1
|
Bermudes-Contreras JD, Gutiérrez-Velázquez MV, Delgado-Alvarado EA, Torres-Ricario R, Cornejo-Garrido J. Hypoglycemic and Hypolipidemic Effects of Triterpenoid Standardized Extract of Agave durangensis Gentry. PLANTS (BASEL, SWITZERLAND) 2025; 14:894. [PMID: 40265815 DOI: 10.3390/plants14060894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025]
Abstract
Diabetes mellitus is a chronic, degenerative, and multifactorial disease characterized by hyperglycemia, and at least 537 million people suffered from diabetes in 2021. Agave durangensis Gentry, a species of agave native to the state of Durango, reports phenolic compounds, flavonols, flavonoids, and saponins and could be an alternative for the treatment of diabetes. The aim of this work was to identify the compounds in the leaves of Agave durangensis Gentry and their potential activity in diabetes. The leaf extract of Agave durangensis Gentry (EAD) was characterized by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), and different families of bioactive compounds were quantified by analytical methods. Probable pharmacological targets were identified in silico, and the inhibition of dipeptidyl peptidase-4 (DPP4) was validated in vitro. A model of hyperglycemia was established with streptozotocin in male Wistar rats, and we administered EAD intragastrically at a dose of 300 mg/kg, as well as combinations of the extract with metformin and sitagliptin over 30 days. Biochemical and histological parameters were analyzed. We identified thirty-six major compounds, where triterpenes represented 30% of the extract. Molecular docking showed that the extract could interact with α-glucosidases and DPP4 since a large number of compounds in the extract have a Δ G lower than that reported for the controls, and DPP4 inhibition was confirmed by in vitro assays. In vivo assays demonstrated that the administration of the extract was able to significantly decrease glucose levels by 56.75% and glycosylated hemoglobin by 52.28%, which is higher than that reported for sitagliptin with a decrease of 35.22%. In addition, the extract decreased triglycerides by 59.28% and very-low-density lipoprotein (VLDL) cholesterol by 60.27%, and when administered in combination with metformin, it decreased them more than when metformin was administered alone. For all the above reasons, Agave durangensis Gentry extract could be used for the development of phytomedicine for the treatment of diabetes.
Collapse
Affiliation(s)
- Juan David Bermudes-Contreras
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Gustavo A. Madero 07320, Ciudad de Mexico, Mexico
| | - Marcela Verónica Gutiérrez-Velázquez
- Laboratorio de Biotecnología, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Durango-IPN, Durango 34220, Durango, Mexico
| | - Eli Amanda Delgado-Alvarado
- Laboratorio de Biotecnología, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Durango-IPN, Durango 34220, Durango, Mexico
| | - René Torres-Ricario
- Laboratorio de Biotecnología, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Durango-IPN, Durango 34220, Durango, Mexico
| | - Jorge Cornejo-Garrido
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), Gustavo A. Madero 07320, Ciudad de Mexico, Mexico
| |
Collapse
|
2
|
Ghareghomi S, Arghavani P, Mahdavi M, Khatibi A, García-Jiménez C, Moosavi-Movahedi AA. Hyperglycemia-driven signaling bridges between diabetes and cancer. Biochem Pharmacol 2024; 229:116450. [PMID: 39059774 DOI: 10.1016/j.bcp.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Growing epidemiological evidence indicates an association between obesity, type 2 diabetes, and certain cancers, suggesting the existence of common underlying mechanisms in these diseases. Frequent hyperglycemias in type 2 diabetes promote pro-inflammatory responses and stimulate intracellular metabolic flux which rewires signaling pathways and influences the onset and advancement of different types of cancers. Here, we review the provocative impact of hyperglycemia on a subset of interconnected signalling pathways that regulate (i) cell growth and survival, (ii) metabolism adjustments, (iii) protein function modulation in response to nutrient availability (iv) and cell fate and proliferation and which are driven respectively by PI3K (Phosphoinositide 3-kinase), AMPK (AMP-activated protein kinase), O-GlcNAc (O-linked N-acetylglucosamine) and Wnt/β-catenin. Specifically, we will elaborate on their involvement in glucose metabolism, inflammation, and cell proliferation, highlighting their interplay in the pathogenesis of diabetes and cancer. Furthermore, the influence of antineoplastic and antidiabetic drugs on the unbridled cellular pathways will be examined. This review aims to inspire the next molecular studies to understand how type 2 diabetes may lead to certain cancers. This will contribute to personalized medicine and direct better prevention strategies.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos. Alcorcón, Madrid, Spain.
