1
|
Daisley BA, Allen‐Vercoe E. Microbes as medicine. Ann N Y Acad Sci 2024; 1541:63-82. [PMID: 39392836 PMCID: PMC11580781 DOI: 10.1111/nyas.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Over the last two decades, advancements in sequencing technologies have significantly deepened our understanding of the human microbiome's complexity, leading to increased concerns about the detrimental effects of antibiotics on these intricate microbial ecosystems. Concurrently, the rise in antimicrobial resistance has intensified the focus on how beneficial microbes can be harnessed to treat diseases and improve health and offer potentially promising alternatives to traditional antibiotic treatments. Here, we provide a comprehensive overview of both established and emerging microbe-centric therapies, from probiotics to advanced microbial ecosystem therapeutics, examine the sophisticated ways in which microbes are used medicinally, and consider their impacts on microbiome homeostasis and health outcomes through a microbial ecology lens. In addition, we explore the concept of rewilding the human microbiome by reintroducing "missing microbes" from nonindustrialized societies and personalizing microbiome modulation to fit individual microbial profiles-highlighting several promising directions for future research. Ultimately, the advancements in sequencing technologies combined with innovative microbial therapies and personalized approaches herald a new era in medicine poised to address antibiotic resistance and improve health outcomes through targeted microbiome management.
Collapse
Affiliation(s)
- Brendan A. Daisley
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | - Emma Allen‐Vercoe
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
2
|
Campagnoli LIM, Marchesi N, Varesi A, Morozzi M, Mascione L, Ricevuti G, Esposito C, Galeotti N, Pascale A. New therapeutic avenues in multiple sclerosis: Is there a place for gut microbiota-based treatments? Pharmacol Res 2024; 209:107456. [PMID: 39389400 DOI: 10.1016/j.phrs.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The bidirectional interaction between the gut and the central nervous system (CNS), the so-called gut microbiota-brain axis, is reported to influence brain functions, thus having a potential impact on the development or the progression of several neurodegenerative disorders. Within this context, it has been documented that multiple sclerosis (MS), an autoimmune inflammatory, demyelinating, and neurodegenerative disease of the CNS, is associated with gastrointestinal symptoms, including constipation, dysphagia, and faecal incontinence. Moreover, some evidence suggests the existence of an altered gut microbiota (GM) composition in MS patients with respect to healthy individuals, as well as the potential influence of GM dysbiosis on typical MS features, including increased intestinal permeability, disruption of blood-brain barrier integrity, chronic inflammation, and altered T cells differentiation. Starting from these assumptions, the possible involvement of GM alteration in MS pathogenesis seems likely, and its restoration could represent a supplemental beneficial strategy against this disabling disease. In this regard, the present review will explore possible preventive approaches (including several dietary interventions, the administration of probiotics, prebiotics, synbiotics, and postbiotics, and the use of faecal microbiota transplantation) to be pursued as prophylaxis or in combination with pharmacological treatments with the aim of re-establishing a proper GM, thus helping to prevent the development of this disease or to manage it by alleviating symptoms or slowing down its progression.
Collapse
Affiliation(s)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| | - Angelica Varesi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Martina Morozzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Linda Mascione
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
3
|
Olejnik P, Roszkowska Z, Adamus S, Kasarełło K. Multiple sclerosis: a narrative overview of current pharmacotherapies and emerging treatment prospects. Pharmacol Rep 2024; 76:926-943. [PMID: 39177889 PMCID: PMC11387431 DOI: 10.1007/s43440-024-00642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by pathological processes of demyelination, subsequent axonal loss, and neurodegeneration within the central nervous system. Despite the availability of numerous disease-modifying therapies that effectively manage this condition, there is an emerging need to identify novel therapeutic targets, particularly for progressive forms of MS. Based on contemporary insights into disease pathophysiology, ongoing efforts are directed toward developing innovative treatment modalities. Primarily, monoclonal antibodies have been extensively investigated for their efficacy in influencing specific pathological pathways not yet targeted. Emerging approaches emphasizing cellular mechanisms, such as chimeric antigen receptor T cell therapy targeting immunological cells, are attracting increasing interest. The evolving understanding of microglia and the involvement of ferroptotic mechanisms in MS pathogenesis presents further avenues for targeted therapies. Moreover, innovative treatment strategies extend beyond conventional approaches to encompass interventions that target alterations in microbiota composition and dietary modifications. These adjunctive therapies hold promise as complementary methods for the holistic management of MS. This narrative review aims to summarize current therapies and outline potential treatment methods for individuals with MS.
Collapse
Affiliation(s)
- Piotr Olejnik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Roszkowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Adamus
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Kaja Kasarełło
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
Fitzjerrells RL, Ollberding NJ, Mangalam AK. Looking at the full picture, using topic modeling to observe microbiome communities associated with disease. GUT MICROBES REPORTS 2024; 1:1-11. [PMID: 39183943 PMCID: PMC11340690 DOI: 10.1080/29933935.2024.2378067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 07/01/2024] [Indexed: 08/27/2024]
Abstract
The microbiome, a complex micro-ecosystem, helps the host with various vital physiological processes. Alterations of the microbiome (dysbiosis) have been linked with several diseases, and generally, differential abundance testing between the healthy and patient groups is performed to identify important bacteria. However, providing a singular species of bacteria to an individual as treatment has not been as successful as fecal microbiota transplant therapy, where the entire microbiome of a healthy individual is transferred. These observations suggest that a combination of bacteria might be crucial for the beneficial effects. Here we provide the framework to utilize topic modeling, an unsupervised machine learning approach, to identify a community of bacteria related to health or disease. Specifically, we used our previously published gut microbiome data of patients with multiple sclerosis (MS), a neurodegenerative disease linked to a dysbiotic gut microbiome. We identified communities of bacteria associated with MS, including genera previously discovered, but also others that would have been overlooked by differential abundance testing. This method can be a useful tool for analyzing the microbiome, and it should be considered along with the commonly utilized differential abundance tests to better understand the role of the gut microbiome in health and disease.
