1
|
Computational Analysis of Wall Shear Stress Patterns on Calcified and Bicuspid Aortic Valves: Focus on Radial and Coaptation Patterns. FLUIDS 2021. [DOI: 10.3390/fluids6080287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Calcification and bicuspid valve formation are important aortic valve disorders that disturb the hemodynamics and the valve function. The detailed analysis of aortic valve hemodynamics would lead to a better understanding of the disease’s etiology. We computationally modeled the aortic valve using simplified three-dimensional geometry and inlet velocity conditions obtained via echocardiography. We examined various calcification severities and bicuspid valve formation. Fluid-structure interaction (FSI) analyses were adapted using ANSYS Workbench to incorporate both flow dynamics and leaflet deformation accurately. Simulation results were validated by comparing leaflet movements in B-mode echo recordings. Results indicate that the biomechanical environment is significantly changed for calcified and bicuspid valves. High flow jet velocities are observed in the calcified valves which results in high transvalvular pressure difference (TPG). Wall shear stresses (WSS) increased with the calcification on both fibrosa (aorta side) and ventricularis (left ventricle side) surfaces of the leaflet. The WSS distribution is regular on the ventricularis, as the WSS values proportionally increase from the base to the tip of the leaflet. However, WSS patterns are spatially complex on the fibrosa side. Low WSS levels and spatially complex WSS patterns on the fibrosa side are considered as promoting factors for further calcification and valvular diseases.
Collapse
|
2
|
Stanová V, Godio Raboutet Y, Barragan P, Thollon L, Pibarot P, Rieu R. Leaflet stress quantification of porcine vs bovine surgical bioprostheses: an in vitro study. Comput Methods Biomech Biomed Engin 2021; 25:40-51. [PMID: 34219548 DOI: 10.1080/10255842.2021.1928092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Calcified aortic stenoses are among the most prevalent form of cardiovascular diseases in the industrialized countries. This progressive disease, with no effective medical therapy, ultimately requires aortic valve replacement - either a surgical or very recently transcatheter aortic valve implantation. Increase leaflet mechanical stress is one of the main determinants of the structural deterioration of bioprosthetic aortic valves. We applied a coupled in vitro/in silico method to compare the timing, magnitude, and regional distribution of leaflet mechanical stress in porcine versus pericardial bioprostheses (Mosaic and Trifecta). A double activation simulator was used for in vitro testing of a bioprosthesis with externally mounted pericardium (Abbott, Trifecta) and a bioprosthesis with internally mounted porcine valve (Medtronic, Mosaic). A non-contact system based on stereophotogammetry and digital image correlation (DIC) with high spatial and temporal resolution (2000 img/s) was used to visualize the valve leaflet motion and perform the three-dimensional analysis. A finite element model of the valve was developed, and the leaflet deformation obtained from the DIC analysis was applied to the finite element model calculate local leaflet mechanical stress throughout the cardiac cycle. The maximum leaflet stress was higher with the pericardial versus the porcine bioprosthesis (2.03 vs. 1.30 MPa) For both bioprostheses the highest values of leaflet stress occurred during diastole and were primarily observed in the upper leaflet edge near the commissures and to a lesser extent in the mid-portion of the leaflet body. In conclusion, the coupled in vitro/in silico method described in this study shows that the highest levels of leaflet stress occur in the regions of the commissures and mid-portion of the leaflet body. This method may have important insight with regard to bioprosthetic valve durability. Our results suggest that, compared to porcine bioprostheses, those with externally mounted pericardium have higher leaflet mechanical stress, which may translate into shorter durability.