| | - Ali A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Bartnik M. Methoxyfuranocoumarins of Natural Origin-Updating Biological Activity Research and Searching for New Directions-A Review. Curr Issues Mol Biol 2024; 46:856-883. [PMID: 38275669 PMCID: PMC10813879 DOI: 10.3390/cimb46010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Plant secondary metabolites, including furanocoumarins, have attracted attention for decades as active molecules with therapeutic potential, especially those occurring in a limited number of species as evolutionarily specific and chemotaxonomically important. The most famous methoxyfuranocoumarins (MFCs), bergapten, xanthotoxin, isopimpinellin, phellopterin, byakangelicol, byakangelicin, isobergapten, pimpinellin, sphondin, as well as rare ones such as peucedanin and 8-methoxypeucedanin, apaensin, cnidilin, moellendorffiline and dahuribiethrins, have recently been investigated for their various biological activities. The α-glucosidase inhibitory activity and antioxidant potential of moellendorffiline, the antiproliferative and proapoptotic properties of non-UV-activated bergapten and xanthotoxin, the effect of MFC on the activity of tyrosinase, acetyl- and butylcholinesterase, and the role of these compounds as adjuvants in anticancer and antibacterial tests have been confirmed. The anticonvulsant effects of halfordin, the antidepressant effects of xanthotoxin, and the antiadipogenic, neuroprotective, anti-amyloid-β, and anti-inflammatory (via increasing SIRT 1 protein expression) properties of phellopterin, as well as the activity of sphondin against hepatitis B virus, have also attracted interest. It is worth paying attention to the agonistic effect of xanthotoxin on bitter taste receptors (TAS2Rs) on cardiomyocytes, which may be important in the future treatment of tachycardia, as well as the significant anti-inflammatory activity of dahuribiethrins. It should be emphasized that MFCs, although in many cases isolated for the first time many years ago, are still of great interest as bioactive molecules. The aim of this review is to highlight key recent developments in the study of the diverse biological activities of MFCs and attempt to highlight promising directions for their further research. Where possible, descriptions of the mechanisms of action of MFC are provided, which is related to the constantly discovered therapeutic potential of these molecules. The review covers the results of experiments from the last ten years (2014-2023) conducted on isolated natural cMFCs and includes the activity of molecules that have not been activated by UV rays.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Xu L, Chen G, Zhang L, He A, Li Y. Lixisenatide ameliorated lipopolysaccharide (LPS)-induced expression of mucin and inflammation in bronchial epithelial cells. J Biochem Mol Toxicol 2024; 38:e23618. [PMID: 38229325 DOI: 10.1002/jbt.23618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) induces serious social and economic burdens due to its high disability and mortality, the pathogenesis of which is highly involved with inflammation, oxidative stress (OS), and mechanism of mucin 5AC (MUC5AC) secretion. Lixisenatide is a selective glucagon-like peptide 1 receptor agonist recently reported to have anti-inflammatory properties. Our study will focus on the potential impact of lixisenatide on lipopolysaccharide (LPS)-induced mucin secretion and inflammation in 16 human bronchial epithelial (16HBE) cells to check its potential function in COPD. 16HBE cells were treated with LPS, with or without lixisenatide (10 and 20 nM) for 1 day. Remarkably declined cell viability, enhanced lactate dehydrogenase release, activated OS, and elevated release of inflammatory cytokines were observed in LPS-treated 16HBE cells, accompanied by the activation of nuclear factor-κB signaling, all of which were signally reversed by lixisenatide. Moreover, elevated expression and release of MUC5AC were observed in LPS-treated 16HBE cells but were markedly repressed by lixisenatide. Furthermore, the repressed nuclear factor erythroid 2-related factor 2 (Nrf2) level in LPS-treated 16HBE cells was notably rescued by lixisenatide. Lastly, following the knockdown of Nrf2, the protective function of lixisenatide on LPS-triggered MUC5AC release in 16HBE cells was significantly abrogated. Collectively, lixisenatide ameliorated LPS-induced expression of mucin and inflammation in bronchial epithelial cells by regulating Nrf2.
