulate in cdc48 and ubx mutants. Different ubx mutants exhibit unique patterns of conjugate accumulation that point to functional specialization of individual Ubx proteins. To validate our findings, we examined in detail the endoplasmic reticulum-bound transcription factor Spt23, which we identified as a putative Ubx2 substrate. Mutant ubx2Δ cells are deficient in both cleaving the ubiquitinated 120 kDa precursor of Spt23 to form active p90 and in localizing p90 to the nucleus, resulting in reduced expression of the target gene OLE1, which encodes fatty acid desaturase. Our findings provide a resource for future investigations on Cdc48, illustrate the utility of proteomics to identify ligands for specific ubiquitin receptor pathways, and uncover Ubx2 as a key player in the regulation of membrane lipid biosynthesis.
Collapse
|
24
|
Fessart D, Marza E, Taouji S, Delom F, Chevet E. P97/CDC-48: proteostasis control in tumor cell biology. Cancer Lett 2013; 337:26-34. [PMID: 23726843 DOI: 10.1016/j.canlet.2013.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/16/2013] [Accepted: 05/23/2013] [Indexed: 12/17/2022]
Abstract
P97/CDC-48 is a prominent member of a highly evolutionary conserved Walker cassette - containing AAA+ATPases. It has been involved in numerous cellular processes ranging from the control of protein homeostasis to membrane trafficking through the intervention of specific accessory proteins. Expression of p97/CDC-48 in cancers has been correlated with tumor aggressiveness and prognosis, however the precise underlying molecular mechanisms remain to be characterized. Moreover p97/CDC-48 inhibitors were developed and are currently under intense investigation as anticancer drugs. Herein, we discuss the role of p97/CDC-48 in cancer development and its therapeutic potential in tumor cell biology.
Collapse
|
25
|
Vaz B, Halder S, Ramadan K. Role of p97/VCP (Cdc48) in genome stability. Front Genet 2013; 4:60. [PMID: 23641252 PMCID: PMC3639377 DOI: 10.3389/fgene.2013.00060] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/05/2013] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin-dependent molecular chaperone p97, also known as valosin-containing protein (VCP) or Cdc48, is an AAA ATPase involved in protein turnover and degradation. p97 converts its own ATPase hydrolysis into remodeling activity on a myriad of ubiquitinated substrates from different cellular locations and pathways. In this way, p97 mediates extraction of targeted protein from cellular compartments or protein complexes. p97-dependent protein extraction from various cellular environments maintains cellular protein homeostasis. In recent years, p97-dependent protein extraction from chromatin has emerged as an essential evolutionarily conserved process for maintaining genome stability. Inactivation of p97 segregase activity leads to accumulation of ubiquitinated substrates on chromatin, consequently leading to protein-induced chromatin stress (PICHROS). PICHROS directly and negatively affects multiple DNA metabolic processes, including replication, damage responses, mitosis, and transcription, leading to genotoxic stress and genome instability. By summarizing and critically evaluating recent data on p97 function in various chromatin-associated protein degradation processes, we propose establishing p97 as a genome caretaker.
