1
|
Jing L, Wang HY, Zhang N, Zhang WJ, Chen Y, Deng DK, Li X, Chen FM, He XT. Critical roles of extracellular vesicles in periodontal disease and regeneration. Stem Cells Transl Med 2025; 14:szae092. [PMID: 39703170 PMCID: PMC11954511 DOI: 10.1093/stcltm/szae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
Extracellular vesicles (EVs) are evolutionarily conserved communication mediators that play key roles in the development of periodontal disease as well as in regeneration processes. This concise review first outlines the pathogenic mechanisms through which EVs derived from bacteria lead to the progression of periodontitis, with a focus on the enrichment of virulence factors, the amplification of immune responses, and the induction of bone destruction as key aspects influenced by bacterial EVs. This review aims to elucidate the positive effects of EVs derived from mesenchymal stem cells (MSC-EVs) on periodontal tissue regeneration. In particular, the anti-inflammatory properties of MSC-EVs and their impact on the intricate interplay between MSCs and various immune cells, including macrophages, dendritic cells, and T cells, are described. Moreover, recent advancements regarding the repair-promoting functions of MSC-EVs are detailed, highlighting the mechanisms underlying their ability to promote osteogenesis, cementogenesis, angiogenesis, and the homing of stem cells, thus contributing significantly to periodontal tissue regeneration. Furthermore, this review provides insights into the therapeutic efficacy of MSC-EVs in treating periodontitis within a clinical context. By summarizing the current knowledge, this review aims to provide a comprehensive understanding of how MSC-EVs can be harnessed for the treatment of periodontal diseases. Finally, a discussion is presented on the challenges that lie ahead and the potential practical implications for translating EV-based therapies into clinical practices for the treatment of periodontitis.
Collapse
Affiliation(s)
- Lin Jing
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Hong-Yu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Ning Zhang
- Cadet Regiment, School of Basic Medical Sciences, Air Force Medical University, Xi’an 710032, People’s Republic of China
| | - Wen-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Yuzhe Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Dao-Kun Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Xuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Fa-Ming Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Xiao-Tao He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| |
Collapse
|
2
|
Wang Q, Sun J, Jiang H, Yu M. Emerging roles of extracellular vesicles in oral and maxillofacial areas. Int J Oral Sci 2025; 17:11. [PMID: 39900916 PMCID: PMC11791077 DOI: 10.1038/s41368-024-00341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
The oral and maxillofacial region is a highly complex area composed of multiple tissue types and bears various critical functions of the human body. Diseases in this region pose significant diagnostic and management challenges; therefore, exploring new strategies for early diagnosis, targeted treatment, and tissue reconstruction is key to improving patient prognosis and quality of life. Extracellular vesicles are a group of heterogeneous lipid-bilayer membrane structures secreted by most cell types, including exosomes, microvesicles, and apoptotic bodies. Present in various body fluids and tissues, they act as messengers via the transfer of nucleic acids, proteins, and metabolites to recipient cells. To date, studies have revealed the different roles of extracellular vesicles in physiological or pathological processes, as well as applications in disease diagnosis, prognosis, and treatment. The importance and tissue specificity of the dental and maxillofacial tissues indicate that extracellular vesicles derived from this region are promising for further research. This paper reviews the published data on extracellular vesicles derived from cells, body fluids, and tissues in oral and maxillofacial regions, summarizes the latest advances in extracellular vesicles from extensive sources, and concludes with a focus on the current research progress and application prospects of engineered exosomes in oral science.