Collapse
Affiliation(s)
- Rachel L. Fitzjerrells
- Interdisciplinary Graduate Program in Informatics, University of Iowa, Iowa City, IA, 52242, USA
- College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicholas J. Ollberding
- Division of Biostatistics and Epidemiology; Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Ashutosh K. Mangalam
- Interdisciplinary Graduate Program in Informatics, University of Iowa, Iowa City, IA, 52242, USA
- College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Iowa City VA Health Care System, 601 US-6 W, Iowa City, IA 52246, USA
| |
Collapse
|
5
|
Fettig NM, Pu A, Osborne LC, Gommerman JL. The influence of aging and the microbiome in multiple sclerosis and other neurologic diseases. Immunol Rev 2024; 325:166-189. [PMID: 38890777 DOI: 10.1111/imr.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The human gut microbiome is well-recognized as a key player in maintaining health. However, it is a dynamic entity that changes across the lifespan. How the microbial changes that occur in later decades of life shape host health or impact age-associated inflammatory neurological diseases such as multiple sclerosis (MS) is still unclear. Current understanding of the aging gut microbiome is largely limited to cross-sectional observational studies. Moreover, studies in humans are limited by confounding host-intrinsic and extrinsic factors that are not easily disentangled from aging. This review provides a comprehensive summary of existing literature on the aging gut microbiome and its known relationships with neurological diseases, with a specific focus on MS. We will also discuss preclinical animal models and human studies that shed light on the complex microbiota-host interactions that have the potential to influence disease pathology and progression in aging individuals. Lastly, we propose potential avenues of investigation to deconvolute features of an aging microbiota that contribute to disease, or alternatively promote health in advanced age.
Collapse
Affiliation(s)
- Naomi M Fettig
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annie Pu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
6
|
Xu D, Ren L, Zhang W, Wu S, Yu M, He X, Wei Z. Therapeutic effects and mechanisms of fecal microbiota transplantation on EAE partly through HPA axis-mediated neuroendocrine regulation. Heliyon 2024; 10:e33214. [PMID: 39021924 PMCID: PMC11252752 DOI: 10.1016/j.heliyon.2024.e33214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background The pathogenesis of multiple sclerosis (MS) may be closely related to immune regulation and inflammatory cytokines induced by specific flora. Repairing the intestinal flora may alter the immune response in MS patients, thus opening up novel approaches for the treatment of MS. Objective We aimed to test the therapeutic effect of fecal microbiota transplantation (FMT) on experimental autoimmune encephalomyelitis (EAE) and the characteristics of intestinal microbiota composition changes, explore the potential mechanisms of FMT treatment. Methods EAE animals were treated with FMT, with the therapeutic effects were evaluated by observing neurological scores and measuring serum levels of cortisol, IL-17, and TLR-2. Fecal microbiome 16S rRNA sequencing was used to profile changes in microbiota composition, and adrenalectomy pretreatment was used to test whether FMT effects were dependent on HPA axis function. Results FMT improved neurological function and reduced serum IL-17 to levels that were close to the control group. FMT reestablished intestinal homeostasis by altering the structure of the intestinal flora, increasing the abundance of beneficial flora, and regulating intestinal metabolites. We found that the therapeutic effects of FMT depended partly on the efferent function of the HPA axis; surgical disruption of the HPA axis altered the abundance and diversity of the intestinal flora. Conclusion FMT showed a neuroprotective effect on EAE by increasing the abundance of the beneficial flora, rebuilding intestinal homeostasis, reducing IL-17 and cortisol serum levels, and promoting serum TLR-2; the therapeutic effect of FMT on EAE is partly dependent on the HPA axis.
