1
|
Vijayaraghavan R, Loganathan S, Valapa RB. Fabrication of GelMA - Agarose Based 3D Bioprinted Photocurable Hydrogel with In Vitro Cytocompatibility and Cells Mirroring Natural Keratocytes for Corneal Stromal Regeneration. Macromol Biosci 2024; 24:e2400136. [PMID: 39096155 DOI: 10.1002/mabi.202400136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Indexed: 08/05/2024]
Abstract
The complex anatomy of the cornea and the subsequent keratocyte-fibroblast transition have always made corneal stromal regeneration difficult. Recently, 3D printing has received considerable attention in terms of fabrication of scaffolds with precise dimension and pattern. In the current work, 3D printable polymer hydrogels made of GelMA/agarose are formulated and its rheological properties are evaluated. Despite the variation in agarose content, both the hydrogels exhibited G'>G'' modulus. A prototype for 3D stromal model is created using Solid Works software, mimicking the anatomy of an adult cornea. The fabrication of 3D-printed hydrogels is performed using pneumatic extrusion. The FTIR analysis speculated that the hydrogel is well crosslinked and established strong hydrogen bonding with each other, thus contributing to improved thermal and structural stability. The MTT analysis revealed a higher rate of cell proliferation on the hydrogels. The optical analysis carried out on the 14th day of incubation revealed that the hydrogels exhibit transparency matching with natural corneal stromal tissue. Specific protein marker expression confirmed the keratocyte phenotype and showed that the cells do not undergo terminal differentiation into stromal fibroblasts. The findings of this work point to the potential of GelMA/A hydrogels as a novel biomaterial for corneal stromal tissue engineering.
Collapse
Affiliation(s)
- Renuka Vijayaraghavan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sravanthi Loganathan
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Babu Valapa
- Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Gingras AA, Jansen PA, Smith C, Zhang X, Niu Y, Zhao Y, Roberts CJ, Herderick ED, Swindle-Reilly KE. 3D Bioprinting of Acellular Corneal Stromal Scaffolds with a Low Cost Modified 3D Printer: A Feasibility Study. Curr Eye Res 2023; 48:1112-1121. [PMID: 37669915 DOI: 10.1080/02713683.2023.2251172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/21/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023]
Abstract
PURPOSE Loss of corneal transparency is one of the major causes of visual loss, generating a considerable health and economic burden globally. Corneal transplantation is the leading treatment procedure, where the diseased cornea is replaced by donated corneal tissue. Despite the rise of cornea donations in the past decade, there is still a huge gap between cornea supply and demand worldwide. 3D bioprinting is an emerging technology that can be used to fabricate tissue equivalents that resemble the native tissue, which holds great potential for corneal tissue engineering application. This study evaluates the manufacturability of 3D bioprinted acellular corneal grafts using low-cost equipment and software, not necessarily designed for bioprinting applications. This approach allows access to 3D printed structures where commercial 3D bioprinters are cost prohibitive and not readily accessible to researchers and clinicians. METHODS Two extrusion-based methods were used to 3D print acellular corneal stromal scaffolds with collagen, alginate, and alginate-gelatin composite bioinks from a digital corneal model. Compression testing was used to determine moduli. RESULTS The printed model was visually transparent with tunable mechanical properties. The model had central radius of curvature of 7.4 mm, diameter of 13.2 mm, and central thickness of 0.4 mm. The compressive secant modulus of the material was 23.7 ± 1.7 kPa at 20% strain. 3D printing into a concave mold had reliability advantages over printing into a convex mold. CONCLUSIONS The printed corneal models exhibited visible transparency and a dome shape, demonstrating the potential of this process for the preparation of acellular partial thickness corneal replacements. The modified printing process presented a low-cost option for corneal bioprinting.
Collapse
Affiliation(s)
- Amelia A Gingras
- Center for Design and Manufacturing Excellence, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Peter A Jansen
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Caroline Smith
- Center for Design and Manufacturing Excellence, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Xu Zhang
- Center for Design and Manufacturing Excellence, The Ohio State University, Columbus, OH, USA
| | - Ye Niu
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
| | - Yi Zhao
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Cynthia J Roberts
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Edward D Herderick
- Center for Design and Manufacturing Excellence, The Ohio State University, Columbus, OH, USA
| | - Katelyn E Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
4
|
Boix-Lemonche G, Nagymihaly RM, Niemi EM, Josifovska N, Johansen S, Moe MC, Scholz H, Petrovski G. Intracorneal Implantation of 3D Bioprinted Scaffolds Containing Mesenchymal Stromal Cells Using Femtosecond-Laser-Assisted Intrastromal Keratoplasty. Macromol Biosci 2023; 23:e2200422. [PMID: 36729619 DOI: 10.1002/mabi.202200422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/27/2022] [Indexed: 02/03/2023]
Abstract
Injury of the cornea is a complex biological process. Regeneration of the corneal stroma can be facilitated by the presence of mesenchymal stromal cells (MSCs) and application of tissue equivalents. A new tissue-engineering strategy for corneal stroma regeneration is presented using cellularized 3D bioprinted hydrogel constructs implanted into organ cultured porcine corneas using femtosecond laser-assisted intrastromal keratoplasty. The ex vivo cultured, MSC-loaded 3D bioprinted structures remain intact, support cell survival, and contain de novo synthesized extracellular matrix components and migrating cells throughout the observation period. At day 14 postimplantation, the cellularized tissue equivalents contain few or no cells, as demonstrated by optical coherence tomography imaging and immunofluorescent staining. This study successfully combines a laboratory-based method with modern, patient-care practice to produce a cell-laden tissue equivalent for corneal implantation. Optimal bioink composition and cellularization of tissue equivalents are essential in fine-tuning a method to promote the current technique as a future treatment modality.