Collapse
Affiliation(s)
- Qianting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jiayu Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Haci Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of the Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Huang P, Li W, Guan J, Jia Y, Wang D, Chen Y, Xiao N, Ou S, Wang Y, Yang B. Synthetic Vesicle-Based Drug Delivery Systems for Oral Disease Therapy: Current Applications and Future Directions. J Funct Biomater 2025; 16:25. [PMID: 39852581 PMCID: PMC11766321 DOI: 10.3390/jfb16010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Oral diseases such as dental caries, periodontitis, and oral cancer are prevalent and present significant challenges to global public health. Although these diseases are typically treated through procedures like dental preparation and resin filling, scaling and root planning, or surgical excision, these interventions are often not entirely effective, and postoperative drug therapy is usually required. Traditional drug treatments, however, are limited by factors such as poor drug penetration, significant side effects, and the development of drug resistance. As a result, there is a growing need for novel drug delivery systems that can enhance therapeutic efficacy, reduce side effects, and improve treatment outcomes. In recent years, drug-loaded vesicles, such as liposomes, polymersomes, and extracellular vesicles (EVs), have emerged as promising drug delivery platforms due to their high drug encapsulation efficiency, controlled release properties, and excellent biocompatibility. This review provides an in-depth examination of the characteristics, advantages, and limitations of liposomes, polymersomes, and extracellular vesicles in the context of oral disease treatment. It further explores the reasons for their advantages and limitations and discusses the specific applications, development prospects, and strategies for optimizing these vesicle-based systems for improved clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (P.H.); (W.L.); (J.G.); (Y.J.); (D.W.); (Y.C.); (N.X.); (S.O.)
| | - Bo Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (P.H.); (W.L.); (J.G.); (Y.J.); (D.W.); (Y.C.); (N.X.); (S.O.)
| |
Collapse
|
4
|
Shi Y, Xiao T, Weng Y, Xiao Y, Wu J, Wang J, Wang W, Yan M, Yan M, Li Z, Yu J. 3D culture inhibits replicative senescence of SCAPs via UQCRC2-mediated mitochondrial oxidative phosphorylation. J Transl Med 2024; 22:1129. [PMID: 39707408 DOI: 10.1186/s12967-024-05953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
Stem cells derived from the apical papilla (SCAPs) play a crucial role in tooth root development and dental pulp regeneration. They are important seed cells for bone/tooth tissue engineering. However, replicative senescence remains an unavoidable issue as in vitro amplification increases. This study investigated the effect of a three-dimensional (3D) culture environment constructed with methylcellulose on SCAPs senescence. It was observed that 3D culture conditions can delay cellular senescence, potentially due to changes in mitochondrial function and oxidative phosphorylation. Transcriptome high-throughput sequencing technology revealed that the different mitochondrial states may be related to UQCRC2. Knocking down UQCRC2 expression in the 3D culture group resulted in increased production of mitochondrial reactive oxygen species, decreased mitochondrial membrane potential, and a decline in the oxygen consumption rate for oxidative phosphorylation, accelerating cell senescence. The results of this study indicated that 3D culture can mitigate SCAPs aging by maintaining UQCRC2-mediated mitochondrial homeostasis. These findings provide a new solution for the senescence of SCAPs during in vitro amplification and can promote the applications of SCAPs-based clinical translation.
Collapse
Affiliation(s)
- Yijia Shi
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tong Xiao
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingying Weng
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya Xiao
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Jintao Wu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenmin Wang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Maoshen Yan
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Yan
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zehan Li
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jinhua Yu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Lee JH, Lee S, Park HS, Kim YJ, Lee HH, Han MR, Lee JH, Kim JB, Shin JS, Kim JS, Lee JH. Histological Evaluation of Sodium Iodide-Based Root Canal Filling Materials in Canine Teeth. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6082. [PMID: 39769682 PMCID: PMC11727976 DOI: 10.3390/ma17246082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
A novel water-soluble root canal filling material based on sodium iodide (NaI) has been developed to overcome the limitations of existing iodine-based formulations. However, the biological stability of this approach in animal studies remains unverified. This study evaluated the biocompatibility of NaI compared to commercial root canal filling materials (Calcipex II and Vitapex®) in pulpectomized canine teeth to assess its clinical applicability. Following a four-week observation period, none of the experimental groups exhibited tooth mobility or fistula formation. Radiographic and micro-CT analyses revealed no radiolucency in periapical lesions. Histopathologic evaluation demonstrated the absence of inflammatory responses in periapical regions across all material groups, with histological inflammation scoring 0. High-magnification histological examination of periapical areas showed well-preserved periodontal ligament tissue in all groups. Despite certain limitations of NaI-based fillings in the pulp cavity, including loss of radiopacity and tooth discoloration, NaI demonstrates potential as a safe and effective alternative for pulp filling material, particularly due to its minimal risk of root resorption and inflammatory response.