Collapse
Affiliation(s)
- Danhong Xu
- Department of Critical Care Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Linxiang Ren
- Department of Neurology, Neurological Research Institute of Integrated Traditional Chinese and Western Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Wenbin Zhang
- Department of Neurology, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, 518106, China
| | - Shaohua Wu
- Department of Neurology, Neurological Research Institute of Integrated Traditional Chinese and Western Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Minling Yu
- Department of Neurology, Neurological Research Institute of Integrated Traditional Chinese and Western Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Xingxiang He
- Department of Gastroenterology, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhisheng Wei
- Department of Neurology, Neurological Research Institute of Integrated Traditional Chinese and Western Medicine, First School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510080, China
| |
Collapse
|
7
|
Sanzone J, Life M, Reiss D, May D, Hartley B, Spiddle P, Al-Kirwi J, Grigoryan T, Costin J. Uses of Fecal Microbiota Transplantation in Neurodegenerative Disease: A Scoping Review. Cureus 2024; 16:e62265. [PMID: 39006586 PMCID: PMC11246181 DOI: 10.7759/cureus.62265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
Fecal microbiota transplantation (FMT) is the administration of fecal bacteria from a healthy donor into the intestinal tract of a recipient in order to directly change the recipient's gut microbial composition and confer a health benefit. The relationship between the gut microbiome and the central nervous system, termed the gut-brain axis, has been a frequent topic of gut microbiome studies. Commensal gut bacteria communicate with the central nervous system through various hormones, cytokines, and neural pathways. Therefore, influencing the gut microbiome via FMT may have the potential in treating symptoms of neurodegenerative conditions. This study aims to identify current uses of FMT in treating neurodegenerative diseases and highlight areas of future investigation. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework, a literature search was conducted of peer-reviewed sources on September 27, 2022, from Embase, MEDLINE, Web of Science, and Cochrane Central. Search terms were utilized that were related to the application of FMT and neurodegenerative disorders and limited those human studies, those that were published in English, and those that were published between 2017 and 2022. The initial search yielded 450 unique articles, and after the assessment of the title and abstract for inclusion and exclusion criteria, six articles were identified for full-text review. Studies that focused on either Parkinson's disease (PD) or multiple sclerosis (MS) demonstrated improvements in both motor symptoms and non-motor symptoms. FMT was also shown to provide significant relief of constipation and general gastrointestinal (GI) symptoms in all conditions studied. The studies related to MS showed the most mixed results with regard to symptomatic improvement. The data on the use of FMT as a treatment for neurodegenerative disorders is limited; however, studies have shown not only improvement in GI symptoms but also improvement in the cognitive symptoms of PD and dementia. The data on FMT as a treatment to improve the motor symptoms of PD is both more complete and more compelling than the data on the motor symptoms of MS. The studies that were reviewed showed no major adverse effects of FMT and generally promising results. There is a strong case to be made for larger, more well-controlled studies to be done on FMT and its potential use as a treatment not only for GI symptoms but for the motor and cognitive symptoms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jenna Sanzone
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Mason Life
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Devan Reiss
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Daniel May
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Brianna Hartley
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Patrick Spiddle
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Joseph Al-Kirwi
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Tigran Grigoryan
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Joshua Costin
- Medical Education, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
8
|
Hazan S, Haroon J, Jordan S, Walker SJ. Improvements in Gut Microbiome Composition and Clinical Symptoms Following Familial Fecal Microbiota Transplantation in a Nineteen-Year-Old Adolescent With Severe Autism. J Med Cases 2024; 15:82-91. [PMID: 38715916 PMCID: PMC11073461 DOI: 10.14740/jmc4209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 06/11/2024] Open
Abstract
This case report describes a novel therapy for patients with severe autism spectrum disorder (ASD) that is worth further investigation. A 19-year-old male adolescent with ASD, who was not responding to standard treatment received fecal microbiota transplant (FMT) using donor material from his typically developing female sibling. The patient's ASD symptoms were assessed by assessors who were blind to the patient's past ASD symptomatology. Assessors used the Childhood Autism Rating Scale (CARS), an observation-based rating scale to assess developmental delay in children with autism (range of CARS scores is 15 - 60; a score > 28 is indicative of autism; higher score is positively correlated with degree of severity), at baseline and again at six timepoints post-FMT. The patient experienced marked improvements in microbiome diversity and composition over the year and a half period that followed the FMT procedure. Additionally, the patient who was previously nonverbal said his first two words and experienced a reduction in aggression 1-month post-FMT. To the authors' knowledge, this is the first report to demonstrate the use of familial FMT in an adolescent patient with ASD. Given that ASD symptom improvements post-FMT tend to occur in younger patients, the authors hypothesize that the use of a familial donor may be an important factor that contributed to the improved outcomes experienced by this older child.
Collapse
Affiliation(s)
- Sabine Hazan
- ProgenaBiome, LLC, Ventura, CA, USA
- Microbiome Research Foundation, Ventura, CA, USA
| | | | | | - Stephen J. Walker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| |
Collapse
|
9
|
Chui ZSW, Chan LML, Zhang EWH, Liang S, Choi EPH, Lok KYW, Tun HM, Kwok JYY. Effects of microbiome-based interventions on neurodegenerative diseases: a systematic review and meta-analysis. Sci Rep 2024; 14:9558. [PMID: 38664425 PMCID: PMC11045862 DOI: 10.1038/s41598-024-59250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by neuronal damage and progressive loss of neuron function. Microbiome-based interventions, such as dietary interventions, biotics, and fecal microbiome transplant, have been proposed as a novel approach to managing symptoms and modulating disease progression. Emerging clinical trials have investigated the efficacy of interventions modulating the GM in alleviating or reversing disease progression, yet no comprehensive synthesis have been done. A systematic review of the literature was therefore conducted to investigate the efficacy of microbiome-modulating methods. The search yielded 4051 articles, with 15 clinical trials included. The overall risk of bias was moderate in most studies. Most microbiome-modulating interventions changed the GM composition. Despite inconsistent changes in GM composition, the meta-analysis showed that microbiome-modulating interventions improved disease burden (SMD, - 0.57; 95% CI - 0.93 to - 0.21; I2 = 42%; P = 0.002) with a qualitative trend of improvement in constipation. However, current studies have high methodological heterogeneity and small sample sizes, requiring more well-designed and controlled studies to elucidate the complex linkage between microbiome, microbiome-modulating interventions, and NDDs.