Collapse
Affiliation(s)
- Gerard Boix-Lemonche
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
| | | | - Essi M Niemi
- Vascular Biology and Surgery Group, Institute for Surgical Research and Department of Vascular Surgery, Oslo University Hospital, Post Box 4950, Oslo, Nydalen, N-0424, Norway
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0349, Norway
| | - Natasha Josifovska
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
| | | | - Morten C Moe
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, 0450, Norway
| | - Hanne Scholz
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0349, Norway
- Cell Transplantation and Tissue Engineering Group, Institute for Surgical Research and Section for Transplant Surgery, Oslo University Hospital, Post Box 4950, Oslo, Nydalen, N-0424, Norway
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, 0450, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| |
Collapse
|
5
|
Li R, Zhao Y, Zheng Z, Liu Y, Song S, Song L, Ren J, Dong J, Wang P. Bioinks adapted for in situ bioprinting scenarios of defect sites: a review. RSC Adv 2023; 13:7153-7167. [PMID: 36875875 PMCID: PMC9982714 DOI: 10.1039/d2ra07037e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
In situ bioprinting provides a reliable solution to the problem of in vitro tissue culture and vascularization by printing tissue directly at the site of injury or defect and maturing the printed tissue using the natural cell microenvironment in vivo. As an emerging field, in situ bioprinting is based on computer-assisted scanning results of the defect site and is able to print cells directly at this site with biomaterials, bioactive factors, and other materials without the need to transfer prefabricated grafts as with traditional in vitro 3D bioprinting methods, and the resulting grafts can accurately adapt to the target defect site. However, one of the important reasons hindering the development of in situ bioprinting is the absence of suitable bioinks. In this review, we will summarize bioinks developed in recent years that can adapt to in situ printing scenarios at the defect site, considering three aspects: the in situ design strategy of bioink, the selection of commonly used biomaterials, and the application of bioprinting to different treatment scenarios.
Collapse
Affiliation(s)
- Ruojing Li
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Yeying Zhao
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Zhiqiang Zheng
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Yangyang Liu
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Shurui Song
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Lei Song
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Jianan Ren
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
- Department of General Surgery, The Affiliated General Hospital of Nanjing Military Region 305 Zhongshan East Road Nanjing 210016 China
| | - Jing Dong
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
- Special Medicine Department, Medical College, Qingdao University Qingdao 266071 China
| | - Peige Wang
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| |
Collapse
|
6
|
Afshar A, Gultekinoglu M, Edirisinghe M. Binary polymer systems for biomedical applications. INTERNATIONAL MATERIALS REVIEWS 2023; 68:184-224. [DOI: 10.1080/09506608.2022.2069451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/08/2022] [Indexed: 01/06/2025]
Affiliation(s)
- Ayda Afshar
- Department of Mechanical Engineering, University College London, London, UK
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
7
|
Jia S, Bu Y, Lau DSA, Lin Z, Sun T, Lu WW, Lu S, Ruan C, Chan CHJ. Advances in 3D bioprinting technology for functional corneal reconstruction and regeneration. Front Bioeng Biotechnol 2023; 10:1065460. [PMID: 36686254 PMCID: PMC9852906 DOI: 10.3389/fbioe.2022.1065460] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Corneal transplantation constitutes one of the major treatments in severe cases of corneal diseases. The lack of cornea donors as well as other limitations of corneal transplantation necessitate the development of artificial corneal substitutes. Biosynthetic cornea model using 3D printing technique is promising to generate artificial corneal structure that can resemble the structure of the native human cornea and is applicable for regenerative medicine. Research on bioprinting artificial cornea has raised interest into the wide range of materials and cells that can be utilized as bioinks for optimal clarity, biocompatibility, and tectonic strength. With continued advances in biomaterials science and printing technology, it is believed that bioprinted cornea will eventually achieve a level of clinical functionality and practicality as to replace donated corneal tissues, with their associated limitations such as limited or unsteady supply, and possible infectious disease transmission. Here, we review the literature on bioprinting strategies, 3D corneal modelling, material options, and cellularization strategies in relation to keratoprosthesis design. The progress, limitations and expectations of recent cases of 3D bioprinting of artifial cornea are discussed. An outlook on the rise of 3D bioprinting in corneal reconstruction and regeneration is provided.
Collapse
Affiliation(s)
- Shuo Jia
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yashan Bu
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dzi-Shing Aaron Lau
- Department of Orthopedic and Traumatology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zhizhen Lin
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tianhao Sun
- Department of Orthopedic and Traumatology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Gangqing Biomedical Technology Co. Ltd, Shenzhen, China
| | - Weijia William Lu
- Department of Orthopedic and Traumatology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sheng Lu
- Department of Orthopedic Surgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Changshun Ruan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cheuk-Hung Jonathan Chan
- Department of Ophthalmology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Balters L, Reichl S. 3D bioprinting of corneal models: A review of the current state and future outlook. J Tissue Eng 2023; 14:20417314231197793. [PMID: 37719307 PMCID: PMC10504850 DOI: 10.1177/20417314231197793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/13/2023] [Indexed: 09/19/2023] Open
Abstract
The cornea is the outermost layer of the eye and serves to protect the eye and enable vision by refracting light. The need for cornea organ donors remains high, and the demand for an artificial alternative continues to grow. 3D bioprinting is a promising new method to create artificial organs and tissues. 3D bioprinting offers the precise spatial arrangement of biomaterials and cells to create 3D constructs. As the cornea is an avascular tissue which makes it more attractive for 3D bioprinting, it could be one of the first tissues to be made fully functional via 3D bioprinting. This review discusses the most common 3D bioprinting technologies and biomaterials used for 3D bioprinting corneal models. Additionally, the current state of 3D bioprinted corneal models, especially specific characteristics such as light transmission, biomechanics, and marker expression, and in vivo studies are discussed. Finally, the current challenges and future prospects are presented.
Collapse
Affiliation(s)
- Leon Balters
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Reichl
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
9
|
Nie L, Li Y, Liu Y, Shi L, Chen H. Recent Applications of Contact Lenses for Bacterial Corneal Keratitis Therapeutics: A Review. Pharmaceutics 2022; 14:2635. [PMID: 36559128 PMCID: PMC9786638 DOI: 10.3390/pharmaceutics14122635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Corneal keratitis is a common but severe infectious disease; without immediate and efficient treatment, it can lead to vision loss within a few days. With the development of antibiotic resistance, novel approaches have been developed to combat corneal keratitis. Contact lenses were initially developed to correct vision. Although silicon hydrogel-based contact lenses protect the cornea from hypoxic stress from overnight wear, wearing contact lenses was reported as an essential cause of corneal keratitis. With the development of technology, contact lenses are integrated with advanced functions, and functionalized contact lenses are used for killing bacteria and preventing infectious corneal keratitis. In this review, we aim to examine the current applications of contact lenses for anti-corneal keratitis.