Collapse
Affiliation(s)
- Leiming Xu
- Department of Emergency, Binhai People's Hospital, Yancheng, Jiangsu Province, China
| | - Guoping Chen
- Department of Respiratory and Critical Care, Binhai People's Hospital, Yancheng, Jiangsu Province, China
| | - Leiming Zhang
- Department of Infectious Disease, Binhai People's Hospital, Yancheng, Jiangsu Province, China
| | - Aifeng He
- Department of Respiratory and Critical Care, Binhai People's Hospital, Yancheng, Jiangsu Province, China
| | - Yong Li
- Department of Critical Care Medicine, Binhai People's Hospital, Yancheng, Jiangsu Province, China
| |
Collapse
|
5
|
Wu J, Fu YS, Lin K, Huang X, Chen YJ, Lai D, Kang N, Huang L, Weng CF. A narrative review: The pharmaceutical evolution of phenolic syringaldehyde. Biomed Pharmacother 2022; 153:113339. [PMID: 35780614 DOI: 10.1016/j.biopha.2022.113339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
To better understand the pharmacological characters of syringaldehyde (SA), which is a key-odorant compound of whisky and brandy, this review article is the first to compile the published literature for molecular docking that were subsequently validated by in vitro and in vivo assays to predict and develop insights into the medicinal properties of SA in terms of anti-oxidation, anti-inflammation, and anti-diabetes. The molecular docking displayed significantly binding affinity for SA towards tumor necrosis factor-α, interleukin-6, and antioxidant enzymes when inflammation from myocardial infarction and spinal cord ischemia. Moreover, SA nicely docked with dipeptidyl peptidase-IV, glucagon-like peptide 1 receptor, peroxisome proliferator-activated receptor, acetylcholine M2 receptor, and acetylcholinesterase in anti-diabetes investigations. These are associated with (1) an increase glucose utilization and insulin sensitivity to an anti-hyperglycemic effect; and (2) to potentiate intestinal contractility to abolish the α-amylase reaction when concurrently reducing retention time and glucose absorption of the intestinal tract to achieve a glucose-lowering effect. In silico screening of multi-targets concomitantly with preclinical tests could provide a potential exploration for new indications for drug discovery and development.
Collapse
Affiliation(s)
- Jingyi Wu
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Yaw-Syan Fu
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Kaihuang Lin
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Xin Huang
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Yi-Jing Chen
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Dong Lai
- Medical Research Center, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| | - Ning Kang
- Department of Otorhinolaryngology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| | - Liyue Huang
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Ching-Feng Weng
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| |
Collapse
|
6
|
Lim WXJ, Gammon CS, von Hurst P, Chepulis L, Page RA. The Inhibitory Effects of New Zealand Pine Bark (Enzogenol®) on α-Amylase, α-Glucosidase, and Dipeptidyl Peptidase-4 (DPP-4) Enzymes. Nutrients 2022; 14:nu14081596. [PMID: 35458159 PMCID: PMC9029645 DOI: 10.3390/nu14081596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 12/29/2022] Open
Abstract
The New Zealand pine bark extract (Enzogenol®) has previously been shown to elicit acute hypoglycaemic effects in humans. The present study investigated the underlying mechanisms of Enzogenol® in reducing postprandial glucose in humans. The potential inhibitory action of Enzogenol® against digestive enzymes: α-amylase and α-glucosidase, and dipeptidyl peptidase-4 (DPP-4) enzyme was determined. Enzogenol® demonstrated the ability to inhibit all three enzymes: α-amylase enzyme activity (IC50 3.98 ± 0.11 mg/mL), α-glucosidase enzyme activity (IC50 13.02 ± 0.28 μg/mL), and DPP-4 enzyme activity (IC50 2.51 ± 0.04 mg/mL). The present findings indicate the potential for Enzogenol® to improve postprandial glycaemia by delaying carbohydrate digestion via the inhibition of digestive enzymes (α-amylase and α-glucosidase), and enhancing the incretin effect via inhibiting the dipeptidyl-peptidase-4 enzyme. The inhibitory actions of Enzogenol® on enzymes should therefore be further validated in humans for its potential use in type 2 diabetes mellitus prevention and management.
Collapse
Affiliation(s)
- Wen Xin Janice Lim
- School of Health Sciences, Massey University, Auckland 0632, New Zealand; (W.X.J.L.); (C.S.G.)
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Cheryl S. Gammon
- School of Health Sciences, Massey University, Auckland 0632, New Zealand; (W.X.J.L.); (C.S.G.)
| | - Pamela von Hurst
- School of Sport, Exercise and Nutrition, Massey University, Auckland 0632, New Zealand;
| | - Lynne Chepulis
- Waikato Medical Research Centre, Te Huataki Waiora School of Health, University of Waikato, Hamilton 3216, New Zealand;
| | - Rachel A. Page
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
- Centre for Metabolic Health Research, Massey University, Auckland 0632, New Zealand
- Correspondence: ; Tel.: +64-4801-5799 (ext. 63462)
| |
Collapse
|
7
|
The Multifunctional Role of Herbal Products in the Management of Diabetes and Obesity: A Comprehensive Review. Molecules 2022; 27:molecules27051713. [PMID: 35268815 PMCID: PMC8911649 DOI: 10.3390/molecules27051713] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity and diabetes are the most demanding health problems today, and their prevalence, as well as comorbidities, is on the rise all over the world. As time goes on, both are becoming big issues that have a big impact on people’s lives. Diabetes is a metabolic and endocrine illness set apart by hyperglycemia and glucose narrow-mindedness because of insulin opposition. Heftiness is a typical, complex, and developing overall wellbeing worry that has for quite some time been connected to significant medical issues in individuals, all things considered. Because of the wide variety and low adverse effects, herbal products are an important hotspot for drug development. Synthetic compounds are not structurally diverse and lack drug-likeness properties. Thus, it is basic to keep on exploring herbal products as possible wellsprings of novel drugs. We conducted this review of the literature by searching Scopus, Science Direct, Elsevier, PubMed, and Web of Science databases. From 1990 until October 2021, research reports, review articles, and original research articles in English are presented. It provides top to bottom data and an examination of plant-inferred compounds that might be utilized against heftiness or potentially hostile to diabetes treatments. Our expanded comprehension of the systems of activity of phytogenic compounds, as an extra examination, could prompt the advancement of remedial methodologies for metabolic diseases. In clinical trials, a huge number of these food kinds or restorative plants, as well as their bioactive compounds, have been shown to be beneficial in the treatment of obesity.