Collapse
Affiliation(s)
- Viktória Stanová
- Laboratoire de Biomécanique Appliquée, UMR T24 Université Gustave Eiffel / Aix Marseille Université, Marseille, France
| | - Yves Godio Raboutet
- Laboratoire de Biomécanique Appliquée, UMR T24 Université Gustave Eiffel / Aix Marseille Université, Marseille, France
| | | | - Lionel Thollon
- Laboratoire de Biomécanique Appliquée, UMR T24 Université Gustave Eiffel / Aix Marseille Université, Marseille, France
| | - Philippe Pibarot
- Quebec Heart and Lung Institute, Laval University, Quebec, Canada
| | - Régis Rieu
- Laboratoire de Biomécanique Appliquée, UMR T24 Université Gustave Eiffel / Aix Marseille Université, Marseille, France
| |
Collapse
|
3
|
Lu Y, Zhang L, Tao H, Sun X, Zhao Y, Xia L, Sun X, Shen J, Fu J, Hamidi MR, Liu H, Wang W, Liu M, Wei L. Two MicroRNAs, miR-34a and miR-125a, Are Implicated in Bicuspid Aortopathy by Modulating Metalloproteinase 2. Biochem Genet 2021; 60:286-302. [PMID: 34195933 DOI: 10.1007/s10528-021-10085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
It has been recognized that wall shear stress plays an important role in the development of Bicuspid Aortopathy (BA), but the intrinsic mechanism is not well elucidated. This study aims to explore the underlying relationship between hemodynamical forces and pathological phenomenon. Total RNA was prepared from aortic wall tissues collected from 20 BA patients. RNA sequencing, bioinformatic analysis and quantitative reverse-transcription PCR validation identified nine miRNAs that were up-regulated in the aortic part exposed to high wall shear stress compared to the low wall shear stress control, and six miRNAs that were down-regulated. Among these candidates, miR-34a and miR-125a, both down-regulated in the high wall shear stress parts, were shown to be potential inhibitors of the metalloproteinase 2 gene. Luciferase reporter assays confirmed that both miRNAs could inhibit the expression of metalloproteinase 2 mRNA in CRL1999 by complementing with its 3' untranslated region. Conversely, immunofluorescence assays showed that inhibition of miR-34a or miR-125a could lead to increased metalloproteinase 2 protein level. On the other hand, both miR-34a and miR-125a were shown to alleviate stretch-induced stimulation of metalloproteinase 2 expression in CRL1999 cells. The results suggested that miR-34a and miR-125a might be implicated in wall shear stress induced aortic pathogenesis due to their apparent regulatory roles in metalloproteinase 2 expression and extracellular matrix remodeling, which are key events in the weakening of aortic walls among BA patients.
Collapse
Affiliation(s)
- Yuntao Lu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lingfei Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongyue Tao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaotian Sun
- Department of Cardiac Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Zhao
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Limin Xia
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoning Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jinqiang Shen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiahui Fu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mohammad Rafi Hamidi
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huan Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenshuo Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Zhongshan Hospital, Fudan University, Room 633, Building 16, Shanghai, 200032, China.
| | - Mofang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Lai Wei
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Zhongshan Hospital, Fudan University, Room 639, Building 16, Shanghai, 200032, China.
| |
Collapse
|
4
|
Lim MS, Celermajer DS, Bannon PG. Bicuspid aortic valve disease - the influence of valve morphotype on age at and types of surgical treatment. IJC HEART & VASCULATURE 2021; 34:100786. [PMID: 33997259 PMCID: PMC8100620 DOI: 10.1016/j.ijcha.2021.100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Patients with bicuspid aortic valve (BAV) with zero or two raphes have been under-represented in previous studies. Whether these patients have unique clinical courses remains unclear. We describe the indications for and types of surgery in patients with BAV, and describe differences between valve morphotypes. METHODS Adults who had undergone aortic and/or aortic valve surgery for BAV disease at our centres were identified and classified according to the Sievers definitions. RESULTS 317 patients were included (74.4% male, median age at surgery 62 years). Of these, 187 (59.0%) had aortic valve surgery, 7 (2.2%) aortic surgery, 120 (37.9%) combined valve and aortic surgery and 3 had a Ross procedure. Most patients had aortic stenosis (71.9%), followed by aortic regurgitation (16.7%). 30-day mortality was low (1.6%).The commonest valve morphology was type-1 (one raphe) in 89.6%; type-0 (no raphes) occurred in 7.9% and type-2 (two raphes) in 2.5%. Patients with type-2 valves were substantially younger at time of surgery than type-1 patients (median 36 vs 63 years, p = 0.008). A higher proportion of patients with type-0 valves required aortic surgery than those with type-1 (68.0% vs 37.3%, p = 0.007). There were no differences between groups for the indication for surgery, valvular abnormality or 30-day mortality. CONCLUSIONS The number of BAV raphes was independently and significantly associated with age at surgery and the need for aortic intervention. Patients with type 0 and type 2 valves are a small but important proportion of the BAV population, potentially requiring different clinical surveillance and management.