Collapse
Affiliation(s)
- Jae Hee Lee
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (J.H.L.); (H.-s.P.); (M.-R.H.); (J.-H.L.); (J.-B.K.); (J.-S.S.)
| | - Sak Lee
- Department of Oral Pathology, Seoul National University Dental Hospital, Seoul 03080, Republic of Korea;
- Department of Oral Pathology, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Hye-shin Park
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (J.H.L.); (H.-s.P.); (M.-R.H.); (J.-H.L.); (J.-B.K.); (J.-S.S.)
| | - Yu-Jin Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (Y.-J.K.); (H.-H.L.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (Y.-J.K.); (H.-H.L.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Mi-Ran Han
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (J.H.L.); (H.-s.P.); (M.-R.H.); (J.-H.L.); (J.-B.K.); (J.-S.S.)
| | - Jun-Haeng Lee
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (J.H.L.); (H.-s.P.); (M.-R.H.); (J.-H.L.); (J.-B.K.); (J.-S.S.)
| | - Jong-Bin Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (J.H.L.); (H.-s.P.); (M.-R.H.); (J.-H.L.); (J.-B.K.); (J.-S.S.)
| | - Ji-Sun Shin
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (J.H.L.); (H.-s.P.); (M.-R.H.); (J.-H.L.); (J.-B.K.); (J.-S.S.)
| | - Jong-Soo Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (J.H.L.); (H.-s.P.); (M.-R.H.); (J.-H.L.); (J.-B.K.); (J.-S.S.)
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (Y.-J.K.); (H.-H.L.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dand-ro, Cheonan 31116, Republic of Korea
| |
Collapse
|
6
|
Xia EJ, Zou S, Zhao X, Liu W, Zhang Y, Zhao IS. Extracellular vesicles as therapeutic tools in regenerative dentistry. Stem Cell Res Ther 2024; 15:365. [PMID: 39402576 PMCID: PMC11476107 DOI: 10.1186/s13287-024-03936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Dental and maxillofacial diseases are always accompanied by complicated hard and soft tissue defects, involving bone, teeth, blood vessels and nerves, which are difficult to repair and severely affect the life quality of patients. Recently, extracellular vesicles (EVs) secreted by all types of cells and extracted from body fluids have gained more attention as potential solutions for tissue regeneration due to their special physiological characteristics and intrinsic signaling molecules. Compared to stem cells, EVs present lower immunogenicity and tumorigenicity, cause fewer ethical problems, and have higher stability. Thus, EV therapy may have a broad clinical application in regenerative dentistry. Herein, we reviewed the currently available literature regarding the functional roles of EVs in oral and maxillofacial tissue regeneration, including in maxilla and mandible bone, periodontal tissues, temporomandibular joint cartilage, dental hard tissues, peripheral nerves and soft tissues. We also summarized the underlying mechanisms of actions of EVs and their delivery strategies for dental tissue regeneration. This review would provide helpful guidelines and valuable insights into the emerging potential of EVs in future research and clinical applications in regenerative dentistry.
Collapse
Affiliation(s)
- Evelyn Jingwen Xia
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China
| | - Shasha Zou
- Longgang Center for Chronic Disease Control, Shenzhen, 518172, China
| | - Xiu Zhao
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen, 518015, China
| | - Wei Liu
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen, 518015, China
| | - Yang Zhang
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China.