Collapse
|
8
|
Quek A, Kassim NK, Lim PC, Tan DC, Mohammad Latif MA, Ismail A, Shaari K, Awang K. α-Amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory effects of Melicope latifolia bark extracts and identification of bioactive constituents using in vitro and in silico approaches. PHARMACEUTICAL BIOLOGY 2021; 59:964-973. [PMID: 34347568 PMCID: PMC8344235 DOI: 10.1080/13880209.2021.1948065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/18/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Melicope latifolia (DC.) T. G. Hartley (Rutaceae) was reported to contain various phytochemicals including coumarins, flavonoids, and acetophenones. OBJECTIVE This study investigates the antidiabetic and antioxidant effects of M. latifolia bark extracts, fractions, and isolated constituents. MATERIALS AND METHODS Melicope latifolia extracts (hexane, chloroform, and methanol), fractions, and isolated constituents with varying concentrations (0.078-10 mg/mL) were subjected to in vitro α-amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory assay. Molecular docking was performed to study the binding mechanism of active compounds towards α-amylase and DPP-4 enzymes. The antioxidant activity of M. latifolia fractions and compounds were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and β-carotene bleaching assays. RESULTS Melicope latifolia chloroform extract showed the highest antidiabetic activity (α-amylase IC50: 1464.32 μg/mL; DPP-4 IC50: 221.58 μg/mL). Fractionation of chloroform extract yielded four major fractions (CF1-CF4) whereby CF3 showed the highest antidiabetic activity (α-amylase IC50: 397.68 μg/mL; DPP-4 IC50: 37.16 μg/mL) and resulted in β-sitosterol (1), halfordin (2), methyl p-coumarate (3), and protocatechuic acid (4). Isolation of compounds 2-4 from the species and their DPP-4 inhibitory were reported for the first time. Compound 2 showed the highest α-amylase (IC50: 197.53 μM) and β-carotene (88.48%) inhibition, and formed the highest number of molecular interactions with critical amino acid residues of α-amylase. The highest DPP-4 inhibition was exhibited by compound 3 (IC50: 911.44 μM). DISCUSSION AND CONCLUSIONS The in vitro and in silico analyses indicated the potential of M. latifolia as an alternative source of α-amylase and DPP-4 inhibitors. Further pharmacological studies on the compounds are recommended.
Collapse
Affiliation(s)
- Alexandra Quek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nur Kartinee Kassim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Pei Cee Lim
- Faculty of Pharmacy, Mahsa University, Bandar Saujana Putra, Jenjarom, Selangor, Malaysia
| | - Dai Chuan Tan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | | | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Natural Medicines & Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Chalichem NSS, Jupudi S, Yasam VR, Basavan D. Dipeptidyl peptidase-IV inhibitory action of Calebin A: An in silico and in vitro analysis. J Ayurveda Integr Med 2021; 12:663-672. [PMID: 34756798 PMCID: PMC8642699 DOI: 10.1016/j.jaim.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Dipeptidyl peptidase-IV (DPP-IV) inhibitors, the enhancers of incretin are used for the treatment of diabetes. The non-glycaemic actions of these drugs (under developmental stage) also proved that repurposing of these molecules may be advantageous for other few complicated disorders like cardiovascular diseases, Parkinson's disease, Alzheimer's disease, etc. OBJECTIVE: The present study was aimed to investigate the DPP-IV inhibitory potential of Calebin-A, one of the constituents of Curcuma longa. MATERIAL AND METHODS The phytoconstituent was subjected for various in silico studies (using Schrödinger Suite) like, Docking analysis, molecular mechanics combined with generalized Born model and solvent accessibility method (MMGBSA) and Induced fit docking (IFD) after validating the protein using Ramachandran plot. Further, the protein-ligand complex was subjected to molecular dynamic simulation studies for 50 nanoseconds. And finally, the results were confirmed through enzyme inhibition study. RESULTS Insilico results revealed possible inhibitory binding interactions in the catalytic pocket (importantly Glu205, Glu206 and Tyr 662 etc.) and binding affinity in terms of glide g-score and MMGBSA dG bind values were found to be -6.2 kcal/mol and -98.721 kcal/mol. Further, the inhibitory action towards the enzyme was confirmed by an enzyme inhibition assay, in which it showed dose-dependent inhibition, with maximum % inhibition of 55.9 at 26.3 μM. From molecular dynamic studies (50 nanoseconds), it was understood that Calebin A was found to be stable for about 30 nanoseconds in maintaining inhibitory interactions. CONCLUSION From the in silico and in vitro analysis, the current research emphasizes the consideration of Calebin A to be as a promising or lead compound for the treatment of several ailments where DPP-IV action is culprit.