Collapse
Affiliation(s)
- Michelle S. Lim
- The University of Sydney, Faculty of Medicine and Health, Camperdown, New South Wales, Australia
- Royal Prince Alfred Hospital, Department of Cardiology, Camperdown, New South Wales, Australia
| | - David S. Celermajer
- The University of Sydney, Faculty of Medicine and Health, Camperdown, New South Wales, Australia
- Royal Prince Alfred Hospital, Department of Cardiology, Camperdown, New South Wales, Australia
- Heart Research Institute, Sydney, Australia
| | - Paul G. Bannon
- The University of Sydney, Faculty of Medicine and Health, Camperdown, New South Wales, Australia
- Royal Prince Alfred Hospital, Department of Cardiothoracic Surgery, Camperdown, New South Wales, Australia
| |
Collapse
|
5
|
Kazik HB, Kandail HS, LaDisa JF, Lincoln J. Molecular and Mechanical Mechanisms of Calcification Pathology Induced by Bicuspid Aortic Valve Abnormalities. Front Cardiovasc Med 2021; 8:677977. [PMID: 34124206 PMCID: PMC8187581 DOI: 10.3389/fcvm.2021.677977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Bicuspid aortic valve (BAV) is a congenital defect affecting 1-2% of the general population that is distinguished from the normal tricuspid aortic valve (TAV) by the existence of two, rather than three, functional leaflets (or cusps). BAV presents in different morphologic phenotypes based on the configuration of cusp fusion. The most common phenotypes are Type 1 (containing one raphe), where fusion between right coronary and left coronary cusps (BAV R/L) is the most common configuration followed by fusion between right coronary and non-coronary cusps (BAV R/NC). While anatomically different, BAV R/L and BAV R/NC configurations are both associated with abnormal hemodynamic and biomechanical environments. The natural history of BAV has shown that it is not necessarily the primary structural malformation that enforces the need for treatment in young adults, but the secondary onset of premature calcification in ~50% of BAV patients, that can lead to aortic stenosis. While an underlying genetic basis is a major pathogenic contributor of the structural malformation, recent studies have implemented computational models, cardiac imaging studies, and bench-top methods to reveal BAV-associated hemodynamic and biomechanical alterations that likely contribute to secondary complications. Contributions to the field, however, lack support for a direct link between the external valvular environment and calcific aortic valve disease in the setting of BAV R/L and R/NC BAV. Here we review the literature of BAV hemodynamics and biomechanics and discuss its previously proposed contribution to calcification. We also offer means to improve upon previous studies in order to further characterize BAV and its secondary complications.