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518015, China.
| | - Irene Shuping Zhao
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China.
| |
Collapse
|
7
|
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact Mater 2024; 40:182-211. [PMID: 38966600 PMCID: PMC11223092 DOI: 10.1016/j.bioactmat.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment. However, novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative, biologically-driven regenerative medicine strategies. For example, cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration. These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators (HDACis, DNMTis, and ncRNAs), which are cost-effective and easily applied to stimulate pulp tissue regrowth. Unfortunately, many biological factors hinder the clinical development of regenerative therapies, including a lack of blood supply and poor infection control in the necrotic root canal system. Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability, cost concerns, and regulatory issues. This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration, explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition. It will highlight the components of dental pulp regenerative approaches, describe their current limitations, and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.
Collapse
Affiliation(s)
- Ross M. Quigley
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
8
|
Lu H, Mu Q, Ku W, Zheng Y, Yi P, Lin L, Li P, Wang B, Wu J, Yu D, Zhao W. Functional extracellular vesicles from SHEDs combined with gelatin methacryloyl promote the odontogenic differentiation of DPSCs for pulp regeneration. J Nanobiotechnology 2024; 22:265. [PMID: 38760763 PMCID: PMC11102175 DOI: 10.1186/s12951-024-02542-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Pulp regeneration is a novel approach for the treatment of immature permanent teeth with pulp necrosis. This technique includes the combination of stem cells, scaffolds, and growth factors. Recently, stem cell-derived extracellular vesicles (EVs) have emerged as a new methodology for pulp regeneration. Emerging evidence has proven that preconditioning is an effective scheme to modify EVs for better therapeutic potency. Meanwhile, proper scaffolding is of great significance to protect EVs from rapid clearance and destruction. This investigation aims to fabricate an injectable hydrogel loaded with EVs from pre-differentiated stem cells from human exfoliated deciduous teeth (SHEDs) and examine their effects on pulp regeneration. RESULTS We successfully employed the odontogenic induction medium (OM) of SHEDs to generate functional EV (OM-EV). The OM-EV at a concentration of 20 µg/mL was demonstrated to promote the proliferation and migration of dental pulp stem cells (DPSCs). The results revealed that OM-EV has a better potential to promote odontogenic differentiation of DPSCs than common EVs (CM-EV) in vitro through Alizarin red phalloidin, alkaline phosphatase staining, and assessment of the expression of odontogenic-related markers. High-throughput sequencing suggests that the superior effects of OM-EV may be attributed to activation of the AMPK/mTOR pathway. Simultaneously, we prepared a photocrosslinkable gelatin methacryloyl (GelMA) to construct an OM-EV-encapsulated hydrogel. The hydrogel exhibited sustained release of OM-EV and good biocompatibility for DPSCs. The released OM-EV from the hydrogel could be internalized by DPSCs, thereby enhancing their survival and migration. In tooth root slices that were subcutaneously transplanted in nude mice, the OM-EV-encapsulated hydrogel was found to facilitate dentinogenesis. After 8 weeks, there was more formation of mineralized tissue, as well as higher levels of dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1). CONCLUSIONS The effects of EV can be substantially enhanced by preconditioning of SHEDs. The functional EVs from SHEDs combined with GelMA are capable of effectively promoting dentinogenesis through upregulating the odontogenic differentiation of DPSCs, which provides a promising therapeutic approach for pulp regeneration.
