1
|
Lewandowska K, Majewski MS. The Involvement of Epilobium parviflorum in Different Human Diseases, with Particular Attention to Its Antioxidant and Anti-Inflammatory Properties and Benefits to Vascular Health. Nutrients 2025; 17:1577. [PMID: 40362886 PMCID: PMC12073485 DOI: 10.3390/nu17091577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Water and alcohol extracts of Epilobium have gained attention due to their high concentration of bioactive compounds and their associated health benefits. This review aimed to evaluate the effects of Epilobium parviflorum Schreb. (Onagraceae) preparations on vascular health in light of its medical applications in different human diseases over the last five years. MATERIALS AND METHODS A literature search was undertaken of databases such as PubMed/Medline, Scopus, and Google Scholar for original articles published between March 2000 and March 2025. The keywords used were "aortic rings", "ellagitannins", "Epilobium", "hydrolyzable tannins", "hypotension", "oenothein B", "Onagraceae", "systolic blood pressure", "vasorelaxation", and "willow herb". RESULTS The E. parviflorum Schreb. herb has been used as a remedy in folk medicine and has a variety of therapeutic properties. These include its preventive effects and ability to relieve symptoms in patients with benign prostate hyperplasia, prostatitis, and a variety of cancers. Other properties include effects on kidney and urinary tract diseases, lipid regulation, and skin infections. The herb also has antibacterial properties. E. parviflorum contains bioactive compounds such as oenothein B, quercetin-3-O-glucuronide, and myricetin-3-O-rhamnoside. At low doses, these compounds contribute to a reduction in oxidative stress due to their antioxidant and immunostimulatory effects, positively reducing inflammation, which can cause certain conditions. At higher concentrations, Epilobium generates reactive oxygen species that stimulate the body's defense mechanisms against a variety of cancers. The presence of oenothein B in E. parviflorum may influence the production and storage of nitric oxide, which, in turn, promotes vasodilation and regulates blood pressure. CONCLUSIONS Although the potential application of E. parviflorum in metabolic disorders has not been extensively studied before, its antioxidant and anti-inflammatory properties are well documented and suggest potential pathways for future research and the therapeutic development of preparations to benefit vascular health.
Collapse
Affiliation(s)
- Klaudia Lewandowska
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | | |
Collapse
|
2
|
Krause PN, McGeorge G, McPeek JL, Khalid S, Nelin LD, Liu Y, Chen B. Pde3a and Pde3b regulation of murine pulmonary artery smooth muscle cell growth and metabolism. Physiol Rep 2024; 12:e70089. [PMID: 39435735 PMCID: PMC11494452 DOI: 10.14814/phy2.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/23/2024] Open
Abstract
A role for metabolically active adipose tissue in pulmonary hypertension (PH) pathogenesis is emerging. Alterations in cellular metabolism in metabolic syndrome are triggers of PH-related vascular dysfunction. Metabolic reprogramming in proliferative pulmonary vascular cells causes a metabolic switch from oxidative phosphorylation to glycolysis. PDE3A and PDE3B subtypes in the regulation of metabolism in pulmonary artery smooth muscle cells (PASMC) are poorly understood. We previously found that PDE3A modulates the cellular energy sensor, AMPK, in human PASMC. We demonstrate that global Pde3a knockout mice have right ventricular (RV) hypertrophy, elevated RV systolic pressures, and metabolic dysfunction with elevated serum free fatty acids (FFA). Therefore, we sought to delineate Pde3a/Pde3b regulation of metabolic pathways in PASMC. We found that PASMC Pde3a deficiency, and to a lesser extent Pde3b deficiency, downregulates AMPK, CREB and PPARγ, and upregulates pyruvate kinase dehydrogenase expression, suggesting decreased oxidative phosphorylation. Interestingly, siRNA Pde3a knockdown in adipocytes led to elevated FFA secretion. Furthermore, PASMC exposed to siPDE3A-transfected adipocyte media led to decreased α-SMA, AMPK and CREB phosphorylation, and greater viable cell numbers compared to controls under the same conditions. These data demonstrate that deficiencies of Pde3a and Pde3b alter pathways that affect cell growth and metabolism in PASMC.