Collapse
Affiliation(s)
- Hail B. Kazik
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - John F. LaDisa
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Section of Pediatric Cardiology, The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, United States
| | - Joy Lincoln
- Section of Pediatric Cardiology, The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, United States
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
6
|
Abstract
Aortic stenosis (AS) remains one of the most common forms of valve disease, with significant impact on patient survival. The disease is characterized by left ventricular outflow obstruction and encompasses a series of stenotic lesions starting from the left ventricular outflow tract to the descending aorta. Obstructions may be subvalvar, valvar, or supravalvar and can be present at birth (congenital) or acquired later in life. Bicuspid aortic valve, whereby the aortic valve forms with two instead of three cusps, is the most common cause of AS in younger patients due to primary anatomic narrowing of the valve. In addition, the secondary onset of premature calcification, likely induced by altered hemodynamics, further obstructs left ventricular outflow in bicuspid aortic valve patients. In adults, degenerative AS involves progressive calcification of an anatomically normal, tricuspid aortic valve and is attributed to lifelong exposure to multifactoral risk factors and physiological wear-and-tear that negatively impacts valve structure-function relationships. AS continues to be the most frequent valvular disease that requires intervention, and aortic valve replacement is the standard treatment for patients with severe or symptomatic AS. While the positive impacts of surgical interventions are well documented, the financial burden, the potential need for repeated procedures, and operative risks are substantial. In addition, the clinical management of asymptomatic patients remains controversial. Therefore, there is a critical need to develop alternative approaches to prevent the progression of left ventricular outflow obstruction, especially in valvar lesions. This review summarizes our current understandings of AS cause; beginning with developmental origins of congenital valve disease, and leading into the multifactorial nature of AS in the adult population.
Collapse
Affiliation(s)
- Punashi Dutta
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| | - Jeanne F James
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| | - Hail Kazik
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Biomedical Engineering, Marquette University & Medical College of Wisconsin, Milwaukee (H.K.)
| | - Joy Lincoln
- The Herma Heart Institute, Section of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI (P.D., J.F.J., H.K., J.L.).,Department of Pediatrics, Medical College of Wisconsin, Milwaukee (P.D., J.F.J., J.L.)
| |
Collapse
|
7
|
Raddatz MA, Madhur MS, Merryman WD. Adaptive immune cells in calcific aortic valve disease. Am J Physiol Heart Circ Physiol 2019; 317:H141-H155. [PMID: 31050556 DOI: 10.1152/ajpheart.00100.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Calcific aortic valve disease (CAVD) is highly prevalent and has no pharmaceutical treatment. Surgical replacement of the aortic valve has proved effective in advanced disease but is costly, time limited, and in many cases not optimal for elderly patients. This has driven an increasing interest in noninvasive therapies for patients with CAVD. Adaptive immune cell signaling in the aortic valve has shown potential as a target for such a therapy. Up to 15% of cells in the healthy aortic valve are hematopoietic in origin, and these cells, which include macrophages, T lymphocytes, and B lymphocytes, are increased further in calcified specimens. Additionally, cytokine signaling has been shown to play a causative role in aortic valve calcification both in vitro and in vivo. This review summarizes the physiological presence of hematopoietic cells in the valve, innate and adaptive immune cell infiltration in disease states, and the cytokine signaling pathways that play a significant role in CAVD pathophysiology and may prove to be pharmaceutical targets for this disease in the near future.
Collapse
Affiliation(s)
- Michael A Raddatz
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee.,Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Meena S Madhur
- Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee.,Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee.,Division of Clinical Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
8
|
Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics. NANOMATERIALS 2018; 8:nano8050296. [PMID: 29751516 PMCID: PMC5977310 DOI: 10.3390/nano8050296] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 01/18/2023]
Abstract
In calcific aortic valve disease (CAVD), microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV) leaflets, which consist of three (biomechanically) distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro models as a result of complex valvular biomechanical features surrounding resident mechanosensitive valvular interstitial cells (VICs). We measured layer-specific mechanical properties of the human AV and engineered a three-dimensional (3D)-bioprinted CAVD model that recapitulates leaflet layer biomechanics for the first time. Human AV leaflet layers were separated by microdissection, and nanoindentation determined layer-specific Young’s moduli. Methacrylated gelatin (GelMA)/methacrylated hyaluronic acid (HAMA) hydrogels were tuned to duplicate layer-specific mechanical characteristics, followed by 3D-printing with encapsulated human VICs. Hydrogels were exposed to osteogenic media (OM) to induce microcalcification, and VIC pathogenesis was assessed by near infrared or immunofluorescence microscopy. Median Young’s moduli of the AV layers were 37.1, 15.4, and 26.9 kPa (fibrosa/spongiosa/ventricularis, respectively). The fibrosa and spongiosa Young’s moduli matched the 3D 5% GelMa/1% HAMA UV-crosslinked hydrogels. OM stimulation of VIC-laden bioprinted hydrogels induced microcalcification without apoptosis. We report the first layer-specific measurements of human AV moduli and a novel 3D-bioprinted CAVD model that potentiates microcalcification by mimicking the native AV mechanical environment. This work sheds light on valvular mechanobiology and could facilitate high-throughput drug-screening in CAVD.