Collapse
Affiliation(s)
- Hui Lu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Qing Mu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Weili Ku
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Yexin Zheng
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Ping Yi
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Ling Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Pei Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Boqun Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jie Wu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Dongsheng Yu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
| | - Wei Zhao
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
| |
Collapse
|
9
|
Wang X, Gong W, Li R, Li L, Wang J. Preparation of genetically or chemically engineered exosomes and their therapeutic effects in bone regeneration and anti-inflammation. Front Bioeng Biotechnol 2024; 12:1329388. [PMID: 38314353 PMCID: PMC10834677 DOI: 10.3389/fbioe.2024.1329388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
The treatment of bone or cartilage damage and inflammation-related diseases has been a long-standing research hotspot. Traditional treatments such as surgery and cell therapy have only displayed limited efficacy because they can't avoid potential deterioration and ensure cell activity. Recently, exosomes have become a favorable tool for various tissue reconstruction due to their abundant content of proteins, lipids, DNA, RNA and other substances, which can promote bone regeneration through osteogenesis, angiogenesis and inflammation modulation. Besides, exosomes are also promising delivery systems because of stability in the bloodstream, immune stealth capacity, intrinsic cell-targeting property and outstanding intracellular communication. Despite having great potential in therapeutic delivery, exosomes still show some limitations in clinical studies, such as inefficient targeting ability, low yield and unsatisfactory therapeutic effects. In order to overcome the shortcomings, increasing studies have prepared genetically or chemically engineered exosomes to improve their properties. This review focuses on different methods of preparing genetically or chemically engineered exosomes and the therapeutic effects of engineering exosomes in bone regeneration and anti-inflammation, thereby providing some references for future applications of engineering exosomes.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Weitao Gong
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Rongrong Li
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lin Li
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jing Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
- Clinical Research Center for Oral Diseases, Lanzhou, China
| |
Collapse
|
10
|
Cha SG, Rhim WK, Kim JY, Lee EH, Lee SY, Park JM, Lee JE, Yoon H, Park CG, Kim BS, Kwon TG, Lee Y, Lee DR, Han DK. Kidney tissue regeneration using bioactive scaffolds incorporated with differentiating extracellular vesicles and intermediate mesoderm cells. Biomater Res 2023; 27:126. [PMID: 38049879 PMCID: PMC10696796 DOI: 10.1186/s40824-023-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND To overcome the limitations of current alternative therapies for chronic kidney disease (CKD), tissue engineering-mediated regeneration strategies have demonstrated the possibilities for complete kidney tissue regeneration. Given the challenges associated with the reproducibility of renal basal cells, the incorporation of intermediate mesoderm (IM) cells and bioactive materials to control bioactivities of cells with supported scaffolds should be considered as a viable approach to enable the regeneration of the complex kidney structure via renal differentiation. METHODS We developed PMEZ scaffolds by combining crucial bioactive components, such as ricinoleic acid-grafted Mg(OH)2 (M), extracellular matrix (E), and alpha lipoic acid-conjugated ZnO (Z) integrated into biodegradable porous PLGA (P) platform. Additionally, we utilized differentiating extracellular vesicles (dEV) isolated during intermediate mesoderm differentiation into kidney progenitor cells, and IM cells were serially incorporated to facilitate kidney tissue regeneration through their differentiation into kidney progenitor cells in the 3/4 nephrectomy mouse model. RESULTS The use of differentiating extracellular vesicles facilitated IM differentiation into kidney progenitor cells without additional differentiation factors. This led to improvements in various regeneration-related bioactivities including tubule and podocyte regeneration, anti-fibrosis, angiogenesis, and anti-inflammation. Finally, implanting PMEZ/dEV/IM scaffolds in mouse injury model resulted in the restoration of kidney function. CONCLUSIONS Our study has demonstrated that utilizing biodegradable PLGA-based scaffolds, which include multipotent cells capable of differentiating into various kidney progenitor cells along with supporting components, can facilitate kidney tissue regeneration in the mouse model that simulates CKD through 3/4 nephrectomy.