Collapse
Affiliation(s)
- Zara Siu Wa Chui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lily Man Lee Chan
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Esther Wan Hei Zhang
- Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Suisha Liang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Microbiota I-Center (MagIC), Hong Kong SAR, China
| | - Edmond Pui Hang Choi
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kris Yuet Wan Lok
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hein Min Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jojo Yan Yan Kwok
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Centre on Behavioral Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
10
|
Kragsnaes MS, Jensen JRB, Nilsson AC, Malik MI, Munk HL, Pedersen JK, Horn HC, Kruhøffer M, Kristiansen K, Mullish BH, Marchesi JR, Kjeldsen J, Röttger R, Ellingsen T. Dynamics of inflammation-associated plasma proteins following faecal microbiota transplantation in patients with psoriatic arthritis and healthy controls: exploratory findings from the FLORA trial. RMD Open 2024; 10:e003750. [PMID: 38296309 PMCID: PMC10836383 DOI: 10.1136/rmdopen-2023-003750] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/04/2024] [Indexed: 02/05/2024] Open
Abstract
OBJECTIVES The gut microbiota can mediate both pro and anti-inflammatory responses. In patients with psoriatic arthritis (PsA), we investigated the impact of faecal microbiota transplantation (FMT), relative to sham transplantation, on 92 inflammation-associated plasma proteins. METHODS This study relates to the FLORA trial cohort, where 31 patients with moderate-to-high peripheral PsA disease activity, despite at least 3 months of methotrexate treatment, were included in a 26-week, double-blind, randomised, sham-controlled trial. Participants were allocated to receive either one gastroscopic-guided healthy donor FMT (n=15) or sham (n=16). Patient plasma samples were collected at baseline, week 4, 12 and 26 while samples from 31 age-matched and sex-matched healthy controls (HC) were collected at baseline. Samples were analysed using proximity extension assay technology (Olink Target-96 Inflammation panel). RESULTS Levels of 26 proteins differed significantly between PsA and HC pre-FMT (adjusted p<0.05), of which 10 proteins were elevated in PsA: IL-6, CCL20, CCL19, CDCP1, FGF-21, HGF, interferon-γ (IFN-γ), IL-18R1, monocyte chemotactic protein 3, and IL-2. In the FMT group, levels of 12 proteins changed significantly across all timepoints (tumour necrosis factor (TNF), CDCP1, IFN-γ, TWEAK, signalling lymphocytic activation molecule (SLAMF1), CD8A, CD5, Flt3L, CCL25, FGF-23, CD6, caspase-8). Significant differences in protein levels between FMT and sham-treated patients were observed for TNF (p=0.002), IFN-γ (p=0.011), stem cell factor (p=0.024), matrix metalloproteinase-1 (p=0.038), and SLAMF1 (p=0.042). FMT had the largest positive effect on IFN-γ, Axin-1 and CCL25 and the largest negative effect on CCL19 and IL-6. CONCLUSIONS Patients with active PsA have a distinct immunological plasma protein signature compared with HC pre-FMT. FMT affects several of these disease markers, including sustained elevation of IFN-γ. TRIAL REGISTRATION NUMBER NCT03058900.
Collapse
Affiliation(s)
- Maja Skov Kragsnaes
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | - Muhammad Irfan Malik
- Department of Mathematics and Computer Science (IMADA), University of Southern Denmark, Odense, Denmark
| | - Heidi Lausten Munk
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
- Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Jens Kristian Pedersen
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | - Karsten Kristiansen
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark
- Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Benjamin H Mullish
- Division of Digestive Diseases, Imperial College London Faculty of Medicine, London, UK
- Department of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Julian R Marchesi
- Division of Digestive Diseases, Imperial College London Faculty of Medicine, London, UK
| | - Jens Kjeldsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Richard Röttger
- Department of Mathematics and Computer Science (IMADA), University of Southern Denmark, Odense, Denmark
| | - Torkell Ellingsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Nuzum ND, Deady C, Kittel-Schneider S, Cryan JF, O'Mahony SM, Clarke G. More than just a number: the gut microbiota and brain function across the extremes of life. Gut Microbes 2024; 16:2418988. [PMID: 39567371 PMCID: PMC11583591 DOI: 10.1080/19490976.2024.2418988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Understanding the interrelationship between the gut microbiota and host physiology, although still in its relative infancy, has taken important steps forward over the past decade. In the context of brain disorders including those characterized by neurodevelopmental and neurodegenerative changes there have been important advances. However, initially research involved correlational analyses, had limited translational scope, and lacked functional assessments. Thus, largescale longitudinal clinical investigations that assess causation and underlying mechanisms via in depth analysis methods are needed. In neurodegeneration research, strong causal evidence now links the gut microbiome to Alzheimer's (AD), and Parkinson's Disease (PD), as supported by human-to-animal transplantation studies. Longitudinal interventions are being conducted in AD, PD, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Neurodevelopmental research has also seen a boon in microbiome-related clinical research including in autism, Attention-deficit/hyperactivity disorder, and schizophrenia, which is confirming prior animal model work regarding the key time-windows in the gut microbiome important for infant cognition. While recent research advances represent important progress, fundamental knowledge gaps and obstacles remain. Knowing how and why the gut microbiome changes at the extremes of life will develop our mechanistic understanding and help build the evidence base as we strive toward counteracting microbial missteps with precision therapeutic interventions.