Collapse
Affiliation(s)
- Bruno Vaz
- Institute of Pharmacology and Toxicology, University Zürich-Vetsuisse Zürich, Switzerland ; Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford Oxford, UK
| | | | | |
Collapse
|
26
|
Franz A, Ackermann L, Hoppe T. Create and preserve: proteostasis in development and aging is governed by Cdc48/p97/VCP. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:205-15. [PMID: 23583830 DOI: 10.1016/j.bbamcr.2013.03.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/08/2013] [Accepted: 03/25/2013] [Indexed: 12/24/2022]
Abstract
The AAA-ATPase Cdc48 (also called p97 or VCP) acts as a key regulator in proteolytic pathways, coordinating recruitment and targeting of substrate proteins to the 26S proteasome or lysosomal degradation. However, in contrast to the well-known function in ubiquitin-dependent cellular processes, the physiological relevance of Cdc48 in organismic development and maintenance of protein homeostasis is less understood. Therefore, studies on multicellular model organisms help to decipher how Cdc48-dependent proteolysis is regulated in time and space to meet developmental requirements. Given the importance of developmental regulation and tissue maintenance, defects in Cdc48 activity have been linked to several human pathologies including protein aggregation diseases. Thus, addressing the underlying disease mechanisms not only contributes to our understanding on the organism-wide function of Cdc48 but also facilitates the design of specific medical therapies. In this review, we will portray the role of Cdc48 in the context of multicellular organisms, pointing out its importance for developmental processes, tissue surveillance, and disease prevention. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- André Franz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | | | | |
Collapse
|
27
|
Erzurumlu Y, Kose FA, Gozen O, Gozuacik D, Toth EA, Ballar P. A unique IBMPFD-related P97/VCP mutation with differential binding pattern and subcellular localization. Int J Biochem Cell Biol 2013; 45:773-82. [PMID: 23333620 DOI: 10.1016/j.biocel.2013.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/30/2012] [Accepted: 01/08/2013] [Indexed: 12/12/2022]
Abstract
p97/VCP is a hexameric AAA type ATPase that functions in a variety of cellular processes such as endoplasmic reticulum associated degradation (ERAD), organelle biogenesis, autophagy and cell-cycle regulation. Inclusion body myopathy associated with Paget disease of the bone and frontotemporal dementia (IBMPFD) is an autosomal dominant disorder which has been attributed to mutations in p97/VCP. Several missense mutations affecting twelve different amino acids have been identified in IBMPFD patients and some of them were suggested to be involved in the observed pathology. Here, we analyzed the effect of all twelve p97/VCP variants on ERAD substrates and their cofactor binding abilities. While all mutants cause ERAD substrate accumulation, P137L mutant p97/VCP differs from other IBMPFD mutants by having a unique solubility profile and subcellular localization. Intriguingly, although almost all mutants exhibit enhanced p47 and Ufd1-Npl4 binding, the P137L mutation completely abolishes p97/VCP interactions with Ufd1, Npl4 and p47, while retaining its gp78 binding. While recombinant R155C mutant protein consistently interacts with both Ufd1 and VIM of gp78, P137L mutant protein lost binding ability to Ufd1 but not to VIM in vitro. The differential impairments in p97/VCP interactions with its functional partners and function should help our understanding of the molecular pathogenesis of IBMPFD.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Ege University, Faculty of Pharmacy, Biochemistry Department, Izmir, Turkey
| | | | | | | | | | | |
Collapse
|
28
|
Chia WS, Chia DX, Rao F, Bar Nun S, Geifman Shochat S. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain. PLoS One 2012; 7:e50490. [PMID: 23226521 PMCID: PMC3513293 DOI: 10.1371/journal.pone.0050490] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022] Open
Abstract
p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.
Collapse
Affiliation(s)
- Wei Sheng Chia
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Diana Xueqi Chia
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Feng Rao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shoshana Bar Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Susana Geifman Shochat
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
29
|
Yen JL, Flick K, Papagiannis CV, Mathur R, Tyrrell A, Ouni I, Kaake RM, Huang L, Kaiser P. Signal-induced disassembly of the SCF ubiquitin ligase complex by Cdc48/p97. Mol Cell 2012; 48:288-97. [PMID: 23000173 DOI: 10.1016/j.molcel.2012.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/03/2012] [Accepted: 08/09/2012] [Indexed: 10/27/2022]
Abstract
A large group of E3 ubiquitin ligases is formed by the multisubunit SCF complex, whose core complex (Rbx1/Cul1-Cdc53/Skp1) binds one of many substrate recruiting F-box proteins to form an array of SCF ligases with diverse substrate specificities. It has long been thought that ubiquitylation by SCF ligases is regulated at the level of substrate binding. Here we describe an alternative mechanism of SCF regulation by active dissociation of the F-box subunit. We show that cadmium stress induces selective recruitment of the AAA(+) ATPase Cdc48/p97 to catalyze dissociation of the F-box subunit from the yeast SCF(Met30) ligase to block substrate ubiquitylation and trigger downstream events. Our results not only provide an additional layer of ubiquitin ligase regulation but also suggest that targeted, signal-dependent dissociation of multisubunit enzyme complexes is an important mechanism in control of enzyme function.
