1
|
Sammer G, Neumann E, Blecker C, Pedraz-Petrozzi B. Fractional anisotropy and peripheral cytokine concentrations in outpatients with depressive episode: a diffusion tensor imaging observational study. Sci Rep 2022; 12:17450. [PMID: 36261698 PMCID: PMC9582033 DOI: 10.1038/s41598-022-22437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/14/2022] [Indexed: 01/12/2023] Open
Abstract
Over the past few years, evidence of a positive relationship between inflammation and depression has grown steadily. The aim of the current study was to investigate whether such depression-related inflammation could also be associated with altered microstructural changes in the white matter. FA and serum cytokines (IL-1β, IL-6, TNF-α, and IFN-γ) were measured in 25 patients with depression (DE) and 24 healthy controls (HC). Diffusion tensor imaging was performed. Fractional anisotropy (FA) was calculated using the FSL pipeline for Tract-Based Spatial Statistics (TBSS). Both voxelwise and mean whole-brain FA were analyzed using general linear models (GLM). Higher concentrations of IL-1β were associated with lower whole-brain fractional anisotropy, particularly in people with depression (ρ = - 0.67; p < 0.001). TNF-α shared some variance with IL-1β and also showed a negative relationship between TNF-α concentrations and FA in depression (F1,46 = 11.13, p = 0.002, η2p = 0.21). In detail, the voxelwise analysis showed that the regression slopes of IL-1β on FA were more negative in the DE group than in the HC group, mainly in the corpus callosum (cluster statistics: genu corpus callosum, p = 0.022; splenium of corpus callosum, p = 0.047). Similar effects were not found for the other remaining cytokines. This study clearly demonstrated an association between peripherally measured IL-1β and white matter integrity in depression as assessed by DTI. The results suggest that microstructural changes in the corpus callosum are associated with increased peripheral IL-1β concentrations in depression.
Collapse
Affiliation(s)
- Gebhard Sammer
- grid.8664.c0000 0001 2165 8627Psychiatry, Justus Liebig University Giessen, Klinikstrasse 36, 35392 Giessen, Hessen Germany ,grid.8664.c0000 0001 2165 8627Faculty of Psychology and Sports Science, Justus Liebig University Giessen, Giessen, Hessen Germany ,grid.8664.c0000 0001 2165 8627Bender Institute of Neuroimaging (BION), Faculty of Psychology and Sports Science, Justus Liebig University Giessen, Giessen, Hessen Germany
| | - Elena Neumann
- grid.8664.c0000 0001 2165 8627Internal Medicine and Rheumatology, Campus Kerckhoff, Justus Liebig University Giessen, Giessen, Hessen Germany
| | - Carlo Blecker
- grid.8664.c0000 0001 2165 8627Faculty of Psychology and Sports Science, Justus Liebig University Giessen, Giessen, Hessen Germany ,grid.8664.c0000 0001 2165 8627Bender Institute of Neuroimaging (BION), Faculty of Psychology and Sports Science, Justus Liebig University Giessen, Giessen, Hessen Germany
| | - Bruno Pedraz-Petrozzi
- grid.413757.30000 0004 0477 2235Central Institute of Mental Health, Mannheim, Germany
| |
Collapse
|
2
|
Hakulinen U, Brander A, Ilvesmäki T, Helminen M, Öhman J, Luoto TM, Eskola H. Reliability of the freehand region-of-interest method in quantitative cerebral diffusion tensor imaging. BMC Med Imaging 2021; 21:144. [PMID: 34607554 PMCID: PMC8491381 DOI: 10.1186/s12880-021-00663-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique used for evaluating changes in the white matter in brain parenchyma. The reliability of quantitative DTI analysis is influenced by several factors, such as the imaging protocol, pre-processing and post-processing methods, and selected diffusion parameters. The region-of-interest (ROI) method is most widely used of the post-processing methods because it is found in commercial software. The focus of our research was to study the reliability of the freehand ROI method using various intra- and inter-observer analyses. Methods This study included 40 neurologically healthy participants who underwent diffusion MRI of the brain with a 3 T scanner. The measurements were performed at nine different anatomical locations using a freehand ROI method. The data extracted from the ROIs included the regional mean values, intra- and inter-observer variability and reliability. The used DTI parameters were fractional anisotropy (FA), the apparent diffusion coefficient (ADC), and axial (AD) and radial (RD) diffusivity. Results The average intra-class correlation coefficient (ICC) of the intra-observer was found to be 0.9 (excellent). The single ICC results were excellent (> 0.8) or adequate (> 0.69) in eight out of the nine regions in terms of FA and ADC. The most reliable results were found in the frontobasal regions. Significant differences between age groups were also found in the frontobasal regions. Specifically, the FA and AD values were significantly higher and the RD values lower in the youngest age group (18–30 years) compared to the other age groups. Conclusions The quantitative freehand ROI method can be considered highly reliable for the average ICC and mostly adequate for the single ICC. The freehand method is suitable for research work with a well-experienced observer. Measurements should be performed at least twice in the same region to ensure that the results are sufficiently reliable. In our study, reliability was slightly undermined by artifacts in some regions such as the cerebral peduncle and centrum semiovale. From a clinical point of view, the results are most reliable in adults under the age of 30, when age-related changes in brain white matter have not yet occurred.