Collapse
Affiliation(s)
- Seung-Gyu Cha
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Won-Kyu Rhim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Eun Hye Lee
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
| | - Seung Yeon Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Jeong Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Jeoung Eun Lee
- Bundang Medical Center, CHA Advanced Research Institute, CHA University, Sungnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Hyeji Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, 16419, Gyeonggi-do, Republic of Korea
| | - Bum Soo Kim
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Urology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
| | - Tae Gyun Kwon
- Joint Institute for Regenerative Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
- Department of Urology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, 41944, Republic of Korea
| | - Youngmi Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea
- Bundang Medical Center, CHA Advanced Research Institute, CHA University, Sungnam- si, 13488, Gyeonggi-do, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam- si, 13488, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
11
|
Zou J, Xia H, Jiang Q, Su Z, Wen S, Liang Z, Ouyang Y, Liu J, Zhang Z, Chen D, Yang L, Guo L. Exosomes derived from odontogenic stem cells: Its role in the dentin-pulp complex. Regen Ther 2023; 24:135-146. [PMID: 37415682 PMCID: PMC10320411 DOI: 10.1016/j.reth.2023.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/01/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023] Open
Abstract
Odontogenic stem cells originate from cranial neural crest cells and offer unique advantages in the regeneration of dentin-pulp complex. There is increasing evidence that stem cells exert their biological functions mainly through exosome-based paracrine effects. Exosomes contain DNA, RNA, proteins, metabolites, etc., which can play a role in intercellular communication and have similar therapeutic potential to stem cells. In addition, compared with stem cells, exosomes also have the advantages of good biocompatibility, high drug carrying capacity, easy to obtain, and few side effects. Odontogenic stem cell-derived exosomes mainly affect the regeneration of the dentin-pulp complex by regulating processes such as dentintogenesis, angiogenesis, neuroprotection and immunomodulation. This review aimed to describe "cell-free therapies" based on odontogenic stem cell-derived exosomes, which aim to regenerate the dentin-pulp complex.
Collapse
Affiliation(s)
- Jiyuan Zou
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Han Xia
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Qianzhou Jiang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zhikang Su
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Siyi Wen
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zitian Liang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Yuanting Ouyang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Jiaohong Liu
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Zhiyi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Ding Chen
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Li Yang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Lvhua Guo
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Li Y, Liu C, Han G. Research progress of odontogenic extracellular vesicles in regeneration of dental pulp. Oral Dis 2023; 29:2565-2577. [PMID: 36415913 DOI: 10.1111/odi.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
It is well understood that maintaining viable pulp is critical for tooth retention. This review focused on cell-free therapy based on extracellular vesicles (EVs), a novel minimally invasive treatment strategy for endodontic restoration. This study was conducted by searching mainstream electronic databases such as Web of Science and PubMed for relevant studies on the therapeutic role of odontogenic EVs in pulp healing published in the last five years. We selected 89 relevant articles and discovered that dental stem cells (DSCs) derived EVs (DSC-EVs) have become a research hotspot in oral regenerative medicine, with significant advantages over cell transplantation in terms of low immunogenicity, ease of isolation, preservation, and management. Here, we introduce in detail the therapeutic effects of DSC-EVs for pulp restoration from three perspectives: excellent odontogenic properties, clinical applications, and possible molecular mechanisms. This article contributes a new viewpoint to the field of regenerative endodontics.
Collapse
Affiliation(s)
- Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
13
|
Pan H, Yang Y, Xu H, Jin A, Huang X, Gao X, Sun S, Liu Y, Liu J, Lu T, Wang X, Zhu Y, Jiang L. The odontoblastic differentiation of dental mesenchymal stem cells: molecular regulation mechanism and related genetic syndromes. Front Cell Dev Biol 2023; 11:1174579. [PMID: 37818127 PMCID: PMC10561098 DOI: 10.3389/fcell.2023.1174579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS). Herein, recent progress in the molecular regulation of the odontoblastic differentiation of DMSCs is summarized. In addition, genetic syndromes associated with disorders of odontoblastic differentiation of DMSCs are discussed. An improved understanding of the molecular regulation and related genetic syndromes may help clinicians better understand the etiology and pathogenesis of dentin lesions in systematic diseases and identify novel treatment targets.
