1
|
Hough RF, Alvira CM, Bastarache JA, Erzurum SC, Kuebler WM, Schmidt EP, Shimoda LA, Abman SH, Alvarez DF, Belvitch P, Bhattacharya J, Birukov KG, Chan SY, Cornfield DN, Dudek SM, Garcia JGN, Harrington EO, Hsia CCW, Islam MN, Jonigk DD, Kalinichenko VV, Kolb TM, Lee JY, Mammoto A, Mehta D, Rounds S, Schupp JC, Shaver CM, Suresh K, Tambe DT, Ventetuolo CE, Yoder MC, Stevens T, Damarla M. Studying the Pulmonary Endothelium in Health and Disease: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2024; 71:388-406. [PMID: 39189891 PMCID: PMC11450313 DOI: 10.1165/rcmb.2024-0330st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Lung endothelium resides at the interface between the circulation and the underlying tissue, where it senses biochemical and mechanical properties of both the blood as it flows through the vascular circuit and the vessel wall. The endothelium performs the bidirectional signaling between the blood and tissue compartments that is necessary to maintain homeostasis while physically separating both, facilitating a tightly regulated exchange of water, solutes, cells, and signals. Disruption in endothelial function contributes to vascular disease, which can manifest in discrete vascular locations along the artery-to-capillary-to-vein axis. Although our understanding of mechanisms that contribute to endothelial cell injury and repair in acute and chronic vascular disease have advanced, pathophysiological mechanisms that underlie site-specific vascular disease remain incompletely understood. In an effort to improve the translatability of mechanistic studies of the endothelium, the American Thoracic Society convened a workshop to optimize rigor, reproducibility, and translation of discovery to advance our understanding of endothelial cell function in health and disease.
Collapse
|
2
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
3
|
Singh N, Eickhoff C, Garcia-Agundez A, Bertone P, Paudel SS, Tambe DT, Litzky LA, Cox-Flaherty K, Klinger JR, Monaghan SF, Mullin CJ, Pereira M, Walsh T, Whittenhall M, Stevens T, Harrington EO, Ventetuolo CE. Transcriptional profiles of pulmonary artery endothelial cells in pulmonary hypertension. Sci Rep 2023; 13:22534. [PMID: 38110438 PMCID: PMC10728171 DOI: 10.1038/s41598-023-48077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by endothelial cell (EC) dysfunction. There are no data from living patients to inform whether differential gene expression of pulmonary artery ECs (PAECs) can discern disease subtypes, progression and pathogenesis. We aimed to further validate our previously described method to propagate ECs from right heart catheter (RHC) balloon tips and to perform additional PAEC phenotyping. We performed bulk RNA sequencing of PAECs from RHC balloons. Using unsupervised dimensionality reduction and clustering we compared transcriptional signatures from PAH to controls and other forms of pulmonary hypertension. Select PAEC samples underwent single cell and population growth characterization and anoikis quantification. Fifty-four specimens were analyzed from 49 subjects. The transcriptome appeared stable over limited passages. Six genes involved in sex steroid signaling, metabolism, and oncogenesis were significantly upregulated in PAH subjects as compared to controls. Genes regulating BMP and Wnt signaling, oxidative stress and cellular metabolism were differentially expressed in PAH subjects. Changes in gene expression tracked with clinical events in PAH subjects with serial samples over time. Functional assays demonstrated enhanced replication competency and anoikis resistance. Our findings recapitulate fundamental biological processes of PAH and provide new evidence of a cancer-like phenotype in ECs from the central vasculature of PAH patients. This "cell biopsy" method may provide insight into patient and lung EC heterogeneity to advance precision medicine approaches in PAH.
Collapse
Affiliation(s)
- Navneet Singh
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Carsten Eickhoff
- Department of Computer Science, Brown University, Providence, RI, USA
| | | | - Paul Bertone
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Dhananjay T Tambe
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Department of Mechanical Aerospace and Biomedical Engineering, College of Engineering, University of South Alabama, Mobile, AL, USA
| | - Leslie A Litzky
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - James R Klinger
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Sean F Monaghan
- Department of Surgery, Alpert Medical School of Brown University, Providence, RI, USA
| | - Christopher J Mullin
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | | | | | - Mary Whittenhall
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Elizabeth O Harrington
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | - Corey E Ventetuolo
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Health Services, Policy and Practice, Brown University, Providence, RI, USA.