Collapse
Affiliation(s)
- Nathan D Nuzum
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Clara Deady
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Sarah Kittel-Schneider
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Kim DY, Lee SY, Lee JY, Whon TW, Lee JY, Jeon CO, Bae JW. Gut microbiome therapy: fecal microbiota transplantation vs live biotherapeutic products. Gut Microbes 2024; 16:2412376. [PMID: 39377231 PMCID: PMC11469438 DOI: 10.1080/19490976.2024.2412376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
The human intestine hosts a complex ecosystem of various microorganisms, collectively known as the gut microbiome, which significantly impacts human health. Disruptions in the gut microbiome are linked to various disorders, including gastrointestinal diseases, such as Clostridioides difficile infection and inflammatory bowel disease, as well as metabolic, neurological, oncologic conditions. Fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs) have emerged as prospective therapeutic procedures to restore microbial and metabolic balance in the gut. This review assesses the latest advancements, challenges, and therapeutic efficacy of FMT and LBPs, highlighting the need for standardization, safety, and long-term evaluation to optimize their clinical application.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - So-Yeon Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Jae-Yun Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Tae Woong Whon
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Korea
| | - June-Young Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| |
Collapse
|
13
|
Kujawa D, Laczmanski L, Budrewicz S, Pokryszko-Dragan A, Podbielska M. Targeting gut microbiota: new therapeutic opportunities in multiple sclerosis. Gut Microbes 2023; 15:2274126. [PMID: 37979154 PMCID: PMC10730225 DOI: 10.1080/19490976.2023.2274126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023] Open
Abstract
Multiple sclerosis (MS) causes long-lasting, multifocal damage to the central nervous system. The complex background of MS is associated with autoimmune inflammation and neurodegeneration processes, and is potentially affected by many contributing factors, including altered composition and function of the gut microbiota. In this review, current experimental and clinical evidence is presented for the characteristics of gut dysbiosis found in MS, as well as for its relevant links with the course of the disease and the dysregulated immune response and metabolic pathways involved in MS pathology. Furthermore, therapeutic implications of these investigations are discussed, with a range of pharmacological, dietary and other interventions targeted at the gut microbiome and thus intended to have beneficial effects on the course of MS.
Collapse
Affiliation(s)
- Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lukasz Laczmanski
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | | - Maria Podbielska
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
14
|
Lin L, Zhang K, Xiong Q, Zhang J, Cai B, Huang Z, Yang B, Wei B, Chen J, Niu Q. Gut microbiota in pre-clinical rheumatoid arthritis: From pathogenesis to preventing progression. J Autoimmun 2023; 141:103001. [PMID: 36931952 DOI: 10.1016/j.jaut.2023.103001] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 03/17/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by progressive polyarthritis that leads to cartilage and bone damage. Pre-clinical RA is a prolonged state before clinical arthritis and RA develop, in which autoantibodies (antibodies against citrullinated proteins, rheumatoid factors) can be present due to the breakdown of immunologic self-tolerance. As early treatment initiation before the onset of polyarthritis may achieve sustained remission, optimize clinical outcomes, and even prevent RA progression, the pre-clinical RA stage is showing the prospect to be the window of opportunity for RA treatment. Growing evidence has shown the role of the gut microbiota in inducing systemic inflammation and polyarthritis via multiple mechanisms, which may involve molecular mimicry, impaired intestinal barrier function, gut microbiota-derived metabolites mediated immune regulation, modulation of the gut microbiota's effect on immune cells, intestinal epithelial cells autophagy, and the interaction between the microbiome and human leukocyte antigen alleles as well as microRNAs. Since gut microbiota alterations in pre-clinical RA have been reported, potential therapies for modifying the gut microbiota in pre-clinical RA, including natural products, antibiotic therapy, fecal microbiota transplantation, probiotics, microRNAs therapy, vitamin D supplementation, autophagy inducer-based treatment, prebiotics, and diet, holds great promise for the successful treatment and even prevention of RA via altering ongoing inflammation. In this review, we summarized current studies that include pathogenesis of gut microbiota in RA progression and promising therapeutic strategies to provide novel ideas for the management of pre-clinical RA and possibly preventing arthritis progression.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Keyi Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Infection Control, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Niu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Van Dingenen L, Segers C, Wouters S, Mysara M, Leys N, Kumar-Singh S, Malhotra-Kumar S, Van Houdt R. Dissecting the role of the gut microbiome and fecal microbiota transplantation in radio- and immunotherapy treatment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1298264. [PMID: 38035338 PMCID: PMC10687483 DOI: 10.3389/fcimb.2023.1298264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and poses a major burden on the human health worldwide. At the moment, treatment of CRC consists of surgery in combination with (neo)adjuvant chemotherapy and/or radiotherapy. More recently, immune checkpoint blockers (ICBs) have also been approved for CRC treatment. In addition, recent studies have shown that radiotherapy and ICBs act synergistically, with radiotherapy stimulating the immune system that is activated by ICBs. However, both treatments are also associated with severe toxicity and efficacy issues, which can lead to temporary or permanent discontinuation of these treatment programs. There's growing evidence pointing to the gut microbiome playing a role in these issues. Some microorganisms seem to contribute to radiotherapy-associated toxicity and hinder ICB efficacy, while others seem to reduce radiotherapy-associated toxicity or enhance ICB efficacy. Consequently, fecal microbiota transplantation (FMT) has been applied to reduce radio- and immunotherapy-related toxicity and enhance their efficacies. Here, we have reviewed the currently available preclinical and clinical data in CRC treatment, with a focus on how the gut microbiome influences radio- and immunotherapy toxicity and efficacy and if these treatments could benefit from FMT.