Collapse
MESH Headings
- Animals
- Male
- Mice
- AMP-Activated Protein Kinases/metabolism
- AMP-Activated Protein Kinases/genetics
- Cell Proliferation
- Cells, Cultured
- Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 3/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/cytology
Collapse
Affiliation(s)
- Paulina N. Krause
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Gabrielle McGeorge
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Jennifer L. McPeek
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Sidra Khalid
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Leif D. Nelin
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | - Yusen Liu
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | - Bernadette Chen
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| |
Collapse
|
3
|
D'Addario CA, Matsumura S, Kitagawa A, Lainer GM, Zhang F, D'silva M, Khan MY, Froogh G, Gruzdev A, Zeldin DC, Schwartzman ML, Gupte SA. Global and endothelial G-protein coupled receptor 75 (GPR75) knockout relaxes pulmonary artery and mitigates hypoxia-induced pulmonary hypertension. Vascul Pharmacol 2023; 153:107235. [PMID: 37742819 PMCID: PMC10841449 DOI: 10.1016/j.vph.2023.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
RATIONALE Pulmonary hypertension (PH) is a multifactorial disease with a poor prognosis and inadequate treatment options. We found two-fold higher expression of the orphan G-Protein Coupled Receptor 75 (GPR75) in leukocytes and pulmonary arterial smooth muscle cells from idiopathic PH patients and from lungs of C57BL/6 mice exposed to hypoxia. We therefore postulated that GPR75 signaling is critical to the pathogenesis of PH. METHODS To test this hypothesis, we exposed global (Gpr75-/-) and endothelial cell (EC) GPR75 knockout (EC-Gpr75-/-) mice and wild-type (control) mice to hypoxia (10% oxygen) or normal atmospheric oxygen for 5 weeks. We then recorded echocardiograms and performed right heart catheterizations. RESULTS Chronic hypoxia increased right ventricular systolic and diastolic pressures in wild-type mice but not Gpr75-/- or EC-Gpr75-/- mice. In situ hybridization and qPCR results revealed that Gpr75 expression was increased in the alveoli, airways and pulmonary arteries of mice exposed to hypoxia. In addition, levels of chemokine (CC motif) ligand 5 (CCL5), a low affinity ligand of GPR75, were increased in the lungs of wild-type, but not Gpr75-/-, mice exposed to hypoxia, and CCL5 enhanced hypoxia-induced contraction of intra-lobar pulmonary arteries in a GPR75-dependent manner. Gpr75 knockout also increased pulmonary cAMP levels and decreased contraction of intra-lobar pulmonary arteries evoked by endothelin-1 or U46619 in cAMP-protein kinase A-dependent manner. CONCLUSION These results suggest GPR75 has a significant role in the development of hypoxia-induced PH.
Collapse
Affiliation(s)
| | - Shun Matsumura
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Atsushi Kitagawa
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Gregg M Lainer
- Department of Cardiology, and Heart and Vascular Institute, Westchester Medical Center and New York Medical College, Valhalla, NY 10595, USA
| | - Frank Zhang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Melinee D'silva
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Mohammad Y Khan
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Ghezal Froogh
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - Artiom Gruzdev
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Darryl C Zeldin
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
4
|
Fujiwara T, Takeda N, Hara H, Ishii S, Numata G, Tokiwa H, Katoh M, Maemura S, Suzuki T, Takiguchi H, Yanase T, Kubota Y, Nomura S, Hatano M, Ueda K, Harada M, Toko H, Takimoto E, Akazawa H, Morita H, Nishimura S, Komuro I. PGC-1α-mediated angiogenesis prevents pulmonary hypertension in mice. JCI Insight 2023; 8:e162632. [PMID: 37681410 PMCID: PMC10544206 DOI: 10.1172/jci.insight.162632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2023] [Indexed: 09/09/2023] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by a progressive narrowing of pulmonary arterioles. Although VEGF is highly expressed in lung of patients with PH and in animal PH models, the involvement of angiogenesis remains elusive. To clarify the pathophysiological function of angiogenesis in PH, we compared the angiogenic response in hypoxia (Hx) and SU5416 (a VEGFR2 inhibitor) plus Hx (SuHx) mouse PH models using 3D imaging. The 3D imaging analysis revealed an angiogenic response in the lung of the Hx-PH, but not of the severer SuHx-PH model. Selective VEGFR2 inhibition with cabozantinib plus Hx in mice also suppressed angiogenic response and exacerbated Hx-PH to the same extent as SuHx. Expression of endothelial proliferator-activated receptor γ coactivator 1α (PGC-1α) increased along with angiogenesis in lung of Hx-PH but not SuHx mice. In pulmonary endothelial cell-specific Ppargc1a-KO mice, the Hx-induced angiogenesis was suppressed, and PH was exacerbated along with increased oxidative stress, cellular senescence, and DNA damage. By contrast, treatment with baicalin, a flavonoid enhancing PGC-1α activity in endothelial cells, ameliorated Hx-PH with increased Vegfa expression and angiogenesis. Pulmonary endothelial PGC-1α-mediated angiogenesis is essential for adaptive responses to Hx and might represent a potential therapeutic target for PH.