| |
Collapse
|
4
|
Lee JY, Stevens RP, Pastukh VV, Pastukh VM, Kozhukhar N, Alexeyev MF, Reisz JA, Nerguizian D, D’Alessandro A, Koloteva A, Gwin MS, Roberts JT, Borchert GM, Wagener BM, Pittet JF, Graham BB, Stenmark KR, Stevens T. PFKFB3 Inhibits Fructose Metabolism in Pulmonary Microvascular Endothelial Cells. Am J Respir Cell Mol Biol 2023; 69:340-354. [PMID: 37201952 PMCID: PMC10503305 DOI: 10.1165/rcmb.2022-0443oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/17/2023] [Indexed: 05/20/2023] Open
Abstract
Pulmonary microvascular endothelial cells contribute to the integrity of the lung gas exchange interface, and they are highly glycolytic. Although glucose and fructose represent discrete substrates available for glycolysis, pulmonary microvascular endothelial cells prefer glucose over fructose, and the mechanisms involved in this selection are unknown. 6-Phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) is an important glycolytic enzyme that drives glycolytic flux against negative feedback and links glycolytic and fructolytic pathways. We hypothesized that PFKFB3 inhibits fructose metabolism in pulmonary microvascular endothelial cells. We found that PFKFB3 knockout cells survive better than wild-type cells in fructose-rich medium under hypoxia. Seahorse assays, lactate and glucose measurements, and stable isotope tracing showed that PFKFB3 inhibits fructose-hexokinase-mediated glycolysis and oxidative phosphorylation. Microarray analysis revealed that fructose upregulates PFKFB3, and PFKFB3 knockout cells increase fructose-specific GLUT5 (glucose transporter 5) expression. Using conditional endothelial-specific PFKFB3 knockout mice, we demonstrated that endothelial PFKFB3 knockout increases lung tissue lactate production after fructose gavage. Last, we showed that pneumonia increases fructose in BAL fluid in mechanically ventilated ICU patients. Thus, PFKFB3 knockout increases GLUT5 expression and the hexokinase-mediated fructose use in pulmonary microvascular endothelial cells that promotes their survival. Our findings indicate that PFKFB3 is a molecular switch that controls glucose versus fructose use in glycolysis and help better understand lung endothelial cell metabolism during respiratory failure.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Physiology and Cell Biology
- Division of Pulmonary and Critical Care Medicine
- Department of Internal Medicine
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Reece P. Stevens
- Department of Physiology and Cell Biology
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Viktoriya V. Pastukh
- Department of Physiology and Cell Biology
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Viktor M. Pastukh
- Department of Pharmacology, and
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Natalya Kozhukhar
- Department of Physiology and Cell Biology
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Mikhail F. Alexeyev
- Department of Physiology and Cell Biology
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | | | | | | | - Anna Koloteva
- Department of Physiology and Cell Biology
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Meredith S. Gwin
- Department of Physiology and Cell Biology
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Justin T. Roberts
- Department of Pharmacology, and
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Glen M. Borchert
- Department of Pharmacology, and
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Brant M. Wagener
- Division of Critical Care Medicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Jean-François Pittet
- Division of Critical Care Medicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Brian B. Graham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Lung Biology Center, University of California, San Francisco, San Francisco, California
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Troy Stevens
- Department of Physiology and Cell Biology
- Department of Internal Medicine
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
5
|
Cox‐Flaherty K, Baird GL, Braza J, Guarino BD, Princiotto A, Ventetuolo CE, Harrington EO. Commercial human pulmonary artery endothelial cells have in-vitro behavior that varies by sex. Pulm Circ 2022; 12:e12165. [PMID: 36484057 PMCID: PMC9723258 DOI: 10.1002/pul2.12165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
It is unknown whether biological sex influences phenotypes of commercially available human pulmonary artery endothelial cells (HPAECs). Ten lots of commercial HPAECs were used (Lonza Biologics; PromoCell). Five (50%) were confirmed to be genotypically male (SRY+) and five (50%) were confirmed to be female (SRY-). Experiments were conducted between passages five and eight. HPAEC phenotype was confirmed with a panel of cell expression markers. Standard assays for proliferation, migration and tube formation were performed in triplicate with technical replicates, under three treatment conditions (EndoGRO; Sigma-Aldrich). Apoptosis was assessed by exposing cells treated with complete media or low serum media to hypoxic (1% oxygen) or normoxic (20% oxygen) conditions. Laboratory staff was blinded. The median (range) age of male and female donors from whom the HPAECs were derived was 58 (48-60) and 56 (33-67), respectively. Our results suggest decreased proliferation in genotypically female cells compared with male cells (p = 0.09). With increasing donor age, female cells were less proliferative and male cells were more proliferative (p = 0.001). Female cells were significantly more apoptotic than male cells by condition (p = 0.001). Female cells were significantly more migratory than male cells in complete media but less migratory than male cells under vascular endothelial growth factor enriched conditions (p = 0.001). There are subtle sex-based differences in the behavior of HPAECs that depend on donor sex and, less so, age. These differences may undermine rigor and reproducibility. Future studies should define whether biological sex is an important regulator of HPAEC function in health and disease.