Collapse
Affiliation(s)
- Lena Van Dingenen
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shari Wouters
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Bioinformatics Group, Center for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Rob Van Houdt
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| |
Collapse
|
16
|
Sharifa M, Ghosh T, Daher OA, Bhusal P, Alaameri YA, Naz J, Ekhator C, Bellegarde SB, Bisharat P, Vaghani V, Hussain A. Unraveling the Gut-Brain Axis in Multiple Sclerosis: Exploring Dysbiosis, Oxidative Stress, and Therapeutic Insights. Cureus 2023; 15:e47058. [PMID: 38022314 PMCID: PMC10644699 DOI: 10.7759/cureus.47058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
This comprehensive review delves into the intricate relationship between the gut microbiota and multiple sclerosis (MS), shedding light on the potential therapeutic avenues for this complex autoimmune disease. It emphasizes the multifactorial nature of MS, including genetic, environmental, and gender-related factors. Furthermore, the article highlights the emerging role of gut microbiota in MS pathophysiology, particularly in terms of gut dysbiosis, oxidative stress, and inflammasome activation within the gut-brain axis. This interplay raises intriguing questions about how the gut microbiota influences the onset and progression of MS. Environmental factors, such as diet and pollutants, add further layers of complexity to the connection between gut health and MS risk. This review also discusses promising therapeutic interventions, such as fecal microbiota transplantation, probiotics, dietary adjustments, and gut-derived metabolites that offer potential avenues for managing MS. It underscores the need for ongoing research to fully unravel the complexities of the role of the gut-brain axis in MS. Ultimately, this article provides a comprehensive exploration of the topic, offering hope for novel preventive and therapeutic strategies that could significantly improve the lives of individuals affected by this challenging autoimmune condition.
Collapse
Affiliation(s)
| | - Tanmay Ghosh
- Medical Education, Dinabandhu Andrews College, West Bengal, IND
| | - Omar A Daher
- Obstetrics and Gynaecology, Beirut Arab University, Tripoli, LBN
| | - Pramod Bhusal
- Internal Medicine, College Of Medical Sciences, Bharatpur, NPL
| | | | - Javeria Naz
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | | | - Viralkumar Vaghani
- Biomedical Informatics, The University of Texas Health Science Center, Houston, USA
| | | |
Collapse
|
17
|
Vasileiou ES, Fitzgerald KC. Multiple Sclerosis Pathogenesis and Updates in Targeted Therapeutic Approaches. Curr Allergy Asthma Rep 2023; 23:481-496. [PMID: 37402064 DOI: 10.1007/s11882-023-01102-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE OF REVIEW In this review, we provide a comprehensive update on current scientific advances and emerging therapeutic approaches in the field of multiple sclerosis. RECENT FINDINGS Multiple sclerosis (MS) is a common disorder characterized by inflammation and degeneration within the central nervous system (CNS). MS is the leading cause of non-traumatic disability in the young adult population. Through ongoing research, an improved understanding of the disease underlying mechanisms and contributing factors has been achieved. As a result, therapeutic advancements and interventions have been developed specifically targeting the inflammatory components that influence disease outcome. Recently, a new type of immunomodulatory treatment, known as Bruton tyrosine kinase (BTK) inhibitors, has surfaced as a promising tool to combat disease outcomes. Additionally, there is a renewed interested in Epstein-Barr virus (EBV) as a major potentiator of MS. Current research efforts are focused on addressing the gaps in our understanding of the pathogenesis of MS, particularly with respect to non-inflammatory drivers. Significant and compelling evidence suggests that the pathogenesis of MS is complex and requires a comprehensive, multilevel intervention strategy. This review aims to provide an overview of MS pathophysiology and highlights the most recent advances in disease-modifying therapies and other therapeutic interventions.
Collapse
Affiliation(s)
- Eleni S Vasileiou
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
18
|
Routy B, Lenehan JG, Miller WH, Jamal R, Messaoudene M, Daisley BA, Hes C, Al KF, Martinez-Gili L, Punčochář M, Ernst S, Logan D, Belanger K, Esfahani K, Richard C, Ninkov M, Piccinno G, Armanini F, Pinto F, Krishnamoorthy M, Figueredo R, Thebault P, Takis P, Magrill J, Ramsay L, Derosa L, Marchesi JR, Parvathy SN, Elkrief A, Watson IR, Lapointe R, Segata N, Haeryfar SMM, Mullish BH, Silverman MS, Burton JP, Maleki Vareki S. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat Med 2023; 29:2121-2132. [PMID: 37414899 DOI: 10.1038/s41591-023-02453-x] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023]
Abstract
Fecal microbiota transplantation (FMT) represents a potential strategy to overcome resistance to immune checkpoint inhibitors in patients with refractory melanoma; however, the role of FMT in first-line treatment settings has not been evaluated. We conducted a multicenter phase I trial combining healthy donor FMT with the PD-1 inhibitors nivolumab or pembrolizumab in 20 previously untreated patients with advanced melanoma. The primary end point was safety. No grade 3 adverse events were reported from FMT alone. Five patients (25%) experienced grade 3 immune-related adverse events from combination therapy. Key secondary end points were objective response rate, changes in gut microbiome composition and systemic immune and metabolomics analyses. The objective response rate was 65% (13 of 20), including four (20%) complete responses. Longitudinal microbiome profiling revealed that all patients engrafted strains from their respective donors; however, the acquired similarity between donor and patient microbiomes only increased over time in responders. Responders experienced an enrichment of immunogenic and a loss of deleterious bacteria following FMT. Avatar mouse models confirmed the role of healthy donor feces in increasing anti-PD-1 efficacy. Our results show that FMT from healthy donors is safe in the first-line setting and warrants further investigation in combination with immune checkpoint inhibitors. ClinicalTrials.gov identifier NCT03772899 .