Collapse
Affiliation(s)
- Nehru Sai Suresh Chalichem
- Department of Pharmacognosy and Phytochemistry, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru, INDIA), Ooty, 643001, India.
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru, INDIA), Ooty, 643001, India
| | - Venkata Ramesh Yasam
- Department of Pharmaceutics, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru, INDIA), Ooty, 643001, India
| | - Duraiswamy Basavan
- Department of Pharmacognosy and Phytochemistry, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru, INDIA), Ooty, 643001, India
| |
Collapse
|
10
|
Al-Kuraishy HM, Al-Gareeb AI, Qusty N, Alexiou A, Batiha GES. Impact of Sitagliptin in Non-Diabetic Covid-19 Patients. Curr Mol Pharmacol 2021; 15:683-692. [PMID: 34477540 DOI: 10.2174/1874467214666210902115650] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/09/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE In Coronavirus disease 2019 (Covid-19), SARS-CoV-2 may use dipeptidyl peptidase 4 (DPP4) as an entry-point in different tissues expressing these receptors. DPP4 inhibitors (DPP4Is), also named gliptins like sitagliptin, have anti-inflammatory and antioxidant effects; thereby lessen inflammatory and oxidative stress in diabetic Covid-19 patients. Therefore, the present study aimed to illustrate the potential beneficial effect of sitagliptin in managing Covid-19 in non-diabetic patients. METHODS A total number of 89 patients with Covid-19 were recruited from a single-center at the time of diagnosis. The recruited patients were assigned according to the standard therapy for Covid-19 and our interventional therapy into two groups; Group A: Covid-19 patients on the standard therapy (n=40) and Group B: Covid-19 patients on the standard therapy plus sitagliptin (n=49). The duration of this interventional study was 28 days according to the guideline in management patients with Covid-19. Routine laboratory investigations, serological tests, complete blood count (CBC), C-reactive protein (CRP), D-dimer, lactate dehydrogenase (LDH), and serum ferritin were measured to observed Covid-19 severity and complications. Lung computed tomography (CT) and clinical scores were evaluated. RESULTS The present study illustrated that sitagliptin add-on standard therapy improved clinical outcomes, radiological scores, and inflammatory biomarkers than standard therapy alone in non-diabetic patients with Covid-19 (P<0.01). CONCLUSIONS Sitagliptin add-on standard therapy in managing non-diabetic Covid-19 patients may have a robust beneficial effect by modulating inflammatory cytokines with subsequent good clinical outcomes.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad. Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad. Iraq
| | - Naeem Qusty
- Medical Laboratories Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca. Saudi Arabia
| | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
11
|
Weng L, Chen TH, Zheng Q, Weng WH, Huang L, Lai D, Fu YS, Weng CF. Syringaldehyde promoting intestinal motility with suppressing α-amylase hinders starch digestion in diabetic mice. Biomed Pharmacother 2021; 141:111865. [PMID: 34246193 DOI: 10.1016/j.biopha.2021.111865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
The antihyperglycemic potential of syringaldehyde has been previously investigated; however, the underlying mechanism remains unclear. In this study, we performed a postprandial glucose test (in vivo) including oral glucose tolerance test (OGTT) and oral starch tolerance test (OSTT) in fructose-induced diabetic mice on a high-fat diet for mimicking type 2 diabetes to explore the hypoglycemic efficacy of syringaldehyde and the underlined molecular involvement of syringaldehyde in a glucose-lowering effect. The results revealed that syringaldehyde dose-dependently suppressed blood glucose in both the OSTT and OGTT when referenced to acarbose and metformin, respectively. Surprisingly, syringaldehyde triggered jejunum motility (ex vivo) via activation of the muscarinic-type acetylcholine receptor. By performing virtual screening with molecular docking, the data showed that syringaldehyde nicely interacted with glucagon-like peptide 1 receptor (GLP-1R), peroxisome proliferator-activated receptor (PPAR), dipeptidyl peptidase-IV (DPP-4), acetylcholine M2 receptor, and acetylcholinesterase. These results showed that syringaldehyde can potentiate intestinal contractility to abolish the α-amylase reaction when concurrently reducing retention time and glucose absorption to achieve a glucose-lowering effect in diabetic mice, suggesting its potential therapeutic benefits with improvement for use as a prophylactic and treatment.