Collapse
Affiliation(s)
- Katherine Cox‐Flaherty
- Departments of Medicine and Health ServicesPolicy and Practice, Brown UniversityProvidenceRhode IslandUSA
- Vascular Research Laboratory, Providence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
| | | | - Julie Braza
- Vascular Research Laboratory, Providence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
| | - Brianna D. Guarino
- Departments of Medicine and Health ServicesPolicy and Practice, Brown UniversityProvidenceRhode IslandUSA
- Vascular Research Laboratory, Providence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
| | - Amy Princiotto
- Vascular Research Laboratory, Providence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
| | - Corey E. Ventetuolo
- Departments of Medicine and Health ServicesPolicy and Practice, Brown UniversityProvidenceRhode IslandUSA
- Health Services, Policy and PracticeBrown UniversityProvidenceRhode IslandUSA
| | - Elizabeth O. Harrington
- Departments of Medicine and Health ServicesPolicy and Practice, Brown UniversityProvidenceRhode IslandUSA
- Vascular Research Laboratory, Providence Veterans Affairs Medical CenterProvidenceRhode IslandUSA
| |
Collapse
|
6
|
Adams D, Choi CS, Sayner SL. Pulmonary endothelial cells from different vascular segments exhibit unique recovery from acidification and Na+/H+ exchanger isoform expression. PLoS One 2022; 17:e0266890. [PMID: 35503765 PMCID: PMC9064095 DOI: 10.1371/journal.pone.0266890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
Sodium-hydrogen exchangers (NHEs) tightly regulate intracellular pH (pHi), proliferation, migration and cell volume. Heterogeneity exists between pulmonary endothelial cells derived from different vascular segments, yet the activity and isoform expression of NHEs between these vascular segments has not been fully examined. Utilizing the ammonium-prepulse and recovery from acidification technique in a buffer lacking bicarbonate, pulmonary microvascular and pulmonary artery endothelial cells exhibited unique recovery rates from the acid load dependent upon the concentration of the sodium transport inhibitor, amiloride; further, pulmonary artery endothelial cells required a higher dose of amiloride to inhibit sodium-dependent acid recovery compared to pulmonary microvascular endothelial cells, suggesting a unique complement of NHEs between the different endothelial cell types. While NHE1 has been described in pulmonary endothelial cells, all NHE isoforms have not been accounted for. To address NHE expression in endothelial cells, qPCR was performed. Using a two-gene normalization approach, Sdha and Ywhag were identified for qPCR normalization and analysis of NHE isoforms between pulmonary microvascular and pulmonary artery endothelial cells. NHE1 and NHE8 mRNA were equally expressed between the two cell types, but NHE5 expression was significantly higher in pulmonary microvascular versus pulmonary artery endothelial cells, which was confirmed at the protein level. Thus, pulmonary microvascular and pulmonary artery endothelial cells exhibit unique NHE isoform expression and have a unique response to acid load revealed through recovery from cellular acidification.
Collapse
Affiliation(s)
- Dylan Adams
- Department of Physiology and Cell Biology, University South Alabama, College of Medicine, Mobile, Alabama, United States of America
| | - Chung-Sik Choi
- Department of Physiology and Cell Biology, University South Alabama, College of Medicine, Mobile, Alabama, United States of America
| | - Sarah L. Sayner
- Department of Physiology and Cell Biology, University South Alabama, College of Medicine, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, College of Medicine, Mobile, Alabama, United States of America
| |
Collapse
|
7
|
Stevens RP, Paudel SS, Johnson SC, Stevens T, Lee JY. Endothelial metabolism in pulmonary vascular homeostasis and acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2021; 321:L358-L376. [PMID: 34159794 PMCID: PMC8384476 DOI: 10.1152/ajplung.00131.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
Capillary endothelial cells possess a specialized metabolism necessary to adapt to the unique alveolar-capillary environment. Here, we highlight how endothelial metabolism preserves the integrity of the pulmonary circulation by controlling vascular permeability, defending against oxidative stress, facilitating rapid migration and angiogenesis in response to injury, and regulating the epigenetic landscape of endothelial cells. Recent reports on single-cell RNA-sequencing reveal subpopulations of pulmonary capillary endothelial cells with distinctive reparative capacities, which potentially offer new insight into their metabolic signature. Lastly, we discuss broad implications of pulmonary vascular metabolism on acute respiratory distress syndrome, touching on emerging findings of endotheliitis in coronavirus disease 2019 (COVID-19) lungs.