Collapse
Affiliation(s)
- Bertrand Routy
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - John G Lenehan
- Department of Oncology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Wilson H Miller
- Lady Davis Institute of the Jewish General Hospital, Segal Cancer Centre, Montreal, Quebec, Canada
- Departments of Oncology and Medicine, McGill University, Montreal, Quebec, Canada
| | - Rahima Jamal
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Meriem Messaoudene
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Brendan A Daisley
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada
| | - Cecilia Hes
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
- Peter Brojde Lung Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada
| | - Kait F Al
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada
| | - Laura Martinez-Gili
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Michal Punčochář
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Scott Ernst
- Department of Oncology, Western University, London, Ontario, Canada
| | - Diane Logan
- Department of Oncology, Western University, London, Ontario, Canada
| | - Karl Belanger
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Khashayar Esfahani
- Lady Davis Institute of the Jewish General Hospital, Segal Cancer Centre, Montreal, Quebec, Canada
- Departments of Oncology and Medicine, McGill University, Montreal, Quebec, Canada
| | - Corentin Richard
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Marina Ninkov
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
| | - Gianmarco Piccinno
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Armanini
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Pinto
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Mithunah Krishnamoorthy
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Rene Figueredo
- Department of Oncology, Western University, London, Ontario, Canada
| | - Pamela Thebault
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Panteleimon Takis
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, National Phenome Centre, Imperial College London, London, UK
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jamie Magrill
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Quebec, Canada
| | - LeeAnn Ramsay
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Quebec, Canada
| | - Lisa Derosa
- Gustave Roussy Cancer Campus, Villejuif, France
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Institut National de la Santé Et et de la Recherche Médicale (INSERM) U1015, ClinicObiome, Equipe Labellisée-28 Ligue Nationale contre le Cancer, Villejuif, France
- Université Paris-Saclay, Ile-de-France, France
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK
| | - Seema Nair Parvathy
- Department of Medicine, Division of Infectious Diseases, Western University, London, Ontario, Canada
- Division of Infectious Diseases, St Joseph's Health Care, London, Ontario, Canada
| | - Arielle Elkrief
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Ian R Watson
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Rejean Lapointe
- Research Center of the Centre Hospitalier de l'Université de Montréal, Montréal (CRCHUM), Montreal, Quebec, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - S M Mansour Haeryfar
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Department of Medicine, Division of Clinical Immunology and Allergy, Western University, London, Ontario, Canada
- Department of Surgery, Division of General Surgery, Western University, London, Ontario, Canada
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Michael S Silverman
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Department of Medicine, Division of Infectious Diseases, Western University, London, Ontario, Canada
- Division of Infectious Diseases, St Joseph's Health Care, London, Ontario, Canada
| | - Jeremy P Burton
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada
| | - Saman Maleki Vareki
- Department of Oncology, Western University, London, Ontario, Canada.
- Lawson Health Research Institute, London, Ontario, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
- Department of Medical Biophysics, Western University, London, Ontario, Canada.
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Al KF, Allen L, Bedell S, Burton JP, de Vrijer B. Assessing the impact of pregnancy and birth factors on the maternal and infant microbiota. MICROBIOME RESEARCH REPORTS 2023; 2:29. [PMID: 38045923 PMCID: PMC10688794 DOI: 10.20517/mrr.2023.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 12/05/2023]
Abstract
Background: The microbiota acquired at birth is known to play an intimate role in later life health and disease and has been shown to be affected by the mode of birth. There has been recent interest in microbiota correction by maternal vaginal seeding in Cesarean section-born infants; however, the safety of this practice has been debated. The aim of this study was to assess how other factors, such as timing of sampling, maternal obesity, vaginal Group B Streptococcus colonization (GBS), and antibiotic exposure, affect the maternal and infant microbiota. Methods: Maternal vaginal and saliva samples were collected at three time periods: 35-37 weeks gestation (prenatal), within 24-36 hours after birth (birth), and at ~6 weeks postpartum. Infant saliva and stool samples were collected at ~6 weeks postpartum. 16S rRNA amplicon sequencing was utilized to assess the taxonomic and inferred functional compositions of the bacterial communities from both mothers and infants. Results: Samples from 36 mothers and 32 infants were obtained. Gestational age, breastfeeding, mode of birth, and gravidity were associated with taxonomic alterations in the infant samples, while obesity, antibiotic use, and GBS status were not. Maternal samples were predominantly affected by time, whereby significant alterations including increased microbial diversity were seen at birth and persisted to 6 weeks postpartum. Conclusion: This study provides information on the relationship between health and delivery factors and changes in vaginal and infant microbiota. These results may better direct clinicians and mothers in optimizing the infant microbiota towards health during infancy and later life.
