1
|
Chen X, Chen Y, Yan K, Chen H, Qin Q, Yang L, Liu B, Cheng G, Cao Y, Wu B, Dong X, Qiao Z, Zhou W. Genetic background of idiopathic neurodevelopmental delay patients with significant brain deviation volume. Chin Med J (Engl) 2023; 136:807-814. [PMID: 36806579 PMCID: PMC10150856 DOI: 10.1097/cm9.0000000000002297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Significant brain volume deviation is an essential phenotype in children with neurodevelopmental delay (NDD), but its genetic basis has not been fully characterized. This study attempted to analyze the genetic factors associated with significant whole-brain deviation volume (WBDV). METHODS We established a reference curve based on 4222 subjects ranging in age from the first postnatal day to 18 years. We recruited only NDD patients without acquired etiologies or positive genetic results. Cranial magnetic resonance imaging (MRI) and clinical exome sequencing (2742 genes) data were acquired. A genetic burden test was performed, and the results were compared between patients with and without significant WBDV. Literature review analyses and BrainSpan analysis based on the human brain developmental transcriptome were performed to detect the potential role of genetic risk factors in human brain development. RESULTS We recruited a total of 253 NDD patients. Among them, 26 had significantly decreased WBDV (<-2 standard deviations [SDs]), and 14 had significantly increased WBDV (>+2 SDs). NDD patients with significant WBDV had higher rates of motor development delay (49.8% [106/213] vs . 75.0% [30/40], P = 0.003) than patients without significant WBDV. Genetic burden analyses found 30 genes with an increased allele frequency of rare variants in patients with significant WBDV. Analyses of the literature further demonstrated that these genes were not randomly identified: burden genes were more related to the brain development than background genes ( P = 1.656e -9 ). In seven human brain regions related to motor development, we observed burden genes had higher expression before 37-week gestational age than postnatal stages. Functional analyses found that burden genes were enriched in embryonic brain development, with positive regulation of synaptic growth at the neuromuscular junction, positive regulation of deoxyribonucleic acid templated transcription, and response to hormone, and these genes were shown to be expressed in neural progenitors. Based on single cell sequencing analyses, we found TUBB2B gene had elevated expression levels in neural progenitor cells, interneuron, and excitatory neuron and SOX15 had high expression in interneuron and excitatory neuron. CONCLUSION Idiopathic NDD patients with significant brain volume changes detected by MRI had an increased prevalence of motor development delay, which could be explained by the genetic differences characterized herein.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yuxi Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Kai Yan
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Huiyao Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qian Qin
- Shanghai Key Laboratory of Birth Defects, The Translational Medicine Center of Children Development and Disease of Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Bo Liu
- Shanghai Key Laboratory of Birth Defects, The Translational Medicine Center of Children Development and Disease of Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Guoqiang Cheng
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yun Cao
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Bingbing Wu
- Shanghai Key Laboratory of Birth Defects, The Translational Medicine Center of Children Development and Disease of Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Xinran Dong
- Shanghai Key Laboratory of Birth Defects, The Translational Medicine Center of Children Development and Disease of Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Zhongwei Qiao
- Department of Radiology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Wenhao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, The Translational Medicine Center of Children Development and Disease of Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Tantry MSA, Santhakumar K. Insights on the Role of α- and β-Tubulin Isotypes in Early Brain Development. Mol Neurobiol 2023; 60:3803-3823. [PMID: 36943622 DOI: 10.1007/s12035-023-03302-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Tubulins are the highly conserved subunit of microtubules which involve in various fundamental functions including brain development. Microtubules help in neuronal proliferation, migration, differentiation, cargo transport along the axons, synapse formation, and many more. Tubulin gene family consisting of multiple isotypes, their differential expression and varied post translational modifications create a whole new level of complexity and diversity in accomplishing manifold neuronal functions. The studies on the relation between tubulin genes and brain development opened a new avenue to understand the role of each tubulin isotype in neurodevelopment. Mutations in tubulin genes are reported to cause brain development defects especially cortical malformations, referred as tubulinopathies. There is an increased need to understand the molecular correlation between various tubulin mutations and the associated brain pathology. Recently, mutations in tubulin isotypes (TUBA1A, TUBB, TUBB1, TUBB2A, TUBB2B, TUBB3, and TUBG1) have been linked to cause various neurodevelopmental defects like lissencephaly, microcephaly, cortical dysplasia, polymicrogyria, schizencephaly, subcortical band heterotopia, periventricular heterotopia, corpus callosum agenesis, and cerebellar hypoplasia. This review summarizes on the microtubule dynamics, their role in neurodevelopment, tubulin isotypes, post translational modifications, and the role of tubulin mutations in causing specific neurodevelopmental defects. A comprehensive list containing all the reported tubulin pathogenic variants associated with brain developmental defects has been prepared to give a bird's eye view on the broad range of tubulin functions.