Collapse
Affiliation(s)
- Reece P Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Santina C Johnson
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama
- Department of Biomolecular Engineering, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ji Young Lee
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, Alabama
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, Alabama
- Division of Pulmonary and Critical Care Medicine, College of Medicine, University of South Alabama, Mobile, Alabama
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
8
|
Lee JY, Stevens RP, Kash M, Alexeyev MF, Balczon R, Zhou C, Renema P, Koloteva A, Kozhukhar N, Pastukh V, Gwin MS, Voth S, deWeever A, Wagener BM, Pittet JF, Eslaamizaad Y, Siddiqui W, Nawaz T, Clarke C, Fouty BW, Audia JP, Alvarez DF, Stevens T. Carbonic Anhydrase IX and Hypoxia Promote Rat Pulmonary Endothelial Cell Survival During Infection. Am J Respir Cell Mol Biol 2021; 65:630-645. [PMID: 34251286 DOI: 10.1165/rcmb.2020-0537oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Low tidal volume ventilation protects the lung in mechanically ventilated patients. The impact of the accompanying permissive hypoxemia and hypercapnia on endothelial cell recovery from injury is poorly understood. Carbonic anhydrase IX (CA IX) is expressed in pulmonary microvascular endothelial cells (PMVECs), where it contributes to CO2 and pH homeostasis, bioenergetics and angiogenesis. We hypothesized that CA IX is important for PMVEC survival, and CA IX expression and release from PMVECs are increased during infection. While plasma CA IX was unchanged in human and rat pneumonia, there was a trend towards increasing CA IX in bronchoalveolar fluid of mechanically ventilated critically ill pneumonia patients and a significant increase in CA IX in lung tissue lysate of rat pneumonia. To investigate functional implications of the lung CA IX increase, we generated PMVEC cell lines harboring domain-specific CA IX mutations. Using these cells, we found that infection promotes intracellular expression, release and metalloproteinase-mediated extracellular cleavage of CA IX in PMVECs. Intracellular domain deletion uniquely impaired CA IX membrane localization. Loss of the CA IX intracellular domain promoted cell death following infection, suggesting the important role of intracellular domain in PMVEC survival. We also found that hypoxia improves survival, whereas hypercapnia reverses the protective effect of hypoxia, during infection. Thus, we report that: (1) CA IX increases in rat pneumonia lung; and, (2) the CA IX intracellular domain and hypoxia promote PMVEC survival during infection.
Collapse
Affiliation(s)
- Ji Young Lee
- University of South Alabama, 5557, Mobile, Alabama, United States;
| | - Reece P Stevens
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Mary Kash
- University of South Alabama, 5557, Mobile, Alabama, United States
| | | | - Ronald Balczon
- University of South Alabama, 5557, Biochemistry and Molecular Biology, Mobile, Alabama, United States
| | - Chun Zhou
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Phoibe Renema
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Anna Koloteva
- University of South Alabama, 5557, Mobile, Alabama, United States
| | | | | | - Meredith S Gwin
- University of South Alabama, 5557, Physiology and Cell Biology, Mobile, Alabama, United States
| | - Sarah Voth
- University of South Alabama, 5557, Physiology and Cell Biology, Mobile, Alabama, United States
| | - Althea deWeever
- University of South Alabama College of Medicine, 12214, Physiology and Cell Biology, Mobile, Alabama, United States
| | - Brant M Wagener
- The University of Alabama at Birmingham, 9968, Department of Anesthesiology and Perioperative Medicine, Birmingham, Alabama, United States
| | - Jean-François Pittet
- The University of Alabama at Birmingham, 9968, Department of Anesthesiology and Perioperative Medicine, Birmingham, Alabama, United States
| | | | - Waqar Siddiqui
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Talha Nawaz
- University of South Alabama, 5557, Mobile, Alabama, United States
| | | | - Brian W Fouty
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Jonathon P Audia
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Diego F Alvarez
- Sam Houston State University, 4038, Huntsville, Texas, United States
| | - Troy Stevens
- University of South Alabama, 5557, Physiology and Cell Biology, Mobile, Alabama, United States
| |
Collapse
|
9
|
Hansen C, Olsen K, Pilegaard H, Bangsbo J, Gliemann L, Hellsten Y. High metabolic substrate load induces mitochondrial dysfunction in rat skeletal muscle microvascular endothelial cells. Physiol Rep 2021; 9:e14855. [PMID: 34288561 PMCID: PMC8290479 DOI: 10.14814/phy2.14855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