Collapse
Affiliation(s)
- Kait F Al
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario N6A4V2, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario N6A3K7, Canada
| | - Laura Allen
- London Health Sciences Centre, London, Ontario N6A5W9, Canada
- Department of Obstetrics and Gynaecology, Division of Maternal Fetal Medicine, Western University, London, Ontario N6H5W9, Canada
| | - Samantha Bedell
- London Health Sciences Centre, London, Ontario N6A5W9, Canada
- Department of Obstetrics and Gynaecology, Division of Maternal Fetal Medicine, Western University, London, Ontario N6H5W9, Canada
| | - Jeremy P Burton
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario N6A4V2, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario N6A3K7, Canada
- Division of Urology, Department of Surgery, Western University, London, Ontario N6A4V2, Canada
| | - Barbra de Vrijer
- London Health Sciences Centre, London, Ontario N6A5W9, Canada
- Department of Obstetrics and Gynaecology, Division of Maternal Fetal Medicine, Western University, London, Ontario N6H5W9, Canada
- Children’s Health Research Institute, London, Ontario N6C 4V3, Canada
| |
Collapse
|
20
|
Zhanel GG, Keynan R, Keynan Y, Karlowsky JA. The role of Fecal Microbiota Transplantation (FMT) in treating patients with multiple sclerosis. Expert Rev Neurother 2023; 23:921-930. [PMID: 37615494 DOI: 10.1080/14737175.2023.2250919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
INTRODUCTION The associations between multiple sclerosis (MS) and altered intestinal microbiomes have clinicians considering the use of fecal microbiota transplantation (FMT). Animal data suggests that administering FMT from people with MS into healthy mice results in a microbiome with decreased abundance of Sutterella, reduced anti-inflammatory signals, increase in inflammation and experimental autoimmune encephalomyelitis (EAE). Animal studies that administered FMT (from normal healthy donors) into mice resulted in slowing down EAE development relieving symptoms, improving BBB integrity and restoration of microbiota diversity. Human studies indicated clinical benefits of FMT (from healthy donors) in people with MS including: improved intestinal motility and motor ability which lasted at least for the duration of the studies, ranging from 2 to 15 years. AREAS COVERED The authors discuss the efficacy and safety of FMT in treatment of experimental MS in animals and humans with MS. A literature search was performed via PubMed (up to July 2023), using the key words: multiple sclerosis, fecal microbiota transplantation, microbiome. EXPERT OPINION Limited associative data do not provide an understanding of role of FMT in the treatment for MS. Until appropriately designed randomized comparative trials which are underway, are completed, we cannot recommend routine use of FMT in people with MS.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rotem Keynan
- Department of Medical Microbiology/Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yoav Keynan
- Department of Medical Microbiology/Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A Karlowsky
- Department of Medical Microbiology/Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
21
|
Fecal Microbiota Transplantation and Other Gut Microbiota Manipulation Strategies. Microorganisms 2022; 10:microorganisms10122424. [PMID: 36557677 PMCID: PMC9781458 DOI: 10.3390/microorganisms10122424] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is composed of bacteria, archaea, phages, and protozoa. It is now well known that their mutual interactions and metabolism influence host organism pathophysiology. Over the years, there has been growing interest in the composition of the gut microbiota and intervention strategies in order to modulate it. Characterizing the gut microbial populations represents the first step to clarifying the impact on the health/illness equilibrium, and then developing potential tools suited for each clinical disorder. In this review, we discuss the current gut microbiota manipulation strategies available and their clinical applications in personalized medicine. Among them, FMT represents the most widely explored therapeutic tools as recent guidelines and standardization protocols, not only for intestinal disorders. On the other hand, the use of prebiotics and probiotics has evidence of encouraging findings on their safety, patient compliance, and inter-individual effectiveness. In recent years, avant-garde approaches have emerged, including engineered bacterial strains, phage therapy, and genome editing (CRISPR-Cas9), which require further investigation through clinical trials.
Collapse
|
22
|
Belvoncikova P, Maronek M, Gardlik R. Gut Dysbiosis and Fecal Microbiota Transplantation in Autoimmune Diseases. Int J Mol Sci 2022; 23:10729. [PMID: 36142642 PMCID: PMC9503867 DOI: 10.3390/ijms231810729] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbiota dysbiosis has recently been reported in a number of clinical states, including neurological, psychiatric, cardiovascular, metabolic and autoimmune disorders. Yet, it is not completely understood how colonizing microorganisms are implicated in their pathophysiology and molecular pathways. There are a number of suggested mechanisms of how gut microbiota dysbiosis triggers or sustains extraintestinal diseases; however, none of these have been widely accepted as part of the disease pathogenesis. Recent studies have proposed that gut microbiota and its metabolites could play a pivotal role in the modulation of immune system responses and the development of autoimmunity in diseases such as rheumatoid arthritis, multiple sclerosis or type 1 diabetes. Fecal microbiota transplantation (FMT) is a valuable tool for uncovering the role of gut microbiota in the pathological processes. This review aims to summarize the current knowledge about gut microbiota dysbiosis and the potential of FMT in studying the pathogeneses and therapies of autoimmune diseases. Herein, we discuss the extraintestinal autoimmune pathologies with at least one published or ongoing FMT study in human or animal models.
Collapse
Affiliation(s)
| | | | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| |
Collapse
|
23
|
Jayasinghe M, Prathiraja O, Kayani AMA, Jena R, Caldera D, Silva MS, Singhal M, Pierre J. The Role of Diet and Gut Microbiome in Multiple Sclerosis. Cureus 2022; 14:e28975. [PMID: 36237764 PMCID: PMC9548326 DOI: 10.7759/cureus.28975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/05/2022] Open
|
24
|
Gut Microbes and Neuropathology: Is There a Causal Nexus? Pathogens 2022; 11:pathogens11070796. [PMID: 35890040 PMCID: PMC9319901 DOI: 10.3390/pathogens11070796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a virtual organ which produces a myriad of molecules that the brain and other organs require. Humans and microbes are in a symbiotic relationship, we feed the microbes, and in turn, they provide us with essential molecules. Bacteroidetes and Firmicutes phyla account for around 80% of the total human gut microbiota, and approximately 1000 species of bacteria have been identified in the human gut. In adults, the main factors influencing microbiota structure are diet, exercise, stress, disease and medications. In this narrative review, we explore the involvement of the gut microbiota in Parkinson’s disease, Alzheimer’s disease, multiple sclerosis and autism, as these are such high-prevalence disorders. We focus on preclinical studies that increase the understanding of disease pathophysiology. We examine the potential for targeting the gut microbiota in the development of novel therapies and the limitations of the currently published clinical studies. We conclude that while the field shows enormous promise, further large-scale studies are required if a causal link between these disorders and gut microbes is to be definitively established.
Collapse
|