Collapse
Affiliation(s)
- Takayuki Fujiwara
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hironori Hara
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Advanced Translational Research and Medicine in Management of Pulmonary Hypertension, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Ishii
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Genri Numata
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Advanced Translational Research and Medicine in Management of Pulmonary Hypertension, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Tokiwa
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Manami Katoh
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Sonoko Maemura
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Takaaki Suzuki
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Takiguchi
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Tomonobu Yanase
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Therapeutic Strategy for Heart Failure, and
| | - Masaru Hatano
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Kazutaka Ueda
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Mutsuo Harada
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Haruhiro Toko
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Nishimura
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
5
|
Chen T, Sun MR, Zhou Q, Guzman AM, Ramchandran R, Chen J, Fraidenburg DR, Ganesh B, Maienschein-Cline M, Obrietan K, Raj JU. MicroRNA-212-5p, an anti-proliferative miRNA, attenuates hypoxia and sugen/hypoxia-induced pulmonary hypertension in rodents. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:204-216. [PMID: 35892089 PMCID: PMC9289783 DOI: 10.1016/j.omtn.2022.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/15/2022] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNA, miR-) play important roles in disease development. In this study, we identified an anti-proliferative miRNA, miR-212-5p, that is induced in pulmonary artery smooth muscle cells (PASMCs) and lungs of pulmonary hypertension (PH) patients and rodents with experimental PH. We found that smooth muscle cell (SMC)-specific knockout of miR-212-5p exacerbated hypoxia-induced pulmonary vascular remodeling and PH in mice, suggesting that miR-212-5p may be upregulated in PASMCs to act as an endogenous inhibitor of PH, possibly by suppressing PASMC proliferation. Extracellular vesicles (EVs) have been shown recently to be promising drug delivery tools for disease treatment. We generated endothelium-derived EVs with an enriched miR-212-5p load, 212-eEVs, and found that they significantly attenuated hypoxia-induced PH in mice and Sugen/hypoxia-induced severe PH in rats, providing proof of concept that engineered endothelium-derived EVs can be used to deliver miRNA into lungs for treatment of severe PH.