Collapse
Affiliation(s)
- Linyan Nie
- Department of Ophthalmology, The People’s Hospital of Yuhuan, Yuhuan 317600, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuanfeng Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yong Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Linqi Shi
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Huiyun Chen
- Department of Ophthalmology, The People’s Hospital of Yuhuan, Yuhuan 317600, China
| |
Collapse
|
10
|
Lin C, Li W, Fan X. S1P promotes corneal trigeminal neuron differentiation and corneal nerve repair via upregulating nerve growth factor expression in a mouse model. Open Life Sci 2022; 17:1324-1332. [PMID: 36313859 PMCID: PMC9559473 DOI: 10.1515/biol-2022-0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022] Open
Abstract
Corneal disease was the most critical cause of vision loss. This study aimed to research a new method and provide a theoretical basis for treating corneal injury. A mice corneal epithelial injury model was constructed by the method of mechanical curettage. Models were treated with sphingosine 1-phosphate (S1P) and si-Spns2. An immunofluorescence assay was used to detect βIII-tubulin. The expressions of neurotrophic factor, S1P transporter, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway-related proteins were detected by western blot. Hematoxylin-eosin staining was processed to detect the effect of SIP on corneal repair in mice. si-Spns2 inhibited the effect of S1P. S1P significantly repaired the corneal injury, while si-Spns2 treatment made it more severe. Moreover, S1P could significantly increase the levels of NGF, BDNF, GDNF, Spns2, and p-ERK1/2. si-Spns2 inhibits the effect of S1P in the expression of these proteins. S1P significantly increased axonal differentiation of trigeminal ganglion neurons, which was inhibited after si-Spns2 treatment. S1P promoted corneal trigeminal neuron differentiation and corneal nerve repair via upregulating nerve growth factor expression in a mouse model. Treatment of corneal injury by S1P may be an effective approach.
Collapse
Affiliation(s)
- Chaoqun Lin
- Department of Neurosurgery, University of Chinese Academy of Sciences-Shenzhen Hospital (Guangming District), Shenzhen 518106, Guangdong, China
| | - Weina Li
- Department of Glaucoma and Cataract, Liuzhou Aier Eye Hospital, Affiliated Hospital of Aier Ophthalmology College of Central South University, 151 Liushi Road, Yufeng District, Liuzhou 545005, Guangxi, China
| | - Xuezheng Fan
- Department of Neurosurgery, University of Chinese Academy of Sciences-Shenzhen Hospital (Guangming District), Shenzhen 518106, Guangdong, China
| |
Collapse
|
11
|
The emerging role of 3D-printing in ocular drug delivery: Challenges, current status, and future prospects. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
13
|
Hu S, Wang Z, Jin C, Chen Q, Fang Y, Jin J, Chen J, Lu L, Tian H, Xu J, Gao F, Wang J, Zhang J, Cui HP, Xu GT, Ou Q. Human amniotic epithelial cell-derived extracellular vesicles provide an extracellular matrix-based microenvironment for corneal injury repair. J Tissue Eng 2022; 13:20417314221122123. [PMID: 36093432 PMCID: PMC9452818 DOI: 10.1177/20417314221122123] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022] Open
Abstract
To study the biological functions and applications of human amniotic epithelial cell-derived extracellular vesicles (hAEC-EVs), the cargos of hAEC-EVs were analyzed using miRNA sequencing and proteomics analysis. The hAECs and hAEC-EVs in this study had specific characteristics. Multi-omics analyses showed that extracellular matrix (ECM) reorganization, inhibition of excessive myofibroblasts, and promotion of target cell adhesion to the ECM were their primary functions. We evaluated the application of hAEC-EVs for corneal alkali burn healing in rabbits and elucidated the fundamental mechanisms. Slit-lamp images revealed that corneal alkali burns induced central epithelial loss, stromal haze, iris, and pupil obscurity in rabbits. Slit-lamp examination and histological findings indicated that hAEC-EVs facilitated re-epithelialization of the cornea after alkali burns, reduced scar formation and promoted the restoration of corneal tissue transparency. Significantly fewer α-SMA-positive myofibroblasts were observed in the hAEC-EV-treated group than the PBS group. HAEC-EVs effectively promoted the proliferation and migration of hCECs and hCSCs in vitro and activated the focal adhesion signaling pathway. We demonstrated that hAEC-EVs were excellent cell-free candidates for the treatment of ECM lesion-based diseases, including corneal alkali burns. HAEC-EVs promoted ECM reorganization and cell adhesion of target tissues or cells via orderly activation of the focal adhesion signaling pathway.
Collapse
Affiliation(s)
- Shuqin Hu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Wang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Qizhen Chen
- Department of Obstetrics and Gynecology, Wusong Branch, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yuchen Fang
- Department of General Surgery, Affiliated Renhe Hospital, Shanghai University, Shanghai, China
| | - Jiahui Jin
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jie Chen
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jingying Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Hong-Ping Cui
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Larochelle RD, Mann SE, Ifantides C. 3D Printing in Eye Care. Ophthalmol Ther 2021; 10:733-752. [PMID: 34327669 PMCID: PMC8320416 DOI: 10.1007/s40123-021-00379-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional printing enables precise modeling of anatomical structures and has been employed in a broad range of applications across medicine. Its earliest use in eye care included orbital models for training and surgical planning, which have subsequently enabled the design of custom-fit prostheses in oculoplastic surgery. It has evolved to include the production of surgical instruments, diagnostic tools, spectacles, and devices for delivery of drug and radiation therapy. During the COVID-19 pandemic, increased demand for personal protective equipment and supply chain shortages inspired many institutions to 3D-print their own eye protection. Cataract surgery, the most common procedure performed worldwide, may someday make use of custom-printed intraocular lenses. Perhaps its most alluring potential resides in the possibility of printing tissues at a cellular level to address unmet needs in the world of corneal and retinal diseases. Early models toward this end have shown promise for engineering tissues which, while not quite ready for transplantation, can serve as a useful model for in vitro disease and therapeutic research. As more institutions incorporate in-house or outsourced 3D printing for research models and clinical care, ethical and regulatory concerns will become a greater consideration. This report highlights the uses of 3D printing in eye care by subspecialty and clinical modality, with an aim to provide a useful entry point for anyone seeking to engage with the technology in their area of interest.