Collapse
|
9
|
Siddique A, Yu B, Khan K, Buyting R, Al-Kindi H, Alaws H, Rhéaume E, Tardif JC, Cecere R, Schwertani A. Expression of the Frizzled receptors and their co-receptors in calcified human aortic valves. Can J Physiol Pharmacol 2017; 96:208-214. [PMID: 29244962 DOI: 10.1139/cjpp-2017-0577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cellular mechanisms that induce calcific aortic stenosis are yet to be unraveled. Wnt signaling is increasingly being considered as a major player in the disease process. However, the presence of Wnt Frizzled (Fzd) receptors and co-receptors LRP5 and 6 in normal and diseased human aortic valves remains to be elucidated. Immunohistochemistry and quantitative polymerase chain reaction were used to determine Fzd receptor expression in normal and calcified human aortic valve tissue, as well as human aortic valve interstitial cells (HAVICs) isolated from calcified and normal human aortic valves. There was significantly higher mRNA expression of 4 out of the 10 Fzd receptors in calcified aortic valve tissues and 8 out of the 10 in HAVICs, and both LRP5/6 co-receptors in calcified aortic valves (P < 0.05). These results were confirmed by immunohistochemistry, which revealed abundant increase in immunoreactivity for Fzd3, 7, and 8, mainly in areas of lipid core and calcified nodules of diseased aortic valves. The findings of abundant expression of Fzd and LRP5/6 receptors in diseased aortic valves suggests a potential role for both canonical and noncanonical Wnt signaling in the pathogenesis of human aortic valve calcification. Future investigations aimed at targeting these molecules may provide potential therapies for aortic valve stenosis.
Collapse
Affiliation(s)
- Ateeque Siddique
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Bin Yu
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Kashif Khan
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Ryan Buyting
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Hamood Al-Kindi
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Hossny Alaws
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Eric Rhéaume
- b Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | | | - Renzo Cecere
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Adel Schwertani
- a Cardiology, Cardiac Surgery and Pathology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
10
|
Heide-Jørgensen S, Kumaran Krishna S, Taborsky J, Bechsgaard T, Zegdi R, Johansen P. A Novel Method for Optical High Spatiotemporal Strain Analysis for Transcatheter Aortic Valves In Vitro. J Biomech Eng 2016; 138:4032501. [DOI: 10.1115/1.4032501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 11/08/2022]
Abstract
The transcatheter aortic valve implantation (TAVI) valve is a bioprosthetic valve within a metal stent frame. Like traditional surgical bioprosthetic valves, the TAVI valve leaflet tissue is expected to calcify and degrade over time. However, clinical studies of TAVI valve longevity are still limited. In order to indirectly assess the longevity of TAVI valves, an estimate of the mechanical wear and tear in terms of valvular deformation and strain of the leaflets under various conditions is warranted. The aim of this study was, therefore, to develop a platform for noncontact TAVI valve deformation analysis with both high temporal and spatial resolutions based on stereophotogrammetry and digital image correlation (DIC). A left-heart pulsatile in vitro flow loop system for mounting of TAVI valves was designed. The system enabled high-resolution imaging of all three TAVI valve leaflets simultaneously for up to 2000 frames per second through two high-speed cameras allowing three-dimensional analyses. A coating technique for applying a stochastic pattern on the leaflets of the TAVI valve was developed. The technique allowed a pattern recognition software to apply frame-by-frame cross correlation based deformation measurements from which the leaflet motions and the strain fields were derived. The spatiotemporal development of a very detailed strain field was obtained with a 0.5 ms time resolution and a spatial resolution of 72 μm/pixel. Hence, a platform offering a new and enhanced supplementary experimental evaluation of tissue valves during various conditions in vitro is presented.