Collapse
Affiliation(s)
- Tianji Chen
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Miranda R. Sun
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qiyuan Zhou
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alyssa M. Guzman
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ramaswamy Ramchandran
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jiwang Chen
- Cardiovascular Research Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dustin R. Fraidenburg
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Balaji Ganesh
- Flow Cytometry Core, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | - J. Usha Raj
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Roohaninasab M, Yavari SF, Babazadeh M, Hagh RA, Pazoki M, Amrovani M. Evaluating the Role of lncRNAs in the Incidence of Cardiovascular Diseases in Androgenetic Alopecia Patients. Cardiovasc Toxicol 2022; 22:603-619. [PMID: 35507254 DOI: 10.1007/s12012-022-09742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
Hair loss occurs in patients with Androgenetic Alopecia (AGA). The pattern of hair loss is different between men and women. The main cause of hair loss is increased cell apoptosis and decreased regeneration, proliferation and differentiation processes in hair follicles. Long Non-Coding RNAs (lncRNAs) are one of the most important molecules that regulate the processes of apoptosis, regeneration, proliferation and differentiation in hair follicles. Since studies have shown that lncRNAs can be effective in the development of cardiotoxicity and induction of cardiovascular disease (CVD); so effective lncRNAs in the regulation of regeneration, proliferation, differentiation and apoptosis of hair follicles can be involved in the development of CVD in AGA patients with. Therefore, this study investigated the lncRNAs involved in increasing apoptosis and reducing the processes of regeneration, proliferation and differentiation of hair follicles. The aim of the current study was to evaluate the role of lncRNAs as a risk factor in the incidence of CVD in AGA patients; it will help to design treatment strategies by targeting signaling pathways without any cardiotoxicity complications.
Collapse
Affiliation(s)
- Masoumeh Roohaninasab
- Department of Dermatology, Rasool Akram Medical Complex, Iran University of Medical Sciences, Sattarkhan St, Tehran, 1445613131, Iran
| | - Shadnaz Fakhteh Yavari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,Parvaz Research Ideas Supporter Institute, Tehran, Iran
| | - Motahareh Babazadeh
- Department of Dermatology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahboubeh Pazoki
- Department of Cardiology, Rasoul Akram General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
7
|
Chen J, Rodriguez M, Miao J, Liao J, Jain PP, Zhao M, Zhao T, Babicheva A, Wang Z, Parmisano S, Powers R, Matti M, Paquin C, Soroureddin Z, Shyy JYJ, Thistlethwaite PA, Makino A, Wang J, Yuan JXJ. Mechanosensitive channel Piezo1 is required for pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 2022; 322:L737-L760. [PMID: 35318857 PMCID: PMC9076422 DOI: 10.1152/ajplung.00447.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 01/10/2023] Open
Abstract
Concentric pulmonary vascular wall thickening due partially to increased pulmonary artery (PA) smooth muscle cell (PASMC) proliferation contributes to elevating pulmonary vascular resistance (PVR) in patients with pulmonary hypertension (PH). Although pulmonary vasoconstriction may be an early contributor to increasing PVR, the transition of contractile PASMCs to proliferative PASMCs may play an important role in the development and progression of pulmonary vascular remodeling in PH. A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) is a trigger for PASMC contraction and proliferation. Here, we report that upregulation of Piezo1, a mechanosensitive cation channel, is involved in the contractile-to-proliferative phenotypic transition of PASMCs and potential development of pulmonary vascular remodeling. By comparing freshly isolated PA (contractile PASMCs) and primary cultured PASMCs (from the same rat) in a growth medium (proliferative PASMCs), we found that Piezo1, Notch2/3, and CaSR protein levels were significantly higher in proliferative PASMCs than in contractile PASMCs. Upregulated Piezo1 was associated with an increase in expression of PCNA, a marker for cell proliferation, whereas downregulation (with siRNA) or inhibition (with GsMTx4) of Piezo1 attenuated PASMC proliferation. Furthermore, Piezo1 in the remodeled PA from rats with experimental PH was upregulated compared with PA from control rats. These data indicate that PASMC contractile-to-proliferative phenotypic transition is associated with the transition or adaptation of membrane channels and receptors. Upregulated Piezo1 may play a critical role in PASMC phenotypic transition and PASMC proliferation. Upregulation of Piezo1 in proliferative PASMCs may likely be required to provide sufficient Ca2+ to assure nuclear/cell division and PASMC proliferation, contributing to the development and progression of pulmonary vascular remodeling in PH.