Collapse
Affiliation(s)
- Ryan D Larochelle
- Department of Ophthalmology, University of Colorado, Sue Anschutz-Rodgers Eye Center, 1675 Aurora Court, F731, Aurora, CO, 80045, USA
| | - Scott E Mann
- Department of Otolaryngology, University of Colorado, Aurora, CO, USA
- Department of Surgery, Denver Health Medical Center, Denver, CO, USA
| | - Cristos Ifantides
- Department of Ophthalmology, University of Colorado, Sue Anschutz-Rodgers Eye Center, 1675 Aurora Court, F731, Aurora, CO, 80045, USA.
- Department of Surgery, Denver Health Medical Center, Denver, CO, USA.
| |
Collapse
|
15
|
Tan Y, Zhang M, Pan Y, Feng H, Xie L. Suppression of the caspase-1/GSDMD-mediated pyroptotic signaling pathway through dexamethasone alleviates corneal alkali injuries. Exp Eye Res 2021; 214:108858. [PMID: 34822855 DOI: 10.1016/j.exer.2021.108858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
The pathological mechanism of corneal injuries mediated by alkali burns are associated with Nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing 3 protein (NLRP3)-related corneal sterile inflammation. Whether the executive protein gasdermin D (GSDMD) of pyroptosis mediated by the NLRP3 inflammasome is present in alkali-induced corneal lesions remains unclear. Dexamethasone (Dex) is a commonly used drug for ocular surface diseases that can maintain corneal transparency and anti-inflammatory effects by topical administration. Here, we presented evidence that the effect of Dex on the pyroptosis-related caspase-1/GSDMD pathway in corneal alkali burns (CABs). We assessed the clinical manifestations and histological characteristics of the placebo group, 0.05% Dex group, 0.1% Dex group on day 3 or day 7 postburn and the control group (healthy corneas). The expression of factors (including NLRP3, caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N termini, pro-interleukin(IL)-1β, IL-1β, pro-IL-18 and IL-18) involved in the pyroptosis related caspase-1/GSDMD signaling pathway was demonstrated by molecular experiments in CAB. Alkali burns can upregulate the originally relatively dim expression of NLRP3, caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, pro-IL-1β, pro-IL-18, IL-1β and IL-18 in the healthy corneal epithelium and stroma. However, Dex can reverse the enhanced expression at the two timepoints. Corneal sterile inflammation can activate the NLRP3 inflammasome through the innate immune response mechanism and then activate the pyroptosis-related caspase-1/GSDMD signaling pathway. In addition, Dex can inhibit pyroptosis through this pathway.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Ophthalmology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Min Zhang
- Department of Ophthalmology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China.
| | - Yingzhe Pan
- Department of Ophthalmology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Huanhuan Feng
- Department of Ophthalmology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Lixia Xie
- Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| |
Collapse
|
16
|
Mijanović O, Pylaev T, Nikitkina A, Artyukhova M, Branković A, Peshkova M, Bikmulina P, Turk B, Bolevich S, Avetisov S, Timashev P. Tissue Engineering Meets Nanotechnology: Molecular Mechanism Modulations in Cornea Regeneration. MICROMACHINES 2021; 12:mi12111336. [PMID: 34832752 PMCID: PMC8618371 DOI: 10.3390/mi12111336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, tissue engineering is one of the most promising approaches for the regeneration of various tissues and organs, including the cornea. However, the inability of biomaterial scaffolds to successfully integrate into the environment of surrounding tissues is one of the main challenges that sufficiently limits the restoration of damaged corneal tissues. Thus, the modulation of molecular and cellular mechanisms is important and necessary for successful graft integration and long-term survival. The dynamics of molecular interactions affecting the site of injury will determine the corneal transplantation efficacy and the post-surgery clinical outcome. The interactions between biomaterial surfaces, cells and their microenvironment can regulate cell behavior and alter their physiology and signaling pathways. Nanotechnology is an advantageous tool for the current understanding, coordination, and directed regulation of molecular cell-transplant interactions on behalf of the healing of corneal wounds. Therefore, the use of various nanotechnological strategies will provide new solutions to the problem of corneal allograft rejection, by modulating and regulating host-graft interaction dynamics towards proper integration and long-term functionality of the transplant.
Collapse
Affiliation(s)
- Olja Mijanović
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- Correspondence:
| | - Timofey Pylaev
- Saratov Medical State University N.A. V.I. Razumovsky, 112 Bolshaya Kazachya St., 410012 Saratov, Russia;
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Angelina Nikitkina
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
| | - Margarita Artyukhova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
| | - Ana Branković
- Department of Forensic Engineering, University of Criminal Investigation and Police Studies, 196 Cara Dušana St., Belgrade 11000, Serbia;
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
| | - Boris Turk
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sergey Bolevich
- Department of Human Pathology, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia;
| | - Sergei Avetisov
- Department of Eye Diseases, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia;
- Research Institute of Eye Diseases, 11 Rossolimo St., 119021 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia; (A.N.); (M.A.); (M.P.); (P.B.); (B.T.); (P.T.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov University, 8-2 Trubetskaya St., 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
17
|
Jameson JF, Pacheco MO, Nguyen HH, Phelps EA, Stoppel WL. Recent Advances in Natural Materials for Corneal Tissue Engineering. Bioengineering (Basel) 2021; 8:161. [PMID: 34821727 PMCID: PMC8615221 DOI: 10.3390/bioengineering8110161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Given the incidence of corneal dysfunctions and diseases worldwide and the limited availability of healthy, human donors, investigators are working to generate engineered cellular and acellular therapeutic approaches as alternatives to corneal transplants from human cadavers. These engineered strategies aim to address existing complications with human corneal transplants, including graft rejection, infection, and complications resulting from surgical methodologies. The main goals of these research endeavors are to (1) determine ideal mechanical properties, (2) devise methodologies to improve the efficacy of engineered corneal grafts and cell-based therapies, and (3) optimize transplantation of engineered tissue structures in the eye. Thus, recent innovations have sought to address these challenges through both in vitro and in vivo studies. This review covers recent work aimed at evaluating engineered materials, potential therapeutic cells, and the resulting cell-material interactions that lead to optimal corneal graft properties. Furthermore, we discuss promising strategies in corneal tissue engineering techniques and in vivo studies in animal models.