Collapse
Affiliation(s)
- Simon Heide-Jørgensen
- Department of Engineering, Faculty of Science and Technology, Aarhus University, Aarhus 8000, Denmark
| | | | - Jonas Taborsky
- Department of Engineering, Faculty of Science and Technology, Aarhus University, Aarhus 8000, Denmark
| | - Tommy Bechsgaard
- Department of Cardiothoracic Surgery, Aarhus University Hospital, Aarhus N8200, Denmark
| | - Rachid Zegdi
- Hôpital Européen Georges Pompidou, Service de Chirurgie Cardiovasculaire, Paris 75015, France
| | - Peter Johansen
- Department of Engineering Faculty of Science and Technology, Aarhus University Aarhus 8000, Denmark e-mail:
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Recent methodological advances in computational simulations are enabling increasingly realistic simulations of hemodynamics and physiology, driving increased clinical utility. We review recent developments in the use of computational simulations in pediatric and congenital heart disease, describe the clinical impact in modeling in single-ventricle patients, and provide an overview of emerging areas. RECENT FINDINGS Multiscale modeling combining patient-specific hemodynamics with reduced order (i.e., mathematically and computationally simplified) circulatory models has become the de-facto standard for modeling local hemodynamics and 'global' circulatory physiology. We review recent advances that have enabled faster solutions, discuss new methods (e.g., fluid structure interaction and uncertainty quantification), which lend realism both computationally and clinically to results, highlight novel computationally derived surgical methods for single-ventricle patients, and discuss areas in which modeling has begun to exert its influence including Kawasaki disease, fetal circulation, tetralogy of Fallot (and pulmonary tree), and circulatory support. SUMMARY Computational modeling is emerging as a crucial tool for clinical decision-making and evaluation of novel surgical methods and interventions in pediatric cardiology and beyond. Continued development of modeling methods, with an eye towards clinical needs, will enable clinical adoption in a wide range of pediatric and congenital heart diseases.
Collapse
|
12
|
Patel V, Carrion K, Hollands A, Hinton A, Gallegos T, Dyo J, Sasik R, Leire E, Hardiman G, Mohamed SA, Nigam S, King CC, Nizet V, Nigam V. The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-κB signaling, and inflammatory gene expression in human aortic valve cells. FASEB J 2015; 29:1859-68. [PMID: 25630970 DOI: 10.1096/fj.14-257808] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/22/2014] [Indexed: 11/11/2022]
Abstract
Bicuspid aortic valves calcify at a significantly higher rate than normal aortic valves, a process that involves increased inflammation. Because we have previously found that bicuspid aortic valve experience greater stretch, we investigated the potential connection between stretch and inflammation in human aortic valve interstitial cells (AVICs). Microarray, quantitative PCR (qPCR), and protein assays performed on AVICs exposed to cyclic stretch showed that stretch was sufficient to increase expression of interleukin and metalloproteinase family members by more than 1.5-fold. Conditioned medium from stretched AVICs was sufficient to activate leukocytes. microRNA sequencing and qPCR experiments demonstrated that miR-148a-3p was repressed in both stretched AVICs (43% repression) and, as a clinical correlate, human bicuspid aortic valves (63% reduction). miR-148a-3p was found to be a novel repressor of IKBKB based on data from qPCR, luciferase, and Western blot experiments. Furthermore, increasing miR-148a-3p levels in AVICs was sufficient to decrease NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling and NF-κB target gene expression. Our data demonstrate that stretch-mediated activation of inflammatory pathways is at least partly the result of stretch-repression of miR-148a-3p and a consequent failure to repress IKBKB. To our knowledge, we are the first to report that cyclic stretch of human AVICs activates inflammatory genes in a tissue-autonomous manner via a microRNA that regulates a central inflammatory pathway.