Collapse
Affiliation(s)
- Ullamari Hakulinen
- Department of Medical Physics, Medical Imaging Center of Pirkanmaa Hospital District, Tampere, Finland. .,Department of Radiology, Medical Imaging Center of Pirkanmaa Hospital District, Tampere, Finland. .,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Antti Brander
- Department of Radiology, Medical Imaging Center of Pirkanmaa Hospital District, Tampere, Finland
| | - Tero Ilvesmäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Helminen
- Faculty of Social Sciences, Health Sciences, Tampere University, Tampere, Finland.,Tays Research Services, Tampere University Hospital, Tampere, Finland
| | - Juha Öhman
- Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Teemu M Luoto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Neurosurgery, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Hannu Eskola
- Department of Radiology, Medical Imaging Center of Pirkanmaa Hospital District, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
3
|
Lange RT, Lippa SM, Brickell TA, Yeh PH, Ollinger J, Wright M, Driscoll A, Sullivan J, Braatz S, Gartner R, Barnhart E, French LM. Post-Traumatic Stress Disorder Is Associated with Neuropsychological Outcome but Not White Matter Integrity after Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:63-73. [PMID: 33395374 DOI: 10.1089/neu.2019.6852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to examine neuropsychological functioning and white matter integrity, in service members and veterans (SMVs) after mild traumatic brain injury (MTBI), with versus without post-traumatic stress disorder (PTSD). Participants were 116 U.S. military SMVs, prospectively enrolled from the Walter Reed National Military Medical Center (Bethesda, MD), who had sustained an MTBI (n = 86) or an injury without TBI (i.e., Injured Control [IC]; n = 30). Participants completed a battery of neuropsychological measures (neurobehavioral and -cognitive), as well as diffusion tensor imaging (DTI) of the brain, on average 6 years post-injury. Based on diagnostic criteria for PTSD, participants in the MTBI group were classified into two subgroups: MTBI/PTSD-Present (n = 21) and MTBI/PTSD-Absent (n = 65). Participants in the IC group were included only if they were classified as PTSD-Absent. The MTBI/PTSD-Present group had a significantly higher number of self-reported symptoms on all neurobehavioral measures (e.g., depression), and lower scores on more than half of the neurocognitive domains (e.g., processing speed), compared to the MTBI/PTSD-Absent and IC/PTSD-Absent groups. There were no significant group differences for the vast majority of DTI measures, with the exception of a handful of regions (i.e., superior longitudinal fascicle and superior thalamic radiation). These results suggest that there is 1) a strong relationship between PTSD and poor neuropsychological outcome after MTBI and 2) a lack of a relationship between PTSD and white matter integrity, as measured by DTI, after MTBI. Concurrent PTSD and MTBI should be considered a risk factor for poor neuropsychological outcome that requires early intervention.
Collapse
Affiliation(s)
- Rael T Lange
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Tracey A Brickell
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ping-Hong Yeh
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - John Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Megan Wright
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Angela Driscoll
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Jamie Sullivan
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Samantha Braatz
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Rachel Gartner
- Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Elizabeth Barnhart
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Louis M French
- Defense and Veterans Brain Injury Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Hippocampal subfield-specific connectivity findings in major depressive disorder: A 7 Tesla diffusion MRI study. J Psychiatr Res 2019; 111:186-192. [PMID: 30798080 PMCID: PMC7325444 DOI: 10.1016/j.jpsychires.2019.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Diffusion magnetic resonance imaging (dMRI) enables non-invasive characterization of white matter (WM) structures in vivo. Prior studies suggest that certain WM tracts may be affected in major depressive disorder (MDD), however, hippocampal subfield-specific dMRI measures have not yet been explored in MDD. We use 7 Tesla dMRI to investigate differences in hippocampal subfield connectivity of MDD patients. METHODS Eighteen MDD patients and eighteen matched healthy volunteers underwent 7 Tesla MRI. The hippocampal formations were segmented by subfields and tractography was performed to determine streamline count (SC), fractional anisotropy (FA), and mean diffusivity (MD) in patients and controls. Significant subfield connectivity measures were also correlated with age at depression onset. RESULTS Compared with controls, MDD patients exhibited reduced SC in the molecular layer of the left dentate gyrus (p < 0.001). SC count in the left dentate gyrus was shown to positively correlate with age at disease onset (p < 0.05). Increased MD was observed in streamlines emanating from both the left (p = 0.0001) and right (p < 0.001) fimbriae in MDD patients. CONCLUSIONS Increased MD of tracts in the fimbriae suggests compromised neuronal membranes in the major hippocampal output gate. Reduced SC of the dentate gyri indexes a disruption of normal cellular processes such as neurogenesis. These findings may have significant implications for identifying biomarkers of MDD and elucidating the neurobiological underpinnings of depression.
Collapse
|