The influence of glucose and palmitic acid (PA) on mitochondrial respiration and emission of hydrogen peroxide (H2 O2 ) was determined in skeletal muscle-derived microvascular endothelial cells. Measurements were assessed in intact and permeabilized (cells treated with 0.025% saponin) low passage endothelial cells with acute-or prolonged (3 days) incubation with regular (1.7 mM) or elevated (2.2 mM) PA concentrations and regular (5 mM) or elevated (11 mM) glucose concentrations. In intact cells, acute incubation with 1.7 mM PA alone or with 1.7 mM PA + 5 mM glucose (p < .001) led to a lower mitochondrial respiration (p < 0.01) and markedly higher H2 O2 /O2 emission (p < 0.05) than with 5 mM glucose alone. Prolonged incubation of intact cells with 1.7 mM PA +5 mM glucose led to 34% (p < 0.05) lower respiration and 2.5-fold higher H2 O2 /O2 emission (p < 0.01) than incubation with 5 mM glucose alone. Prolonged incubation of intact cells with elevated glucose led to 60% lower (p < 0.05) mitochondrial respiration and 4.6-fold higher H2 O2 /O2 production than incubation with 5 mM glucose in intact cells (p < 0.001). All effects observed in intact cells were present also in permeabilized cells (State 2). In conclusion, our results show that acute and prolonged lipid availability, as well as prolonged hyperglycemia, induces mitochondrial dysfunction as evidenced by lower mitochondrial respiration and enhanced H2 O2/ O2 emission. Elevated plasma substrate availability may lead to microvascular dysfunction in skeletal muscle by impairing endothelial mitochondrial function.
Collapse
Affiliation(s)
- Camilla Hansen
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Karina Olsen
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Henriette Pilegaard
- Department of BiologySection of Cell Biology and PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and SportsSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and SportsCardiovascular Physiology GroupSection of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
10
|
Lee JY, Stevens RP, Kash M, Zhou C, Koloteva A, Renema P, Paudel SS, Stevens T. KD025 Shifts Pulmonary Endothelial Cell Bioenergetics and Decreases Baseline Lung Permeability. Am J Respir Cell Mol Biol 2020; 63:519-530. [PMID: 32628869 PMCID: PMC7528923 DOI: 10.1165/rcmb.2019-0435oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
KD025 is a ROCK2 inhibitor currently being tested in clinical trials for the treatment of fibrotic lung diseases. The therapeutic effects of KD025 are partly due to its inhibition of profibrotic pathways and fat metabolism. However, whether KD025 affects pulmonary microvascular endothelial cell (PMVEC) function is unknown, despite evidence that alveolar-capillary membrane disruption constitutes major causes of death in fibrotic lung diseases. We hypothesized that KD025 regulates PMVEC metabolism, pH, migration, and survival, a series of interrelated functional characteristics that determine pulmonary barrier integrity. We used PMVECs isolated from Sprague Dawley rats. KD025 dose-dependently decreased lactate production and glucose consumption. The inhibitory effect of KD025 was more potent compared with other metabolic modifiers, including 2-deoxy-glucose, extracellular acidosis, dichloroacetate, and remogliflozin. Interestingly, KD025 increased oxidative phosphorylation, whereas 2-deoxy-glucose did not. KD025 also decreased intracellular pH and induced a compensatory increase in anion exchanger 2. KD025 inhibited PMVEC migration, but fasudil (nonspecific ROCK inhibitor) did not. We tested endothelial permeability in vivo using Evans Blue dye in the bleomycin pulmonary fibrosis model. Baseline permeability was decreased in KD025-treated animals independent of bleomycin treatment. Under hypoxia, KD025 increased PMVEC necrosis as indicated by increased lactate dehydrogenase release and propidium iodide uptake and decreased ATP; it did not affect Annexin V binding. ROCK2 knockdown had no effect on PMVEC metabolism, pH, and migration, but it increased nonapoptotic caspase-3 activity. Together, we report that KD025 promotes oxidative phosphorylation; decreases glycolysis, intracellular pH, and migration; and strengthens pulmonary barrier integrity in a ROCK2-independent manner.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Physiology and Cell Biology
- Department of Internal Medicine
- Division of Pulmonary and Critical Care Medicine
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Reece P. Stevens
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Mary Kash
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Chun Zhou
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Anna Koloteva
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Phoibe Renema
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Sunita S. Paudel
- Department of Physiology and Cell Biology
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology
- Department of Internal Medicine
- Center for Lung Biology
- College of Medicine, and
- University of South Alabama, Mobile, Alabama
| |
Collapse
|
11
|
Ventetuolo CE, Aliotta JM, Braza J, Chichger H, Dooner M, McGuirl D, Mullin CJ, Newton J, Pereira M, Princiotto A, Quesenberry PJ, Walsh T, Whittenhall M, Klinger JR, Harrington EO. Culture of pulmonary artery endothelial cells from pulmonary artery catheter balloon tips: considerations for use in pulmonary vascular disease. Eur Respir J 2020; 55:1901313. [PMID: 31949110 PMCID: PMC7147989 DOI: 10.1183/13993003.01313-2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/10/2019] [Indexed: 11/05/2022]
Abstract
Endothelial dysfunction is a hallmark of pulmonary arterial hypertension (PAH) but there are no established methods to study pulmonary artery endothelial cells (PAECs) from living patients. We sought to culture PAECs from pulmonary artery catheter (PAC) balloons used during right-heart catheterisation (RHC) to characterise successful culture attempts and to describe PAEC behaviour.PAECs were grown in primary culture to confluence and endothelial cell phenotype was confirmed. Standard assays for apoptosis, migration and tube formation were performed between passages three to eight. We collected 49 PAC tips from 45 subjects with successful PAEC culture from 19 balloons (39%).There were no differences in subject demographic details or RHC procedural details in successful versus unsuccessful attempts. However, for subjects who met haemodynamic criteria for PAH, there was a higher but nonsignificant (p=0.10) proportion amongst successful attempts (10 out of 19, 53%) versus unsuccessful attempts (nine out of 30, 30%). A successful culture was more likely in subjects with a lower cardiac index (p=0.03) and higher pulmonary vascular resistance (p=0.04). PAECs from a subject with idiopathic PAH were apoptosis resistant compared to commercial PAECs (p=0.04) and had reduced migration compared to PAECs from a subject with portopulmonary hypertension with high cardiac output (p=0.01). PAECs from a subject with HIV-associated PAH formed fewer (p=0.01) and shorter (p=0.02) vessel networks compared to commercial PAECs.Sustained culture and characterisation of PAECs from RHC balloons is feasible, especially in PAH with high haemodynamic burden. This technique may provide insight into endothelial dysfunction during PAH pathogenesis.
Collapse
Affiliation(s)
- Corey E Ventetuolo
- Dept of Medicine, Brown University, Providence, RI, USA
- Dept of Health Services, Policy and Practice, Brown University, Providence, RI, USA
| | | | - Julie Braza
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | - Havovi Chichger
- Biomedical Research Group, Dept of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Mark Dooner
- Lifespan Hospital System, Providence, RI, USA
| | | | | | - Julie Newton
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | | | - Amy Princiotto
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | | | | | | | | | - Elizabeth O Harrington
- Dept of Medicine, Brown University, Providence, RI, USA
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, USA
| |
Collapse
|
12
|
Niethamer TK, Stabler CT, Leach JP, Zepp JA, Morley MP, Babu A, Zhou S, Morrisey EE. Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. eLife 2020; 9:e53072. [PMID: 32091393 PMCID: PMC7176435 DOI: 10.7554/elife.53072] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/22/2020] [Indexed: 12/16/2022] Open
Abstract
Pulmonary endothelial cells (ECs) are an essential component of the gas exchange machinery of the lung alveolus. Despite this, the extent and function of lung EC heterogeneity remains incompletely understood. Using single-cell analytics, we identify multiple EC populations in the mouse lung, including macrovascular endothelium (maEC), microvascular endothelium (miECs), and a new population we have termed Car4-high ECs. Car4-high ECs express a unique gene signature, and ligand-receptor analysis indicates they are primed to receive reparative signals from alveolar type I cells. After acute lung injury, they are preferentially localized in regenerating regions of the alveolus. Influenza infection reveals the emergence of a population of highly proliferative ECs that likely arise from multiple miEC populations and contribute to alveolar revascularization after injury. These studies map EC heterogeneity in the adult lung and characterize the response of novel EC subpopulations required for tissue regeneration after acute lung injury.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Collin T Stabler
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - John P Leach
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Jarod A Zepp
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Michael P Morley
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Apoorva Babu