Collapse
Affiliation(s)
- Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jinrui Miao
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pritesh P Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Manjia Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ziyi Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sophia Parmisano
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ryan Powers
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Moreen Matti
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Cole Paquin
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Zahra Soroureddin
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - John Y-J Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Patricia A Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
8
|
Zinc-mediated activation of CREB pathway in proliferation of pulmonary artery smooth muscle cells in pulmonary hypertension. Cell Commun Signal 2021; 19:103. [PMID: 34635097 PMCID: PMC8504081 DOI: 10.1186/s12964-021-00779-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcription factor CREB is involved in the development of pulmonary hypertension (PH). However, little is known about the role and regulatory signaling of CREB in PH. METHODS A series of techniques, including bioinformatics methods, western blot, cell proliferation and luciferase reporter assay were used to perform a comprehensive analysis of the role and regulation of CREB in proliferation of pulmonary artery smooth muscle cells (PASMCs) in PH. RESULTS Using bioinformatic analysis of the differentially expressed genes (DEGs) identified in the development of monocrotaline (MCT)- and hypoxia-induced PH, we found the overrepresentation of CRE-containing DEGs. Western blot analysis revealed a sustained increase in total- and phosphorylated-CREB in PASMCs isolated from rats treated with MCT. Similarly, an enhanced and prolonged serum-induced CREB phosphorylation was observed in hypoxia-pretreated PASMCs. The sustained CREB phosphorylation in PASMCs may be associated with multiple protein kinases phosphorylated CREB. Additionally, hierarchical clustering analysis showed reduced expression of the majority of CREB phosphatases in PH, including regulatory subunits of PP2A, Ppp2r2c and Ppp2r3a. Cell proliferation analysis showed increased PASMCs proliferation in MCT-induced PH, an effect relied on CREB-mediated transcriptional activity. Further analysis revealed the raised intracellular labile zinc possibly from ZIP12 was associated with reduced phosphatases, increased CREB-mediated transcriptional activity and PASMCs proliferation. CONCLUSIONS CREB pathway was overactivated in the development of PH and contributed to PASMCs proliferation, which was associated with multiple protein kinases and/or reduced CREB phosphatases and raised intracellular zinc. Thus, this study may provide a novel insight into the CREB pathway in the pathogenesis of PH. Video abstract.
Collapse
|
9
|
Bargagli E, Refini RM, d’Alessandro M, Bergantini L, Cameli P, Vantaggiato L, Bini L, Landi C. Metabolic Dysregulation in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21165663. [PMID: 32784632 PMCID: PMC7461042 DOI: 10.3390/ijms21165663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibroproliferative disorder limited to the lung. New findings, starting from our proteomics studies on IPF, suggest that systemic involvement with altered molecular mechanisms and metabolic disorder is an underlying cause of fibrosis. The role of metabolic dysregulation in the pathogenesis of IPF has not been extensively studied, despite a recent surge of interest. In particular, our studies on bronchoalveolar lavage fluid have shown that the renin–angiotensin–aldosterone system (RAAS), the hypoxia/oxidative stress response, and changes in iron and lipid metabolism are involved in onset of IPF. These processes appear to interact in an intricate manner and to be related to different fibrosing pathologies not directly linked to the lung environment. The disordered metabolism of carbohydrates, lipids, proteins and hormones has been documented in lung, liver, and kidney fibrosis. Correcting these metabolic alterations may offer a new strategy for treating fibrosis. This paper focuses on the role of metabolic dysregulation in the pathogenesis of IPF and is a continuation of our previous studies, investigating metabolic dysregulation as a new target for fibrosis therapy.
Collapse
Affiliation(s)
- Elena Bargagli
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Rosa Metella Refini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Miriana d’Alessandro
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Paolo Cameli
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
| | - Lorenza Vantaggiato
- Functional Proteomics Lab, Department Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.)
| | - Luca Bini
- Functional Proteomics Lab, Department Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.)
| | - Claudia Landi
- Respiratory Diseases and Lung Transplant Unit, Department of Medical and Surgical Sciences and Neurosciences, University of Siena, 53100 Siena, Italy; (E.B.); (R.M.R.); (M.d.); (L.B.); (P.C.)
- Functional Proteomics Lab, Department Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.)