Collapse
Affiliation(s)
- Vishal Patel
- *Department of Pediatrics (Cardiology), Department of Pediatrics and School of Pharmacy, Pediatrics Diabetes Research Center, Departments of Pediatrics and Cellular and Molecular Medicine, and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Computational Science Research Center and Biomedical Informatics Research Center, San Diego State University, San Diego, California, USA; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; **Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; and Rady Children's Hospital, San Diego, California, USA
| | - Katrina Carrion
- *Department of Pediatrics (Cardiology), Department of Pediatrics and School of Pharmacy, Pediatrics Diabetes Research Center, Departments of Pediatrics and Cellular and Molecular Medicine, and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Computational Science Research Center and Biomedical Informatics Research Center, San Diego State University, San Diego, California, USA; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; **Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; and Rady Children's Hospital, San Diego, California, USA
| | - Andrew Hollands
- *Department of Pediatrics (Cardiology), Department of Pediatrics and School of Pharmacy, Pediatrics Diabetes Research Center, Departments of Pediatrics and Cellular and Molecular Medicine, and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Computational Science Research Center and Biomedical Informatics Research Center, San Diego State University, San Diego, California, USA; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; **Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; and Rady Children's Hospital, San Diego, California, USA
| | - Andrew Hinton
- *Department of Pediatrics (Cardiology), Department of Pediatrics and School of Pharmacy, Pediatrics Diabetes Research Center, Departments of Pediatrics and Cellular and Molecular Medicine, and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Computational Science Research Center and Biomedical Informatics Research Center, San Diego State University, San Diego, California, USA; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; **Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; and Rady Children's Hospital, San Diego, California, USA
| | - Thomas Gallegos
- *Department of Pediatrics (Cardiology), Department of Pediatrics and School of Pharmacy, Pediatrics Diabetes Research Center, Departments of Pediatrics and Cellular and Molecular Medicine, and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Computational Science Research Center and Biomedical Informatics Research Center, San Diego State University, San Diego, California, USA; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; **Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; and Rady Children's Hospital, San Diego, California, USA
| | - Jeffrey Dyo
- *Department of Pediatrics (Cardiology), Department of Pediatrics and School of Pharmacy, Pediatrics Diabetes Research Center, Departments of Pediatrics and Cellular and Molecular Medicine, and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Computational Science Research Center and Biomedical Informatics Research Center, San Diego State University, San Diego, California, USA; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; **Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; and Rady Children's Hospital, San Diego, California, USA
| | - Roman Sasik
- *Department of Pediatrics (Cardiology), Department of Pediatrics and School of Pharmacy, Pediatrics Diabetes Research Center, Departments of Pediatrics and Cellular and Molecular Medicine, and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Computational Science Research Center and Biomedical Informatics Research Center, San Diego State University, San Diego, California, USA; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; **Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; and Rady Children's Hospital, San Diego, California, USA
| | - Emma Leire
- *Department of Pediatrics (Cardiology), Department of Pediatrics and School of Pharmacy, Pediatrics Diabetes Research Center, Departments of Pediatrics and Cellular and Molecular Medicine, and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Computational Science Research Center and Biomedical Informatics Research Center, San Diego State University, San Diego, California, USA; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; **Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; and Rady Children's Hospital, San Diego, California, USA
| | - Gary Hardiman
- *Department of Pediatrics (Cardiology), Department of Pediatrics and School of Pharmacy, Pediatrics Diabetes Research Center, Departments of Pediatrics and Cellular and Molecular Medicine, and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Computational Science Research Center and Biomedical Informatics Research Center, San Diego State University, San Diego, California, USA; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; **Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; and Rady Children's Hospital, San Diego, California, USA
| | - Salah A Mohamed