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Su Zhou
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, United States
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, United States
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
- Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
13
|
Reiterer M, Branco CM. Endothelial cells and organ function: applications and implications of understanding unique and reciprocal remodelling. FEBS J 2019; 287:1088-1100. [PMID: 31736207 PMCID: PMC7155104 DOI: 10.1111/febs.15143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/21/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022]
Abstract
The microvasculature is a heterogeneous, dynamic and versatile component of the systemic circulation, with a unique ability to locally self-regulate and to respond to organ demand and environmental stimuli. Endothelial cells from different organs display considerable variation, but it is currently unclear to what extent functional properties of organ-specific endothelial cells are intrinsic, acquired and/or reprogrammable. Vascular function is a fundamental pillar of homeostasis, and dysfunction results in systemic consequences for the organism. Additionally, vascular failure can occur downstream of organ disease or environmental stress, often driving an exacerbation of symptoms and pathologies originally independent of the local circulation. The understanding of the molecular mechanisms underlying endothelial physiology and metabolism holds the promise to inform and improve diagnosis, prognosis and treatment options for a myriad of conditions as unrelated as cancer, neurodegeneration or pulmonary hypertension, and likely everything in between, if we consider that also treatments for such conditions are primarily distributed via the bloodstream. However, studying endothelial function has its challenges: the origin, isolation, culture conditions and preconditioning stimuli make this an extremely variable cell type to study and difficult to source. Animal models exist but are neither trivial to generate, nor necessarily adequately translatable to human disease. In this article, we aim to illustrate the breadth of microvascular functions in different environments, highlighting current and pioneering studies that have advanced our insight into the importance of the integrity of this tissue, as well as the limitations posed by its heterogeneity and plasticity.
Collapse
Affiliation(s)
- Moritz Reiterer
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Cristina M Branco
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK
| |
Collapse
|
14
|
Lee JY, Onanyan M, Garrison I, White R, Crook M, Alexeyev MF, Kozhukhar N, Pastukh V, Swenson ER, Supuran CT, Stevens T. Extrinsic acidosis suppresses glycolysis and migration while increasing network formation in pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2019; 317:L188-L201. [PMID: 31042076 DOI: 10.1152/ajplung.00544.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acidosis is common among critically ill patients, but current approaches to correct pH do not improve disease outcomes. During systemic acidosis, cells are either passively exposed to extracellular acidosis that other cells have generated (extrinsic acidosis) or they are exposed to acid that they generate and export into the extracellular space (intrinsic acidosis). Although endothelial repair following intrinsic acidosis has been studied, the impact of extrinsic acidosis on migration and angiogenesis is unclear. We hypothesized that extrinsic acidosis inhibits metabolism and migration but promotes capillary-like network formation in pulmonary microvascular endothelial cells (PMVECs). Extrinsic acidosis was modeled by titrating media pH. Two types of intrinsic acidosis were compared, including increasing cellular metabolism by chemically inhibiting carbonic anhydrases (CAs) IX and XII (SLC-0111) and with hypoxia. PMVECs maintained baseline intracellular pH for 24 h with both extrinsic and intrinsic acidosis. Whole cell CA IX protein expression was decreased by extrinsic acidosis but not affected by hypoxia. When extracellular pH was equally acidic, extrinsic acidosis suppressed glycolysis, whereas intrinsic acidosis did not. Extrinsic acidosis suppressed migration, but increased Matrigel network master junction and total segment length. CRISPR-Cas9 CA IX knockout PMVECs revealed an independent role of CA IX in promoting glycolysis, as loss of CA IX alone was accompanied by decreased hexokinase I and pyruvate dehydrogenase E1α expression and decreasing migration. 2-deoxy-d-glucose had no effect on migration but profoundly inhibited network formation and increased N-cadherin expression. Thus, we report that while extrinsic acidosis suppresses endothelial glycolysis and migration, it promotes network formation.