Collapse
Affiliation(s)
- Lebin Weng
- Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Ting-Hsu Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Qingyan Zheng
- Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Wei-Hao Weng
- Department of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Liyue Huang
- Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Dong Lai
- Medical Research Center, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| | - Yaw-Syan Fu
- Medical Research Center, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China; Department of Anatomy, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Ching-Feng Weng
- Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Medical Research Center, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| |
Collapse
|
12
|
Zabidi NA, Ishak NA, Hamid M, Ashari SE, Mohammad Latif MA. Inhibitory evaluation of Curculigo latifolia on α-glucosidase, DPP (IV) and in vitro studies in antidiabetic with molecular docking relevance to type 2 diabetes mellitus. J Enzyme Inhib Med Chem 2021; 36:109-121. [PMID: 33249946 PMCID: PMC7717572 DOI: 10.1080/14756366.2020.1844680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The inhibition of α-glucosidase and DPP enzymes capable of effectively reducing blood glucose level in the management of type 2 diabetes. The purpose of the present study is to evaluate the inhibitory potential of α-glucosidase and DPP (IV) activity including with the 2-NBDG uptake assay and insulin secretion activities through in vitro studies. The selected of active compounds obtained from the screening of compounds by LC-MS were docked with the targeted enzyme that involved in the mechanism of T2DM. From the results, root extracts displayed a better promising outcome in α-glucosidase (IC50 2.72 ± 0.32) as compared with the fruit extracts (IC50 3.87 ± 0.32). Besides, root extracts also displayed a better activity in the inhibition of DPP (IV), enhance insulin secretion and glucose uptake activity. Molecular docking results revealing that phlorizin binds strongly with α-glucosidase, DPP (IV) and Insulin receptor (IR) enzymes with achieving the lowest binding energy value. The present work suggests several of the compounds have the potential that contribute towards inhibiting α-glucosidase and DPP (IV) and thus effective in lowering post-prandial hyperglycaemia.
Collapse
Affiliation(s)
- Nur Athirah Zabidi
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Akmal Ishak
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Molecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti Efliza Ashari
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Muhammad Alif Mohammad Latif
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Effects of 22 traditional anti-diabetic medicinal plants on DPP-IV enzyme activity and glucose homeostasis in high-fat fed obese diabetic rats. Biosci Rep 2021; 41:227539. [PMID: 33416077 PMCID: PMC7823188 DOI: 10.1042/bsr20203824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
The present study investigated the effects of hot water extracts of 22 medicinal plants used traditionally to treat diabetes on Dipeptidyl peptidase-IV (DPP-IV) activity both in vitro and in vivo in high-fat fed (HFF) obese-diabetic rats. Fluorometric assay was employed to determine the DPP-IV activity. For in vivo studies, HFF obese-diabetic rats were fasted for 6 h and blood was sampled at different times before and after the oral administration of the glucose alone (18 mmol/kg body weight) or with either of the four most active plant extracts (250 mg/5 ml/kg, body weight) or established DPP-IV inhibitors (10 μmol/5 ml/kg). DPP-IV inhibitors: sitagliptin, vildagliptin and diprotin A, decreased enzyme activity by a maximum of 95-99% (P<0.001). Among the 22 natural anti-diabetic plants tested, AnogeissusLatifolia exhibited the most significant (P<0.001) inhibitory activity (96 ± 1%) with IC50 and IC25 values of 754 and 590 μg/ml. Maximum inhibitory effects of other extracts: Aegle marmelos, Mangifera indica, Chloropsis cochinchinensis, Trigonella foenum-graecum and Azadirachta indica were (44 ±7%; 38 ± 4%; 31±1%; 28±2%; 27±2%, respectively). A maximum of 45% inhibition was observed with >25 μM concentrations of selected phytochemicals (rutin). A.latifolia, A. marmelos, T. foenum-graecum and M. indica extracts improved glucose tolerance, insulin release, reduced DPP-IV activity and increased circulating active GLP-1 in HFF obese-diabetic rats (P<0.05-0.001). These results suggest that ingestion of selected natural anti-diabetic plants, in particular A. latifolia, A. marmelos, T. foenum-graecum and M. indica can substantially inhibit DPP-IV and improve glucose homeostasis, thereby providing a useful therapeutic approach for the treatment of T2DM.