Collapse
Affiliation(s)
- Julie F. Jameson
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| | - Marisa O. Pacheco
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| | - Henry H. Nguyen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Whitney L. Stoppel
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| |
Collapse
|
18
|
Nozari N, Biazar E, Kamalvand M, Keshel SH, Shirinbakhsh S. Photo Cross-linkable Biopolymers for Cornea Tissue Healing. Curr Stem Cell Res Ther 2021; 17:58-70. [PMID: 34269669 DOI: 10.2174/1574888x16666210715112738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Light can act as an effective and strong agent for the cross-linking of biomaterials and tissues and is recognized as a safe substitute for chemical cross-linkers to modify mechanical and physical properties and promote biocompatibility. This review focuses on the research about cross-linked biomaterials with different radiation sources such as Laser or Ultraviolet (UV) that can be applied as scaffolds, controlled release systems, and tissue adhesives for cornea healing and tissue regeneration.
Collapse
Affiliation(s)
- Negar Nozari
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahshad Kamalvand
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shervin Shirinbakhsh
- Tissue Engineering Group, Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
19
|
Pugalendhi A, Ranganathan R. A review of additive manufacturing applications in ophthalmology. Proc Inst Mech Eng H 2021; 235:1146-1162. [PMID: 34176362 DOI: 10.1177/09544119211028069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Additive Manufacturing (AM) capabilities in terms of product customization, manufacture of complex shape, minimal time, and low volume production those are very well suited for medical implants and biological models. AM technology permits the fabrication of physical object based on the 3D CAD model through layer by layer manufacturing method. AM use Magnetic Resonance Image (MRI), Computed Tomography (CT), and 3D scanning images and these data are converted into surface tessellation language (STL) file for fabrication. The applications of AM in ophthalmology includes diagnosis and treatment planning, customized prosthesis, implants, surgical practice/simulation, pre-operative surgical planning, fabrication of assistive tools, surgical tools, and instruments. In this article, development of AM technology in ophthalmology and its potential applications is reviewed. The aim of this study is nurturing an awareness of the engineers and ophthalmologists to enhance the ophthalmic devices and instruments. Here some of the 3D printed case examples of functional prototype and concept prototypes are carried out to understand the capabilities of this technology. This research paper explores the possibility of AM technology that can be successfully executed in the ophthalmology field for developing innovative products. This novel technique is used toward improving the quality of treatment and surgical skills by customization and pre-operative treatment planning which are more promising factors.
Collapse
Affiliation(s)
- Arivazhagan Pugalendhi
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India
| | - Rajesh Ranganathan
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
20
|
Ruiz-Alonso S, Villate-Beitia I, Gallego I, Lafuente-Merchan M, Puras G, Saenz-del-Burgo L, Pedraz JL. Current Insights Into 3D Bioprinting: An Advanced Approach for Eye Tissue Regeneration. Pharmaceutics 2021; 13:pharmaceutics13030308. [PMID: 33653003 PMCID: PMC7996883 DOI: 10.3390/pharmaceutics13030308] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) printing is a game changer technology that holds great promise for a wide variety of biomedical applications, including ophthalmology. Through this emerging technique, specific eye tissues can be custom-fabricated in a flexible and automated way, incorporating different cell types and biomaterials in precise anatomical 3D geometries. However, and despite the great progress and possibilities generated in recent years, there are still challenges to overcome that jeopardize its clinical application in regular practice. The main goal of this review is to provide an in-depth understanding of the current status and implementation of 3D bioprinting technology in the ophthalmology field in order to manufacture relevant tissues such as cornea, retina and conjunctiva. Special attention is paid to the description of the most commonly employed bioprinting methods, and the most relevant eye tissue engineering studies performed by 3D bioprinting technology at preclinical level. In addition, other relevant issues related to use of 3D bioprinting for ocular drug delivery, as well as both ethical and regulatory aspects, are analyzed. Through this review, we aim to raise awareness among the research community and report recent advances and future directions in order to apply this advanced therapy in the eye tissue regeneration field.
Collapse
Affiliation(s)
- Sandra Ruiz-Alonso
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Correspondence: (L.S.-d.-B.); (J.L.P.); Tel.: +(34)-945014542 (L.S.-d.-B.); +(34)-945013091 (J.L.P.)
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Correspondence: (L.S.-d.-B.); (J.L.P.); Tel.: +(34)-945014542 (L.S.-d.-B.); +(34)-945013091 (J.L.P.)
| |
Collapse
|
21
|
Parekh M, Romano V, Hassanin K, Testa V, Wongvisavavit R, Ferrari S, Haneef A, Willoughby C, Ponzin D, Jhanji V, Sharma N, Daniels J, Kaye SB, Ahmad S, Levis HJ. Biomaterials for corneal endothelial cell culture and tissue engineering. J Tissue Eng 2021; 12:2041731421990536. [PMID: 33643603 PMCID: PMC7894589 DOI: 10.1177/2041731421990536] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The corneal endothelium is the posterior monolayer of cells that are responsible for maintaining overall transparency of the avascular corneal tissue via pump function. These cells are non-regenerative in vivo and therefore, approximately 40% of corneal transplants undertaken worldwide are a result of damage or dysfunction of endothelial cells. The number of available corneal donor tissues is limited worldwide, hence, cultivation of human corneal endothelial cells (hCECs) in vitro has been attempted in order to produce tissue engineered corneal endothelial grafts. Researchers have attempted to recreate the current gold standard treatment of replacing the endothelial layer with accompanying Descemet's membrane or a small portion of stroma as support with tissue engineering strategies using various substrates of both biologically derived and synthetic origin. Here we review the potential biomaterials that are currently in development to support the transplantation of a cultured monolayer of hCECs.