Collapse
Affiliation(s)
- Houwen Pan
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
14
|
Zhang F, Yang S, Jiang L, Liu J, He Y, Sheng X, Chen H, Kang J, Jia S, Fan W, Huang F, He H. Melatonin-mediated malic enzyme 2 orchestrates mitochondrial fusion and respiratory functions to promote odontoblastic differentiation during tooth development. J Pineal Res 2023; 74:e12865. [PMID: 36864655 DOI: 10.1111/jpi.12865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 03/04/2023]
Abstract
Tooth development is a complex process that is tightly controlled by circadian rhythm. Melatonin (MT) is a major hormonal regulator of the circadian rhythm, and influences dentin formation and odontoblastic differentiation during tooth development; however, the underlying mechanism remains elusive. This study investigated how MT regulates odontoblastic differentiation, with a special focus on its regulation of mitochondrial dynamics. In rat dental papilla cells (DPCs), we found that MT promotes odontoblastic differentiation concurrently with enhanced mitochondrial fusion, while disruption of mitochondrial fusion by depleting optic atrophy 1 (OPA1) impairs MT-mediated differentiation and mitochondrial respiratory functions. Through RNA sequencing, we discovered that MT significantly upregulated malic enzyme 2 (ME2), a mitochondrial NAD(P)+ -dependent enzyme, and identified ME2 as a critical MT downstream effector that orchestrates odontoblastic differentiation, mitochondrial fusion, and respiration functions. By detecting the spatiotemporal expression of ME2 in developing tooth germs, and using tooth germ reconstituted organoids, we also provided in vivo and ex vivo evidence that ME2 promotes dentin formation, indicating a possible involvement of ME2 in MT-modulated tooth development. Collectively, our findings offer novel understandings regarding the molecular mechanism by which MT affects cell differentiation and organogenesis, meanwhile, the critical role of ME2 in MT-regulated mitochondrial functions is also highlighted.
Collapse
Affiliation(s)
- Fuping Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shengyan Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Liulin Jiang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jiawei Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xinyue Sheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Haoling Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jun Kang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shilin Jia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
15
|
Lai H, Li J, Kou X, Mao X, Zhao W, Ma L. Extracellular Vesicles for Dental Pulp and Periodontal Regeneration. Pharmaceutics 2023; 15:282. [PMID: 36678909 PMCID: PMC9862817 DOI: 10.3390/pharmaceutics15010282] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bound particles derived from their original cells, which play critical roles in intercellular communication through their cargoes, including protein, lipids, and nucleic acids. According to their biogenesis and release pathway, EVs can be divided into three categories: apoptotic vesicles (ApoVs), microvesicles (MVs), and small EVs (sEVs). Recently, the role of EVs in oral disease has received close attention. In this review, the main characteristics of EVs are described, including their classification, biogenesis, biomarkers, and components. Moreover, the therapeutic mechanism of EVs in tissue regeneration is discussed. We further summarize the current status of EVs in pulp/periodontal tissue regeneration and discuss the potential mechanisms. The therapeutic potential of EVs in pulp and periodontal regeneration might involve the promotion of tissue regeneration and immunomodulatory capabilities. Furthermore, we highlight the current challenges in the translational use of EVs. This review would provide valuable insights into the potential therapeutic strategies of EVs in dental pulp and periodontal regeneration.