- Correspondence: ; Tel.: +39-0577-234-937
| |
Collapse
|
10
|
Wu K, Tang H, Lin R, Carr SG, Wang Z, Babicheva A, Ayon RJ, Jain PP, Xiong M, Rodriguez M, Rahimi S, Balistrieri F, Rahimi S, Valdez-Jasso D, Simonson TS, Desai AA, Garcia JG, Shyy JYJ, Thistlethwaite PA, Wang J, Makino A, Yuan JXJ. Endothelial platelet-derived growth factor-mediated activation of smooth muscle platelet-derived growth factor receptors in pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020948470. [PMID: 33294172 PMCID: PMC7707860 DOI: 10.1177/2045894020948470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Platelet-derived growth factor is one of the major growth factors found in human and mammalian serum and tissues. Abnormal activation of platelet-derived growth factor signaling pathway through platelet-derived growth factor receptors may contribute to the development and progression of pulmonary vascular remodeling and obliterative vascular lesions in patients with pulmonary arterial hypertension. In this study, we examined the expression of platelet-derived growth factor receptor isoforms in pulmonary arterial smooth muscle and pulmonary arterial endothelial cells and investigated whether platelet-derived growth factor secreted from pulmonary arterial smooth muscle cell or pulmonary arterial endothelial cell promotes pulmonary arterial smooth muscle cell proliferation. Our results showed that the protein expression of platelet-derived growth factor receptor α and platelet-derived growth factor receptor β in pulmonary arterial smooth muscle cell was upregulated in patients with idiopathic pulmonary arterial hypertension compared to normal subjects. Platelet-derived growth factor activated platelet-derived growth factor receptor α and platelet-derived growth factor receptor β in pulmonary arterial smooth muscle cell, as determined by phosphorylation of platelet-derived growth factor receptor α and platelet-derived growth factor receptor β. The platelet-derived growth factor-mediated activation of platelet-derived growth factor receptor α/platelet-derived growth factor receptor β was enhanced in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell compared to normal cells. Expression level of platelet-derived growth factor-AA and platelet-derived growth factor-BB was greater in the conditioned media collected from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell than from normal pulmonary arterial endothelial cell. Furthermore, incubation of idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell with conditioned culture media from normal pulmonary arterial endothelial cell induced more platelet-derived growth factor receptor α activation than in normal pulmonary arterial smooth muscle cell. Accordingly, the conditioned media from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell resulted in more pulmonary arterial smooth muscle cell proliferation than the media from normal pulmonary arterial endothelial cell. These data indicate that (a) the expression and activity of platelet-derived growth factor receptor are increased in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell compared to normal pulmonary arterial smooth muscle cell, and (b) pulmonary arterial endothelial cell from idiopathic pulmonary arterial hypertension patients secretes higher level of platelet-derived growth factor than pulmonary arterial endothelial cell from normal subjects. The enhanced secretion (and production) of platelet-derived growth factor from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell and upregulated platelet-derived growth factor receptor expression (and function) in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell may contribute to enhancing platelet-derived growth factor/platelet-derived growth factor receptor-associated pulmonary vascular remodeling in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Kang Wu
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
| | - Haiyang Tang
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
| | - Ruizhu Lin
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Department of Genetics and
Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical
University, Guangzhou, China
| | - Shane G. Carr
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
| | - Ziyi Wang
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Aleksandra Babicheva
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Ramon J. Ayon
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Department of Molecular Physiology and
Biological Physics, University of Virginia, Charlottesville, USA
| | - Pritesh P. Jain
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Mingmei Xiong
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
- Department of Critical Medicine, The
Third Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
| | - Marisela Rodriguez
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Shamin Rahimi
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Francesca Balistrieri
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Shayan Rahimi
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University
of California, San Diego, La Jolla, USA
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Ankit A. Desai
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Department of Medicine, Indiana
University, Indinappolis, IN, USA
| | - Joe G.N. Garcia
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
| | - John Y.-J. Shyy
- Division of Cardiovascular Medicine,
University of California, San Diego, La Jolla, USA
| | | | - Jian Wang
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Ayako Makino
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Endocrinology
and Metabolism, Department of Medicine, University of California, San Diego, La
Jolla, USA
| | - Jason X.-J. Yuan
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| |
Collapse
|