Collapse
Affiliation(s)
- Mohit Parekh
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, UK.,International Center for Ocular Physiopathology, Fondazione Banca degli Occhi del Veneto Onlus, Venice, Italy
| | - Vito Romano
- St. Paul's Eye Unit, Royal Liverpool Broadgreen University Hospital, Liverpool, UK.,Instituto Universitario Fernandez-Vega, Universidad de Oviedo and Fundacion de Investigacion on Oftalmologica, Oviedo, Spain.,Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Kareem Hassanin
- St. Paul's Eye Unit, Royal Liverpool Broadgreen University Hospital, Liverpool, UK
| | - Valeria Testa
- Eye Clinic, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Rintra Wongvisavavit
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, UK.,HRH Princess Chulabhorn College of Medical Sciences, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Stefano Ferrari
- International Center for Ocular Physiopathology, Fondazione Banca degli Occhi del Veneto Onlus, Venice, Italy
| | - Atikah Haneef
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Colin Willoughby
- School of biomedical sciences, University of Ulster, Belfast, UK
| | - Diego Ponzin
- International Center for Ocular Physiopathology, Fondazione Banca degli Occhi del Veneto Onlus, Venice, Italy
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Julie Daniels
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, UK
| | - Stephen B Kaye
- St. Paul's Eye Unit, Royal Liverpool Broadgreen University Hospital, Liverpool, UK
| | - Sajjad Ahmad
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Trust Foundation, London, UK
| | - Hannah J Levis
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
22
|
Xiang L, Cui W. Biomedical application of photo-crosslinked gelatin hydrogels. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-020-00043-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
During the past decades, photo-crosslinked gelatin hydrogel (methacrylated gelatin, GelMA) has gained a lot of attention due to its remarkable application in the biomedical field. It has been widely used in cell transplantation, cell culture and drug delivery, based on its crosslinking to form hydrogels with tunable mechanical properties and excellent bio-compatibility when exposed to light irradiation to mimic the micro-environment of native extracellular matrix (ECM). Because of its unique biofunctionality and mechanical tenability, it has also been widely applied in the repair and regeneration of bone, heart, cornea, epidermal tissue, cartilage, vascular, peripheral nerve, oral mucosa, and skeletal muscle et al. The purpose of this review is to summarize the recent application of GelMA in drug delivery and tissue engineering field. Moreover, this review article will briefly introduce both the development of GelMA and the characterization of GelMA. Finally, we discuss the challenges and future development prospects of GelMA as a tissue engineering material and drug or gene delivery carrier, hoping to contribute to accelerating the development of GelMA in the biomedical field.
Graphical abstract
Collapse
|
23
|
Reddy LVK, Murugan D, Mullick M, Begum Moghal ET, Sen D. Recent Approaches for Angiogenesis in Search of Successful Tissue Engineering and Regeneration. Curr Stem Cell Res Ther 2020; 15:111-134. [PMID: 31682212 DOI: 10.2174/1574888x14666191104151928] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Angiogenesis plays a central role in human physiology from reproduction and fetal development to wound healing and tissue repair/regeneration. Clinically relevant therapies are needed for promoting angiogenesis in order to supply oxygen and nutrients after transplantation, thus relieving the symptoms of ischemia. Increase in angiogenesis can lead to the restoration of damaged tissues, thereby leading the way for successful tissue regeneration. Tissue regeneration is a broad field that has shown the convergence of various interdisciplinary fields, wherein living cells in conjugation with biomaterials have been tried and tested on to the human body. Although there is a prevalence of various approaches that hypothesize enhanced tissue regeneration via angiogenesis, none of them have been successful in gaining clinical relevance. Hence, the current review summarizes the recent cell-based and cell free (exosomes, extracellular vesicles, micro-RNAs) therapies, gene and biomaterial-based approaches that have been used for angiogenesis-mediated tissue regeneration and have been applied in treating disease models like ischemic heart, brain stroke, bone defects and corneal defects. This review also puts forward a concise report of the pre-clinical and clinical studies that have been performed so far; thereby presenting the credible impact of the development of biomaterials and their 3D concepts in the field of tissue engineering and regeneration, which would lead to the probable ways for heralding the successful future of angiogenesis-mediated approaches in the greater perspective of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lekkala Vinod Kumar Reddy
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Durai Murugan
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Madhubanti Mullick
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Erfath Thanjeem Begum Moghal
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.,University of Georgia, Athens, GA, United States
| |
Collapse
|
24
|
Mahdavi SS, Abdekhodaie MJ, Mashayekhan S, Baradaran-Rafii A, Djalilian AR. Bioengineering Approaches for Corneal Regenerative Medicine. Tissue Eng Regen Med 2020; 17:567-593. [PMID: 32696417 PMCID: PMC7373337 DOI: 10.1007/s13770-020-00262-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Since the cornea is responsible for transmitting and focusing light into the eye, injury or pathology affecting any layer of the cornea can cause a detrimental effect on visual acuity. Aging is also a reason for corneal degeneration. Depending on the level of the injury, conservative therapies and donor tissue transplantation are the most common treatments for corneal diseases. Not only is there a lack of donor tissue and risk of infection/rejection, but the inherent ability of corneal cells and layers to regenerate has led to research in regenerative approaches and treatments. METHODS In this review, we first discussed the anatomy of the cornea and the required properties for reconstructing layers of the cornea. Regenerative approaches are divided into two main categories; using direct cell/growth factor delivery or using scaffold-based cell delivery. It is expected delivered cells migrate and integrate into the host tissue and restore its structure and function to restore vision. Growth factor delivery also has shown promising results for corneal surface regeneration. Scaffold-based approaches are categorized based on the type of scaffold, since it has a significant impact on the efficiency of regeneration, into the hydrogel and non-hydrogel based scaffolds. Various types of cells, biomaterials, and techniques are well covered. RESULTS The most important characteristics to be considered for biomaterials in corneal regeneration are suitable mechanical properties, biocompatibility, biodegradability, and transparency. Moreover, a curved shape structure and spatial arrangement of the fibrils have been shown to mimic the corneal extracellular matrix for cells and enhance cell differentiation. CONCLUSION Tissue engineering and regenerative medicine approaches showed to have promising outcomes for corneal regeneration. However, besides proper mechanical and optical properties, other factors such as appropriate sterilization method, storage, shelf life and etc. should be taken into account in order to develop an engineered cornea for clinical trials.