Collapse
Affiliation(s)
- James L Yen
- Department of Biological Chemistry, College of Medicine, University of California, Irvine, CA 92697-1700, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hsueh YP. From neurodevelopment to neurodegeneration: the interaction of neurofibromin and valosin-containing protein/p97 in regulation of dendritic spine formation. J Biomed Sci 2012; 19:33. [PMID: 22449146 PMCID: PMC3326706 DOI: 10.1186/1423-0127-19-33] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 03/26/2012] [Indexed: 12/22/2022] Open
Abstract
Both Neurofibromatosis type I (NF1) and inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) are autosomal dominant genetic disorders. These two diseases are fully penetrant but with high heterogeneity in phenotypes, suggesting the involvement of genetic modifiers in modulating patients' phenotypes. Although NF1 is recognized as a developmental disorder and IBMPFD is associated with degeneration of multiple tissues, a recent study discovered the direct protein interaction between neurofibromin, the protein product of the NF1 gene, and VCP/p97, encoded by the causative gene of IBMPFD. Both NF1 and VCP/p97 are critical for dendritic spine formation, which provides the cellular mechanism explaining the cognitive deficits and dementia found in patients. Moreover, disruption of the interaction between neurofibromin and VCP impairs dendritic spinogenesis. Neurofibromin likely influences multiple downstream pathways to control dendritic spinogenesis. One is to activate the protein kinase A pathway to initiate dendritic spine formation; another is to regulate the synaptic distribution of VCP and control the activity of VCP in dendritic spinogenesis. Since neurofibromin and VCP/p97 also regulate cell growth and bone metabolism, the understanding of neurofibromin and VCP/p97 in neurons may be applied to study of cancer and bone. Statin treatment rescues the spine defects caused by VCP deficiency, suggesting the potential role of statin in clinical treatment for these two diseases.
Collapse
Affiliation(s)
- Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128, Sec 2, Academia Rd, Taipei 11529, Taiwan.
| |
Collapse
|
31
|
Bug M, Meyer H. Expanding into new markets--VCP/p97 in endocytosis and autophagy. J Struct Biol 2012; 179:78-82. [PMID: 22450227 DOI: 10.1016/j.jsb.2012.03.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Abstract
The AAA-ATPase p97 (also called VCP for Valosin-containing protein) is essential for a number of cellular processes as diverse as ER-associated degradation, DNA damage response, and cell cycle control. Mechanistically, p97 cooperates with its cofactor Ufd1-Npl4 in these processes to segregate polyubiquitinated misfolded or regulatory client proteins from intracellular structures for subsequent degradation by the proteasome. Recent work now connects p97, independently of Ufd1-Npl4, to endosomal trafficking and autophagy. Interestingly, these pathways also deliver proteins for degradation, albeit by the lysosome. While monoubiquitination and alternative p97-cofactors, including UBXD1, have been associated with these activities, the underlying molecular mechanism(s) are still unclear or controversial. In this review, we aim to summarize the available data and discuss mechanistic models.
Collapse
Affiliation(s)
- Monika Bug
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany
| | | |
Collapse
|
32
|
Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 2012; 14:117-23. [PMID: 22298039 DOI: 10.1038/ncb2407] [Citation(s) in RCA: 657] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ATP-driven chaperone valosin-containing protein (VCP)/p97 governs critical steps in ubiquitin-dependent protein quality control and intracellular signalling pathways. It cooperates with diverse partner proteins to help process ubiquitin-labelled proteins for recycling or degradation by the proteasome in many cellular contexts. Recent studies have uncovered unexpected cellular functions for p97 in autophagy, endosomal sorting and regulating protein degradation at the outer mitochondrial membrane, and elucidated a role for p97 in key chromatin-associated processes. These findings extend the functional relevance of p97 to lysosomal degradation and reveal a surprising dual role in protecting cells from protein stress and ensuring genome stability during proliferation.