Collapse
|
14
|
Malison A, Arpanutud P, Keeratipibul S. Chicken foot broth byproduct: A new source for highly effective peptide-calcium chelate. Food Chem 2020; 345:128713. [PMID: 33310253 DOI: 10.1016/j.foodchem.2020.128713] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
As a means of adding value, chicken foot broth byproduct can be processed to obtain calcium and bioactive peptides from the separated bones and meat residues. In this study, cleaned, dried, and powdered bones yielded 31.4 ± 0.6% calcium content. The meat residues were hydrolyzed to obtain over a hundred distinctive peptides, which were analyzed using LC-MS/MS and the SpirPep web-based tool. The peptides were rich in Glu, Asp, Lys, Gly and Leu, and also exhibited diverse bioactivities, among them primarily inhibition of dipeptidyl peptidase IV and angiotensin-converting enzyme. Calcium chelation assay determined the peptides to bind calcium at 235.7 ± 20.0 mg/g peptide-calcium chelate. Caco-2 cells treated with the chelate at calcium concentrations of 0-10 mM exhibited enhanced absorption relative to CaCl2. This demonstrates that calcium and chelating peptides generated from the same byproduct can produce peptide-calcium chelate, a potential ingredient in functional foods.
Collapse
Affiliation(s)
- Arichaya Malison
- Technopreneurship and Innovation Management Program, Graduate School Chulalongkorn University, Chamchuri 10 Building M1 Floor, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Pornlert Arpanutud
- School of Liberal Arts, King Mongkut's University of Technology Thonburi, 126 Pracha-Uthit Road, Bangmod Thungkru, Bangkok 10140, Thailand
| | - Suwimon Keeratipibul
- Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
15
|
Okechukwu P, Sharma M, Tan WH, Chan HK, Chirara K, Gaurav A, Al-Nema M. In-vitro anti-diabetic activity and in-silico studies of binding energies of palmatine with alpha-amylase, alpha-glucosidase and DPP-IV enzymes. PHARMACIA 2020. [DOI: 10.3897/pharmacia.67.e58392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Palmatine a protoberberine alkaloid has been previously reported to possess in vivo antidiabetic and antioxidant property. The aim of the experiment is to evaluate the in vitro antidiabetic activity and in-silico studies of the binding energies of Palmatine, acarbose, and Sitagliptin with the three enzymes of alpha-amylase, alpha-glucosidase, and dipeptidyl peptidase-IV (DPP-IV). The in vitro antidiabetic study was done by evaluating the inhibitory effect of palmatine on the activities of alpha-amylase, alpha-glucosidase, and DPP-IV. Acarbose, and sitagliptin was used as standard drug. The molecular docking study was performed to study the binding interactions of palmatine with alpha-glucosidase, a-amylase, and DPP-IV. The binding interactions were compared with the standard compounds Sitagliptin and acarbose. Palmatine with IC50 (1.31 ± 0.27 µM) showed significant difference of (< 0.0001) higher inhibiting effect on alpha-amylase and weak inhibiting effect on alpha-glucosidase enzyme with IC50 (9.39 ± 0.27 µM) and DPP-IV with IC50 (8.7 ± 1.82 µM). Palmatine possess inhibition effect on the three enzymes.
Collapse
|
16
|
Xu F, Mejia EGD, Chen H, Rebecca K, Pan M, He R, Yao Y, Wang L, Ju X. Assessment of the DPP-IV inhibitory activity of a novel octapeptide derived from rapeseed using Caco-2 cell monolayers and molecular docking analysis. J Food Biochem 2020; 44:e13406. [PMID: 32734634 DOI: 10.1111/jfbc.13406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
The Octapeptide ELHQEEPL, which was identified from the rapeseed protein napin showed prominent Dipeptidyl peptidase-IV (DPP-IV) inhibitory activity. The objective of this study was to investigate the DPP-IV inhibitory activity and transepithelial transport of ELHQEEPL in an approaching intestinal condition using Caco-2 cell monolayers. ELHQEEPL and its degraded fragments EL, HQEEP, and methylated ELHQEEPL were transported across Caco-2 cell monolayers through different pathways. Compared with the nonbiological enzyme inhibition test, the in vitro experiment on Caco-2 cell monolayers showed that the IC50 value of DPP-IV inhibition increased by 43.11% for ELHQEEPL. There was no significant change in DPP-IV gene expression in the Caco-2 cell monolayers upon treatment with ELHQEEPL. Furthermore, molecular docking predicted that the weaker binding between inhibitory peptide and enzyme for the degradation products from ELHQEEPL during transepithelial transport greatly limited its role in inhibiting DPP-IV. PRACTICAL APPLICATIONS: The DPP-IV inhibitory activity of ELHQEEPL was confirmed using Caco-2 cell monolayers as a novel assessment tool, although its potency was reduced by metabolic degradation. In general, this study reported the use of Caco-2 cell monolayers as a tool for comprehensively studying peptides as sources of DPP-IV inhibitors. A Caco-2 cell-based approach with molecular docking can be adapted for the investigation of intestinal absorption and activity attenuation of food peptides being considered for enzymatic action. Moreover, since the Caco-2 cells express a wide range of enzymes, this method can be used for screening for other active food peptides such as for the inhibitors of ACE and a-glucosidase.