Collapse
Affiliation(s)
- S Sharareh Mahdavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran.
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, SBUMS, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1200 W Harrison St, Chicago, IL, 60607, USA
| |
Collapse
|
25
|
Corneal Stem Cells as a Source of Regenerative Cell-Based Therapy. Stem Cells Int 2020; 2020:8813447. [PMID: 32765614 PMCID: PMC7388005 DOI: 10.1155/2020/8813447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
In the past few years, intensive research has focused on corneal stem cells as an unlimited source for cell-based therapy in regenerative ophthalmology. Today, it is known that the cornea has at least two types of stem cells: limbal epithelial stem cells (LESCs) and corneal stromal stem cells (CSSCs). LESCs are used for regeneration of corneal surface, while CSSCs are used for regeneration of corneal stroma. Until now, various approaches and methods for isolation of LESCs and CSSCs and their successful transplantation have been described and tested in several preclinical studies and clinical trials. This review describes in detail phenotypic characteristics of LESCs and CSSCs and discusses their therapeutic potential in corneal regeneration. Since efficient and safe corneal stem cell-based therapy is still a challenging issue that requires continuous cooperation between researchers, clinicians, and patients, this review addresses the important limitations and suggests possible strategies for improvement of corneal stem cell-based therapy.
Collapse
|
26
|
Recent developments in regenerative ophthalmology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1450-1490. [PMID: 32621058 DOI: 10.1007/s11427-019-1684-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Regenerative medicine (RM) is one of the most promising disciplines for advancements in modern medicine, and regenerative ophthalmology (RO) is one of the most active fields of regenerative medicine. This review aims to provide an overview of regenerative ophthalmology, including the range of tools and materials being used, and to describe its application in ophthalmologic subspecialties, with the exception of surgical implantation of artificial tissues or organs (e.g., contact lens, artificial cornea, intraocular lens, artificial retina, and bionic eyes) due to space limitations. In addition, current challenges and limitations of regenerative ophthalmology are discussed and future directions are highlighted.
Collapse
|
27
|
Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Ann Biomed Eng 2020; 48:1955-1970. [DOI: 10.1007/s10439-020-02537-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
|
28
|
3D Printed Personalized Corneal Models as a Tool for Improving Patient’s Knowledge of an Asymmetric Disease. Symmetry (Basel) 2020. [DOI: 10.3390/sym12010151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Additive manufacturing is a vanguard technology that is currently being used in several fields in medicine. This study aims to evaluate the viability in clinical practice of a patient-specific 3D model that helps to improve the strategies of the doctor-patient assistance. Data obtained from a corneal topographer were used to make a virtual 3D model by using CAD software, to later print this model by FDM and get an exact replica of each patient’s cornea in consultation. Used CAD and printing software were open-source, and the printing material was biodegradable and its cost was low. Clinic users gave their feedback by means of a survey about their feelings when perceiving with their senses their own printed cornea. There was 82 surveyed, 73.8% (9.74; SD: 0.45) of them considered that the model had helped them a lot to understand their disease, expressing 100% of them their intention of taking home the printed model. The majority highlighted that this new concept improves both quality and clinical service in consultation. Custom-made individualized printed models allow a new patient-oriented perspective that may improve the communication strategy from the ophthalmologist to the patient, easing patient’s understanding of their asymmetric disease and its later treatment.
Collapse
|
29
|
Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal Repair and Regeneration: Current Concepts and Future Directions. Front Bioeng Biotechnol 2019; 7:135. [PMID: 31245365 PMCID: PMC6579817 DOI: 10.3389/fbioe.2019.00135] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
The cornea is a unique tissue and the most powerful focusing element of the eye, known as a window to the eye. Infectious or non-infectious diseases might cause severe visual impairments that need medical intervention to restore patients' vision. The most prominent characteristics of the cornea are its mechanical strength and transparency, which are indeed the most important criteria considerations when reconstructing the injured cornea. Corneal strength comes from about 200 collagen lamellae which criss-cross the cornea in different directions and comprise nearly 90% of the thickness of the cornea. Regarding corneal transparency, the specific characteristics of the cornea include its immune and angiogenic privilege besides its limbus zone. On the other hand, angiogenic privilege involves several active cascades in which anti-angiogenic factors are produced to compensate for the enhanced production of proangiogenic factors after wound healing. Limbus of the cornea forms a border between the corneal and conjunctival epithelium, and its limbal stem cells (LSCs) are essential in maintenance and repair of the adult cornea through its support of corneal epithelial tissue repair and regeneration. As a result, the main factors which threaten the corneal clarity are inflammatory reactions, neovascularization, and limbal deficiency. In fact, the influx of inflammatory cells causes scar formation and destruction of the limbus zone. Current studies about wound healing treatment focus on corneal characteristics such as the immune response, angiogenesis, and cell signaling. In this review, studied topics related to wound healing and new approaches in cornea regeneration, which are mostly related to the criteria mentioned above, will be discussed.