Collapse
|
33
|
Hänzelmann P, Schindelin H. The structural and functional basis of the p97/valosin-containing protein (VCP)-interacting motif (VIM): mutually exclusive binding of cofactors to the N-terminal domain of p97. J Biol Chem 2011; 286:38679-38690. [PMID: 21914798 DOI: 10.1074/jbc.m111.274506] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AAA (ATPase associated with various cellular activities) ATPase p97, also referred to as valosin-containing protein (VCP), mediates essential cellular processes, including ubiquitin-dependent protein degradation, and has been linked to several human proteinopathies. p97 interacts with multiple cofactors via its N-terminal (p97N) domain, a subset of which contain the VCP-interacting motif (VIM). We have determined the crystal structure of the p97N domain in complex with the VIM of the ubiquitin E3 ligase gp78 at 1.8 Å resolution. The α-helical VIM peptide binds into a groove located in between the two subdomains of the p97N domain. Interaction studies of several VIM proteins reveal that these cofactors display dramatically different affinities, ranging from high affinity interactions characterized by dissociation constants of ∼20 nm for gp78 and ANKZF1 to only weak binding in our assays. The contribution of individual p97 residues to VIM binding was analyzed, revealing that identical substitutions do not affect all cofactors in the same way. Taken together, the biochemical and structural studies define the framework for recognition of VIM-containing cofactors by p97. Of particular interest to the regulation of p97 by its cofactors, our structure reveals that the bound α-helical peptides of VIM-containing cofactors overlap with the binding site for cofactors containing the ubiquitin regulatory X (UBX) domain present in the UBX protein family or the ubiquitin-like domain of NPL4 as further corroborated by biochemical data. These results extend the concept that competitive binding is a crucial determinant in p97-cofactor interactions.
Collapse
Affiliation(s)
- Petra Hänzelmann
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| |
Collapse
|
34
|
Wang Y, Ballar P, Zhong Y, Zhang X, Liu C, Zhang YJ, Monteiro MJ, Li J, Fang S. SVIP induces localization of p97/VCP to the plasma and lysosomal membranes and regulates autophagy. PLoS One 2011; 6:e24478. [PMID: 21909394 PMCID: PMC3164199 DOI: 10.1371/journal.pone.0024478] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/11/2011] [Indexed: 02/05/2023] Open
Abstract
The small p97/VCP-interacting protein (SVIP) functions as an inhibitor of the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. Here we show that overexpression of SVIP in HeLa cells leads to localization of p97/VCP at the plasma membrane, intracellular foci and juxtanuclear vacuoles. The p97/VCP-positive vacuolar structures colocalized or associated with LC3 and lamp1, suggesting that SVIP may regulate autophagy. In support of this possibility, knockdown of SVIP diminished, whereas overexpression of SVIP enhanced LC3 lipidation. Surprisingly, knockdown of SVIP reduced the levels of p62 protein at least partially through downregulation of its mRNA, which was accompanied by a decrease in starvation-induced formation of p62 bodies. Overexpression of SVIP, on the other hand, increased the levels of p62 protein and enhanced starvation-activated autophagy as well as promoted sequestration of polyubiquitinated proteins and p62 in autophagosomes. These results suggest that SVIP plays a regulatory role in p97 subcellular localization and is a novel regulator of autophagy.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, People's Republic of China
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, United States of America
| | - Petek Ballar
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, United States of America
| | - Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, United States of America
| | - Xuebao Zhang
- Department of Neurology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Chao Liu
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, United States of America
| | - Ying-Jiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, People's Republic of China
| | - Mervyn J. Monteiro
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, United States of America
| | - Jun Li
- Department of Neurology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, United States of America
- Department of Physiology, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
35
|
Yamanaka K, Sasagawa Y, Ogura T. Recent advances in p97/VCP/Cdc48 cellular functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:130-7. [PMID: 21781992 DOI: 10.1016/j.bbamcr.2011.07.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
p97/VCP/Cdc48 is one of the best-characterized type II AAA (ATPases associated with diverse cellular activities) ATPases. p97 is suggested to be a ubiquitin-selective chaperone and its key function is to disassemble protein complexes. p97 is involved in a wide variety of cellular activities. Recently, novel functions, namely autophagy and mitochondrial quality control, for p97 have been uncovered. p97 was identified as a causative factor for inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD) and more recently as a causative factor for amyotrophic lateral sclerosis (ALS). In this review, we will summarize and discuss recent progress and topics in p97 functions and the relationship to its associated diseases.
Collapse
Affiliation(s)
- Kunitoshi Yamanaka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | |
Collapse
|
36
|
Hänzelmann P, Buchberger A, Schindelin H. Hierarchical Binding of Cofactors to the AAA ATPase p97. Structure 2011; 19:833-43. [DOI: 10.1016/j.str.2011.03.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/19/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
|