- *Department of Pediatrics (Cardiology), Department of Pediatrics and School of Pharmacy, Pediatrics Diabetes Research Center, Departments of Pediatrics and Cellular and Molecular Medicine, and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Computational Science Research Center and Biomedical Informatics Research Center, San Diego State University, San Diego, California, USA; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; **Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; and Rady Children's Hospital, San Diego, California, USA
| | - Sanjay Nigam
- *Department of Pediatrics (Cardiology), Department of Pediatrics and School of Pharmacy, Pediatrics Diabetes Research Center, Departments of Pediatrics and Cellular and Molecular Medicine, and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Computational Science Research Center and Biomedical Informatics Research Center, San Diego State University, San Diego, California, USA; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; **Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; and Rady Children's Hospital, San Diego, California, USA
| | - Charles C King
- *Department of Pediatrics (Cardiology), Department of Pediatrics and School of Pharmacy, Pediatrics Diabetes Research Center, Departments of Pediatrics and Cellular and Molecular Medicine, and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Computational Science Research Center and Biomedical Informatics Research Center, San Diego State University, San Diego, California, USA; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; **Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; and Rady Children's Hospital, San Diego, California, USA
| | - Victor Nizet
- *Department of Pediatrics (Cardiology), Department of Pediatrics and School of Pharmacy, Pediatrics Diabetes Research Center, Departments of Pediatrics and Cellular and Molecular Medicine, and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Computational Science Research Center and Biomedical Informatics Research Center, San Diego State University, San Diego, California, USA; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; **Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; and Rady Children's Hospital, San Diego, California, USA
| | - Vishal Nigam
- *Department of Pediatrics (Cardiology), Department of Pediatrics and School of Pharmacy, Pediatrics Diabetes Research Center, Departments of Pediatrics and Cellular and Molecular Medicine, and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Computational Science Research Center and Biomedical Informatics Research Center, San Diego State University, San Diego, California, USA; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; **Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; and Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
13
|
Carrion K, Dyo J, Patel V, Sasik R, Mohamed SA, Hardiman G, Nigam V. The long non-coding HOTAIR is modulated by cyclic stretch and WNT/β-CATENIN in human aortic valve cells and is a novel repressor of calcification genes. PLoS One 2014; 9:e96577. [PMID: 24788418 PMCID: PMC4006892 DOI: 10.1371/journal.pone.0096577] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/07/2014] [Indexed: 12/22/2022] Open
Abstract
Aortic valve calcification is a significant and serious clinical problem for which there are no effective medical treatments. Individuals born with bicuspid aortic valves, 1–2% of the population, are at the highest risk of developing aortic valve calcification. Aortic valve calcification involves increased expression of calcification and inflammatory genes. Bicuspid aortic valve leaflets experience increased biomechanical strain as compared to normal tricuspid aortic valves. The molecular pathogenesis involved in the calcification of BAVs are not well understood, especially the molecular response to mechanical stretch. HOTAIR is a long non-coding RNA (lncRNA) that has been implicated with cancer but has not been studied in cardiac disease. We have found that HOTAIR levels are decreased in BAVs and in human aortic interstitial cells (AVICs) exposed to cyclic stretch. Reducing HOTAIR levels via siRNA in AVICs results in increased expression of calcification genes. Our data suggest that β-CATENIN is a stretch responsive signaling pathway that represses HOTAIR. This is the first report demonstrating that HOTAIR is mechanoresponsive and repressed by WNT β-CATENIN signaling. These findings provide novel evidence that HOTAIR is involved in aortic valve calcification.
Collapse
Affiliation(s)
- Katrina Carrion
- Department of Pediatrics (Cardiology), University of California San Diego, La Jolla, California, United States of America
| | - Jeffrey Dyo
- Department of Pediatrics (Cardiology), University of California San Diego, La Jolla, California, United States of America
| | - Vishal Patel
- Department of Pediatrics (Cardiology), University of California San Diego, La Jolla, California, United States of America
| | - Roman Sasik
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Salah A. Mohamed
- Department of Cardiac Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Gary Hardiman
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Computational Science Research Center & Biomedical Informatics Research Center San Diego State University, San Diego, California, United States of America
| | - Vishal Nigam
- Department of Pediatrics (Cardiology), University of California San Diego, La Jolla, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|