Collapse
Affiliation(s)
- Mohammadmahdi Mobaraki
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Reza Abbasi
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sajjad Omidian Vandchali
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Maryam Ghaffari
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Duarte Campos DF, Rohde M, Ross M, Anvari P, Blaeser A, Vogt M, Panfil C, Yam GH, Mehta JS, Fischer H, Walter P, Fuest M. Corneal bioprinting utilizing collagen‐based bioinks and primary human keratocytes. J Biomed Mater Res A 2019; 107:1945-1953. [DOI: 10.1002/jbm.a.36702] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Daniela F. Duarte Campos
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University Hospital Aachen Germany
| | - Malena Rohde
- Department of OphthalmologyRWTH Aachen University Hospital Aachen Germany
| | - Mitchell Ross
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University Hospital Aachen Germany
- Department of Chemical EngineeringMcMaster University Hamilton Canada
| | - Parham Anvari
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University Hospital Aachen Germany
| | - Andreas Blaeser
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University Hospital Aachen Germany
- Medical Textiles and Biofabrication, Institute for Textile Technology (ITA)RWTH Aachen University Aachen Germany
| | - Michael Vogt
- Interdisciplinary Center for Clinical Research IZKFRWTH Aachen University Hospital Aachen Germany
| | - Claudia Panfil
- Aachen Center for Technology Transfer in Ophthalmology (ACTO) Aachen Germany
| | - Gary Hin‐Fai Yam
- Tissue Engineering and Stem Cell GroupSingapore Eye Research Institute Singapore Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Stem Cell GroupSingapore Eye Research Institute Singapore Singapore
- Singapore National Eye Centre Singapore Singapore
| | - Horst Fischer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University Hospital Aachen Germany
| | - Peter Walter
- Department of OphthalmologyRWTH Aachen University Hospital Aachen Germany
| | - Matthias Fuest
- Department of OphthalmologyRWTH Aachen University Hospital Aachen Germany
| |
Collapse
|
31
|
Sommer AC, Blumenthal EZ. Implementations of 3D printing in ophthalmology. Graefes Arch Clin Exp Ophthalmol 2019; 257:1815-1822. [PMID: 30993457 DOI: 10.1007/s00417-019-04312-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022] Open
Abstract
PURPOSE The purpose of this paper is to provide an in-depth understanding of how to best utilize 3D printing in medicine, and more particularly in ophthalmology in order to enhance the clinicians' ability to provide out-of-the-box solutions for unusual challenges that require patient personalization. In this review, we discuss the main applications of 3D printing for diseases of the anterior and posterior segments of the eye and discuss their current status and implementation. We aim to raise awareness among ophthalmologists and report current and future developments. METHODS A computerized search from inception up to 2018 of the online electronic database PubMed was performed, using the following search strings: "3D," "printing," "ophthalmology," and "bioprinting." Additional data was extracted from relevant websites. The reference list in each relevant article was analyzed for additional relevant publications. RESULTS 3D printing first appeared three decades ago. Nevertheless, the implementation and utilization of this technology in healthcare became prominent only in the last 5 years. 3D printing applications in ophthalmology are vast, including organ fabrication, medical devices, production of customized prosthetics, patient-tailored implants, and production of anatomical models for surgical planning and educational purposes. CONCLUSIONS The potential applications of 3D printing in ophthalmology are extensive. 3D printing enables cost-effective design and production of instruments that aid in early detection of common ocular conditions, diagnostic and therapeutic devices built specifically for individual patients, 3D-printed contact lenses and intraocular implants, models that assist in surgery planning and improve patient and medical staff education, and more. Advances in bioprinting appears to be the future of 3D printing in healthcare in general, and in ophthalmology in particular, with the emerging possibility of printing viable tissues and ultimately the creation of a functioning cornea, and later retina. It is expected that the various applications of 3D printing in ophthalmology will become part of mainstream medicine.
Collapse
Affiliation(s)
- Adir C Sommer
- Department of Ophthalmology, Rambam Health Care Campus, 9602, 31096, Haifa, Israel
| | - Eytan Z Blumenthal
- Department of Ophthalmology, Rambam Health Care Campus, 9602, 31096, Haifa, Israel. .,Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
32
|
|
33
|
Han J, Kim DS, Jang H, Kim HR, Kang HW. Bioprinting of three-dimensional dentin-pulp complex with local differentiation of human dental pulp stem cells. J Tissue Eng 2019; 10:2041731419845849. [PMID: 31205671 PMCID: PMC6535759 DOI: 10.1177/2041731419845849] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 01/16/2023] Open
Abstract
Numerous approaches have been introduced to regenerate artificial dental tissues. However, conventional approaches are limited when producing a construct with three-dimensional patient-specific shapes and compositions of heterogeneous dental tissue. In this research, bioprinting technology was applied to produce a three-dimensional dentin-pulp complex with patient-specific shapes by inducing localized differentiation of human dental pulp stem cells within a single structure. A fibrin-based bio-ink was designed for bioprinting with the human dental pulp stem cells. The effects of fibrinogen concentration within the bio-ink were investigated in terms of printability, human dental pulp stem cell compatibility, and differentiation. The results show that micro-patterns with human dental pulp stem cells could be achieved with more than 88% viability. Its odontogenic differentiation was also regulated according to the fibrinogen concentration. Based on these results, a dentin-pulp complex having patient-specific shape was produced by co-printing the human dental pulp stem cell-laden bio-inks with polycaprolactone, which is a bio-thermoplastic used for producing the overall shape. After culturing with differentiation medium for 15 days, localized differentiation of human dental pulp stem cells in the outer region of the three-dimensional cellular construct was successfully achieved with localized mineralization. This result demonstrates the possibility to produce patient-specific composite tissues for tooth tissue engineering using three-dimensional bioprinting technology.
Collapse
Affiliation(s)
- Jonghyeuk Han
- Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Da Sol Kim
- Department of Oral Biochemistry, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Ho Jang
- Department of Oral Biochemistry, School of Dentistry, Pusan National University, Yangsan, South Korea
- Institute of Translational Dental Sciences, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Hyung-Ryong Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
- College of Dentistry, Dankook University, Cheonan, South Korea
| | - Hyun-Wook Kang
- Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
34
|
Sun M, Sun X, Wang Z, Guo S, Yu G, Yang H. Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue. Polymers (Basel) 2018; 10:E1290. [PMID: 30961215 PMCID: PMC6401825 DOI: 10.3390/polym10111290] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Photocrosslinked gelatin methacryloyl (GelMA) hydrogels have attracted great concern in the biomedical field because of their good biocompatibility and tunable physicochemical properties. Herein, different approaches to synthesize GelMA were introduced, especially, the typical method using UV light to crosslink the gelatin-methacrylic anhydride (MA) precursor was introduced in detail. In addition, the traditional and cutting-edge technologies to characterize the properties of GelMA hydrogels and GelMA prepolymer were also overviewed and compared. Furthermore, the applications of GelMA hydrogels in cell culture and tissue engineering especially in the load-bearing tissue (bone and cartilage) were summarized, followed by concluding remarks.
Collapse
Affiliation(s)
- Mingyue Sun
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| | - Xiaoting Sun
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| | - Ziyuan Wang
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China.
| | - Shuyu Guo
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China.
| | - Guangjiao Yu
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China.
| | - Huazhe Yang
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|