Collapse
Affiliation(s)
- Ji Young Lee
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Department of Internal Medicine, University of South Alabama, Mobile, Alabama.,Division of Pulmonary and Critical Care Medicine, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Mher Onanyan
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama.,Division of Pulmonary and Critical Care Medicine, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ian Garrison
- College of Medicine, University of South Alabama, Mobile, Alabama
| | - Roderica White
- College of Medicine, University of South Alabama, Mobile, Alabama.,Center for Healthy Communities, University of South Alabama, Mobile, Alabama
| | - Maura Crook
- College of Medicine, University of South Alabama, Mobile, Alabama.,Office of Diversity and Inclusion, University of South Alabama, Mobile, Alabama
| | - Mikhail F Alexeyev
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Natalya Kozhukhar
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Viktoriya Pastukh
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| | - Erik R Swenson
- Medical Service, VA Puget Sound Health Care System, University of Washington, Seattle, Washington
| | | | - Troy Stevens
- Departments of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Department of Internal Medicine, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama.,College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
15
|
Revollo JR, Dad A, McDaniel LP, Pearce MG, Dobrovolsky VN. Genome-wide mutation detection by interclonal genetic variation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 829-830:61-69. [PMID: 29704995 DOI: 10.1016/j.mrgentox.2018.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/10/2018] [Accepted: 03/10/2018] [Indexed: 12/20/2022]
Abstract
Genetic toxicology assays estimate mutation frequencies by phenotypically screening for the activation or inactivation of endogenous or exogenous reporter genes. These reporters can only detect mutations in narrow areas of the genome and their use is often restricted to certain in vitro and in vivo models. Here, we show that Interclonal Genetic Variation (ICGV) can directly identify mutations genome-wide by comparing sequencing data of single-cell clones derived from the same source or organism. Upon ethyl methanesulfonate (EMS) exposure, ICGV detected greater levels of mutation in a dose- and time-dependent manner in E. coli. In addition, ICGV was also able to identify a ∼20-fold increase in somatic mutations in T-cell clones derived from an N-ethyl-N-nitrosourea (ENU)-treated rat vs. a vehicle-treated rat. These results demonstrate that the genetic differences of single-cell clones can be used for genome-wide mutation detection.
Collapse
Affiliation(s)
- Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA.
| | - Azra Dad
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Lea P McDaniel
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Mason G Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
16
|
Lee JY, Alexeyev M, Kozhukhar N, Pastukh V, White R, Stevens T. Carbonic anhydrase IX is a critical determinant of pulmonary microvascular endothelial cell pH regulation and angiogenesis during acidosis. Am J Physiol Lung Cell Mol Physiol 2018; 315:L41-L51. [PMID: 29631360 DOI: 10.1152/ajplung.00446.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Carbonic anhydrase IX (CA IX) is highly expressed in rapidly proliferating and highly glycolytic cells, where it serves to enhance acid-regulatory capacity. Pulmonary microvascular endothelial cells (PMVECs) actively utilize aerobic glycolysis and acidify media, whereas pulmonary arterial endothelial cells (PAECs) primarily rely on oxidative phosphorylation and minimally change media pH. Therefore, we hypothesized that CA IX is critical to PMVEC angiogenesis because of its important role in regulating pH. To test this hypothesis, PMVECs and PAECs were isolated from Sprague-Dawley rats. CA IX knockout PMVECs were generated using the CRISPR-Cas9 technique. During serum-stimulated growth, mild acidosis (pH 6.8) did not affect cell counts of PMVECs, but it decreased PAEC cell number. Severe acidosis (pH 6.2) decreased cell counts of PMVECs and elicited an even more pronounced reduction of PAECs. PMVECs had a higher CA IX expression compared with PAECs. CA activity was higher in PMVECs compared with PAECs, and enzyme activity was dependent on the type IX isoform. Pharmacological inhibition and genetic ablation of CA IX caused profound dysregulation of extra- and intracellular pH in PMVECs. Matrigel assays revealed impaired angiogenesis of CA IX knockout PMVECs in acidosis. Lastly, pharmacological CA IX inhibition caused profound cell death in PMVECs, whereas genetic CA IX ablation had little effect on PMVEC cell death in acidosis. Thus CA IX controls PMVEC pH necessary for angiogenesis during acidosis. CA IX may contribute to lung vascular repair during acute lung injury that is accompanied by acidosis within the microenvironment.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Department of Internal Medicine, University of South Alabama , Mobile, Alabama.,Division of Pulmonary and Critical Care Medicine, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Viktoriya Pastukh
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Roderica White
- Center for Healthy Communities, University of South Alabama , Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Department of Internal Medicine, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| |
Collapse
|
17
|
Taha M, Cadete VJ, Stewart DJ. Macro- and micro-heterogeneity of lung endothelial cells: they may not be smooth, but they got the moves. Pulm Circ 2017; 7:755-757. [PMID: 29168663 PMCID: PMC5703129 DOI: 10.1177/2045893217743710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mohamad Taha
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,2 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Virgilio J Cadete
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,2 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Duncan J Stewart
- 1 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,2 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|