Collapse
Affiliation(s)
- M S Ananthakrishna Tantry
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
3
|
Pan X, Liu S, Liu L, Zhang X, Yao H, Tan B. Case Report: Exome and RNA Sequencing Identify a Novel de novo Missense Variant in HNRNPK in a Chinese Patient With Au-Kline Syndrome. Front Genet 2022; 13:853028. [PMID: 35422839 PMCID: PMC9001983 DOI: 10.3389/fgene.2022.853028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
Au-Kline syndrome is a severe multisystemic syndrome characterized by several congenital defects, including intellectual disability. Loss-of-function and missense variants in the HNRNPK gene are associated with a range of dysmorphic features. This report describes an eleven-year-old Chinese boy with intellectual disability and developmental delays. Family-based whole-exome and Sanger sequencing identified a de novo missense variant in HNRNPK (NM_002140.3: c.143T > A, p. Leu48Val). In silico analysis predicted that this variant would be damaged in a highly conserved residue in the K homology 1 (KH1) domain. Bioinformatic analysis showed that the affinity change (ΔΔG) caused by this variant was -0.033 kcal/mol, indicating that it would have reduced affinity for RNA binding. Transcript analysis of the peripheral blood from this case found 42 aberrantly expressed and 86 aberrantly spliced genes (p-value <0.01). Functional enrichment analysis confirmed that the biological functions of these genes, including protein binding and transcriptional regulation, are associated with HNRNPK. In summary, this study identifies the first Chinese patient with a novel de novo heterozygous HNRNPK gene variant that contributes to Au-Kline syndrome and expands current knowledge of the clinical spectrum of HNRNPK variants.
Collapse
Affiliation(s)
- Xin Pan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sihan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Li Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Yao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Tan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Dekker J, Diderich KEM, Schot R, Husen SC, Dremmen MHG, Go ATJI, Weerts MJA, van Slegtenhorst MA, Mancini GMS. A novel family illustrating the mild phenotypic spectrum of TUBB2B variants. Eur J Paediatr Neurol 2021; 35:35-39. [PMID: 34592644 DOI: 10.1016/j.ejpn.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
TUBB2B codes for one of the isotypes of β-tubulin and dominant negative variants in this gene result in distinctive malformations of cortical development (MCD), including dysgyria, dysmorphic basal ganglia and cerebellar anomalies. We present a novel family with a heterozygous missense variant in TUBB2B and an unusually mild phenotype. First, at 21 37 weeks of gestation ultrasonography revealed a fetus with a relatively small head, enlarged lateral ventricles, borderline hypoplastic cerebellum and a thin corpus callosum. The couple opted for pregnancy termination. Exome sequencing on fetal material afterwards identified a heterozygous maternally inherited variant in TUBB2B (NM_178012.4 (TUBB2B):c.530A > T, p.(Asp177Val)), not present in GnomAD and predicted as damaging. The healthy mother had only a language delay in childhood. This inherited TUBB2B variant prompted re-evaluation of the older son of the couple, who presented with a mild delay in motor skills and speech. His MRI revealed mildly enlarged lateral ventricles, a thin corpus callosum, mild cortical dysgyria, and dysmorphic vermis and basal ganglia, a pattern typical of tubulinopathies. This son finally showed the same TUBB2B variant, supporting pathogenicity of the TUBB2B variant. These observations illustrate the wide phenotypic heterogeneity of tubulinopathies, including reduced penetrance and mild expressivity, that require careful evaluation in pre- and postnatal counseling.
Collapse
Affiliation(s)
- Jordy Dekker
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Sofie C Husen
- Department of Obstetrics and Prenatal Medicine, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Marjolein H G Dremmen
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Attie T J I Go
- Department of Obstetrics and Prenatal Medicine, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Marjolein J A Weerts
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Marjon A van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015, GD Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Fitsiori A, Hiremath SB, Boto J, Garibotto V, Vargas MI. Morphological and Advanced Imaging of Epilepsy: Beyond the Basics. CHILDREN (BASEL, SWITZERLAND) 2019; 6:E43. [PMID: 30862078 PMCID: PMC6462967 DOI: 10.3390/children6030043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/26/2022]
Abstract
The etiology of epilepsy is variable and sometimes multifactorial. Clinical course and response to treatment largely depend on the precise etiology of the seizures. Along with the electroencephalogram (EEG), neuroimaging techniques, in particular, magnetic resonance imaging (MRI), are the most important tools for determining the possible etiology of epilepsy. Over the last few years, there have been many developments in data acquisition and analysis for both morphological and functional neuroimaging of people suffering from this condition. These innovations have increased the detection of underlying structural pathologies, which have till recently been classified as "cryptogenic" epilepsy. Cryptogenic epilepsy is often refractory to anti-epileptic drug treatment. In drug-resistant patients with structural or consistent functional lesions related to the epilepsy syndrome, surgery is the only treatment that can offer a seizure-free outcome. The pre-operative detection of the underlying structural condition increases the odds of successful surgical treatment of pharmacoresistant epilepsy. This article provides a comprehensive overview of neuroimaging techniques in epilepsy, highlighting recent advances and innovations and summarizes frequent etiologies of epilepsy in order to improve the diagnosis and management of patients suffering from seizures, especially young patients and children.
Collapse
Affiliation(s)
- Aikaterini Fitsiori
- Unit of Neurodiagnostic, Division of Neuroradiology, Geneva University Hospital, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| | | | - José Boto
- Unit of Neurodiagnostic, Division of Neuroradiology, Geneva University Hospital, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital and Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland.
| | - Maria Isabel Vargas
- Unit of Neurodiagnostic, Division of Neuroradiology, Geneva University Hospital, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland.
| |
Collapse
|