Collapse
Affiliation(s)
- Hongbin Lai
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jiaqi Li
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xueli Mao
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wei Zhao
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Lan Ma
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
16
|
Vu HT, Yoon JY, Park JH, Lee HH, Dashnyam K, Kim HW, Lee JH, Shin JS, Kim JB. The Potential Application of Human Gingival Fibroblast-Conditioned Media in Pulp Regeneration: An In Vitro Study. Cells 2022; 11:3398. [PMID: 36359794 PMCID: PMC9657428 DOI: 10.3390/cells11213398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Regenerative endodontic treatment based on tissue engineering has recently gained interest in contemporary restorative dentistry. However, low survival rates and poor potential differentiation of stem cells could undermine the success rate of pulp regenerative therapy. Human gingival fibroblast-conditioned medium (hGF-CM) has been considered a potential therapy for tissue regeneration due to its stability in maintaining multiple factors essential for tissue regeneration compared to live cell transplantation. This study aimed to investigate the potency of hGF-CM on stem cells from human dental pulp (DPSC) in pulp regeneration. A series of experiments confirmed that hGF-CM contributes to a significant increase in proliferation, migration capability, and cell viability of DPSC after H2O2 exposure. Moreover, it has been proved to facilitate the odontogenic differentiation of DPSC via qRT-PCR, ALP (alkaline phosphatase), and ARS (Alizarin Red S) staining. It has been discovered that such highly upregulated odontogenesis is related to certain types of ECM proteins (collagen and laminin) from hGF-CM via proteomics. In addition, it is found that the ERK pathway is a key mechanism via inhibition assay based on RNA-seq result. These findings demonstrate that hGF-CM could be beneficial biomolecules for pulp regeneration.
Collapse
Affiliation(s)
- Huong Thu Vu
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Ji-Young Yoon
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jae-Hee Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Drug Research Institute, Mongolian University of Pharmaceutical Science, Ulaanbaatar 976, Mongolia
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Mechanobiology Dental Medicine Research Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
- Mechanobiology Dental Medicine Research Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Ji-Sun Shin
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jong-Bin Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Chungcheongnam-do, Korea
| |
Collapse
|
17
|
Gu Z, Yin Z, Song P, Wu Y, He Y, Zhu M, Wu Z, Zhao S, Huang H, Wang H, Tong C, Qi Z. Safety and biodistribution of exosomes derived from human induced pluripotent stem cells. Front Bioeng Biotechnol 2022; 10:949724. [PMID: 36091443 PMCID: PMC9461140 DOI: 10.3389/fbioe.2022.949724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
As a new cell-free therapy, exosomes have provided new ideas for the treatment of various diseases. Human induced pluripotent stem cells (hiPSCs) cannot be used in clinical trials because of tumorigenicity, but the exosomes derived from hiPSCs may combine the advantages of iPSC pluripotency and the nanoscale size of exosomes while avoiding tumorigenicity. Currently, the safety and biodistribution of hiPSC-exosomes in vivo are unclear. Here, we investigated the effects of hiPSC-exosomes on hemolysis, DNA damage, and cytotoxicity through cell experiments. We also explored the safety of vein injection of hiPSC-exosomes in rabbits and rats. Differences in organ distribution after nasal administration were compared in normal and Parkinson’s disease model mice. This study may provide support for clinical therapy and research of intravenous and nasal administration of hiPSC-exosomes.
Collapse
Affiliation(s)
- Zhewei Gu
- Medical College, Guangxi University, Nanning, China
| | - Zhiyu Yin
- Medical College, Guangxi University, Nanning, China
| | - Pengbo Song
- Medical College, Guangxi University, Nanning, China
| | - Ying Wu
- Medical College, Guangxi University, Nanning, China
| | - Ying He
- Medical College, Guangxi University, Nanning, China
| | - Maoshu Zhu
- Medical College, Guangxi University, Nanning, China
| | - Zhengxin Wu
- Medical College, Guangxi University, Nanning, China
| | - Sicheng Zhao
- Medical College, Guangxi University, Nanning, China
| | - Hongri Huang
- GuangXi TaiMeiRenSheng Biotechnology Co., LTD., Nanning, China
| | - Huihuang Wang
- GuangXi TaiMeiRenSheng Biotechnology Co., LTD., Nanning, China
| | - Cailing Tong
- Biotechcomer Co., Ltd., Xiamen, China
- *Correspondence: Cailing Tong, ; Zhongquan Qi,
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
- *Correspondence: Cailing Tong, ; Zhongquan Qi,
| |
Collapse
|