Collapse
Affiliation(s)
- Feiran Xu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hong Chen
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kowalski Rebecca
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mengmeng Pan
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Yijun Yao
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Xingrong Ju
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| |
Collapse
|
17
|
Legerská B, Chmelová D, Ondrejovič M, Miertuš S. The TLC-Bioautography as a Tool for Rapid Enzyme Inhibitors detection - A Review. Crit Rev Anal Chem 2020; 52:275-293. [PMID: 32744081 DOI: 10.1080/10408347.2020.1797467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microorganisms and plants can be important sources of many compounds with potential pharmaceutical applications. Extraction of these matrices is one of the ways of identifying the presence of inhibitory active substances against enzymes whose high activity leads to serious human diseases including cancer, Parkinson's or Crohn's diseases. The isolation and purification of inhibitors are time-consuming and expensive steps in the analysis of the crude extract and therefore, it is necessary to find a fast, efficient, and inexpensive method for screening extracts of interest. TLC-Bioautography combines the separation of the extract on a thin layer with its subsequent biological analysis. TLC-Bioautography methods have been developed for several classes of enzymes including oxidoreductases, hydrolases and isomerases, and there is a potential for developing functional methods for other classes of enzymes. This review summarizes known TLC-Bioautography methods and their applications for determining the presence of enzyme inhibitors in extracts and compares the effectiveness of different methodological approaches. It also indicates the current state and perspective of the development of TLC-Bioautography and its possible future applications.
Collapse
Affiliation(s)
- Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia.,ICARST n.o., Bratislava, Slovakia
| |
Collapse
|
18
|
Mason E, L’Hocine L, Achouri A, Pitre M, Karboune S. Health Promoting Bioactive Properties of Novel Hairless Canary Seed Flour after In Vitro Gastrointestinal Digestion. Foods 2020; 9:E932. [PMID: 32674503 PMCID: PMC7404810 DOI: 10.3390/foods9070932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
The bioactive properties and health-promoting effects of two novel yellow (C09052, C05041) and two brown (Calvi, Bastia) hairless canary seed (Phalaris canariensis L.) cultivars were investigated in comparison to two common cereal grains (wheat and oat). The cereal flours were digested using the standardized INFOGEST in vitro human gastrointestinal digestion model. The three-kilo dalton molecular weight cutoff (3 kDa MWCO) permeate of the generated digestates was assessed in vitro for their antioxidant, chelating, antihypertensive and antidiabetic activities. The results showed no significant differences in studied bioactivities between yellow and brown canary seed cultivars, except for antioxidant activity by the DPPH and chelating Fe2+ assays, where brown cultivars had higher activities. Canary seeds had superior or equivalent antioxidant activity than those from oat and wheat. The anti-hypertensive activity (Angiotensin-converting enzyme (ACE) inhibition) in yellow canary seed cultivars was significantly higher than that of oat and wheat, particularly for C09052 and Calvi varieties. Peptides exhibiting the highest antihypertensive activity from the permeate of the C09052 canary seed variety were further fractionated and identified by mass spectrometry. Forty-six peptides were identified belonging to 18 proteins from the Pooideae subfamily. Fourteen of the parent proteins were homologous to barley proteins. Peptides were analyzed in silico to determine potential bioactivity based on their amino acid composition. All 46 peptides had potential anti-hypertensive and anti-diabetic activities and 20 had potential antioxidant activity, thereby validating the in vitro assay data. Canary seed peptides also exhibited potential antiamnestic, antithrombotic, immunostimulating, opioid and neuro-activity, demonstrating important potential for health promoting effects, particularly against cardiovascular disease.
Collapse
Affiliation(s)
- Emily Mason
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC J2S 8E3, Canada; (E.M.); (A.A.); (M.P.)
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University 21, 111 Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Lamia L’Hocine
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC J2S 8E3, Canada; (E.M.); (A.A.); (M.P.)
| | - Allaoua Achouri
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC J2S 8E3, Canada; (E.M.); (A.A.); (M.P.)
| | - Mélanie Pitre
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, QC J2S 8E3, Canada; (E.M.); (A.A.); (M.P.)
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University 21, 111 Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|