1
|
Nussbaum L, Ortega E, Ríos López EJ, Vizcarra AS, Córdova López JJ, Calarco S, Marbán-Castro E, Tetteh K, Shilton S, Morrison AC, Fargnoli V, Paz-Soldán VA. Voices from the Amazon: exploring implementor and user perceptions of non-invasive malaria diagnostics in Peru. Malar J 2025; 24:32. [PMID: 39893463 PMCID: PMC11786561 DOI: 10.1186/s12936-025-05273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Malaria burden remains high in some Peruvian regions, especially in the Northeast Amazon rainforest state of Loreto and the tropical coastal state of Tumbes. Novel non-invasive diagnostic tools for malaria are being developed, and formative research in malaria-endemic areas with community members and health professionals who would potentially use these devices is vital for this process. This study aimed to examine the acceptability and feasibility of four new non-invasive malaria diagnostic tools in development in two regions of Peru with significant malaria burden. METHODS The research team conducted focus group discussions and key informant interviews in Spanish to assess acceptability and ascertain questions and concerns regarding the non-invasive diagnostic tools. Focus group discussions included a range of community members (pregnant women, parents), professionals (health, education), and community leaders in Loreto. Vector control authorities and health professionals from Loreto, Tumbes, and Lima participated as key informants. RESULTS Participants were initially enthusiastic about all non-invasive diagnostic tools. However, as discussions proceeded, high enthusiasm remained for two devices that were easy to use, acceptable for the communities they were intended for, feasible to carry in remote areas, and did not require new supplies nor generate waste: the skin scan and the skin odour test. The breath and saliva tests were considered less hygienic. They were less acceptable to community members and health professionals due to concerns of disease transmission and other environmental and cultural concerns. Health professionals felt the finger scan test and the skin odour test would help triage community members in endemic sites and would be valuable in remote regions with difficult access to health facilities or laboratories. CONCLUSIONS Novel non-invasive malaria diagnostic tools can be valuable in malaria-endemic settings. As manufacturers evaluate the efficacy and effectiveness of these non-invasive diagnostic tools, international recommendations should be created to ensure their agile integration into national malaria programmes.
Collapse
Affiliation(s)
- Lauren Nussbaum
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Emma Ortega
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | | | | | | | | | | | | | | | - Amy C Morrison
- Behavioral Sciences Research Unit, Asociación Benéfica PRISMA, Iquitos, Peru
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Valerie A Paz-Soldán
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
- Behavioral Sciences Research Unit, Asociación Benéfica PRISMA, Iquitos, Peru.
| |
Collapse
|
2
|
The Potential Use of Volatile Biomarkers for Malaria Diagnosis. Diagnostics (Basel) 2021; 11:diagnostics11122244. [PMID: 34943481 PMCID: PMC8700171 DOI: 10.3390/diagnostics11122244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Pathogens may change the odor and odor-related biting behavior of the vector and host to enhance pathogen transmission. In recent years, volatile biomarker investigations have emerged to identify odors that are differentially and specifically released by pathogens and plants, or the pathogen-infected or even cancer patients. Several studies have reported odors or volatile biomarkers specifically detected from the breath and skin of malaria-infected individuals. This review will discuss the potential use of these odors or volatile biomarkers for the diagnosis of malaria. This approach not only allows for the non-invasive mean of sample collection but also opens up the opportunity to develop a biosensor for malaria diagnosis in low-resource settings.
Collapse
|
3
|
Li M, Wang L, Qi W, Liu Y, Lin J. Challenges and Perspectives for Biosensing of Bioaerosol Containing Pathogenic Microorganisms. MICROMACHINES 2021; 12:798. [PMID: 34357208 PMCID: PMC8307108 DOI: 10.3390/mi12070798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
As an important route for disease transmission, bioaerosols have received increasing attention. In the past decades, many efforts were made to facilitate the development of bioaerosol monitoring; however, there are still some important challenges in bioaerosol collection and detection. Thus, recent advances in bioaerosol collection (such as sedimentation, filtration, centrifugation, impaction, impingement, and microfluidics) and detection methods (such as culture, molecular biological assay, and immunological assay) were summarized in this review. Besides, the important challenges and perspectives for bioaerosol biosensing were also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China; (M.L.); (L.W.); (W.Q.); (Y.L.)
| |
Collapse
|
4
|
Anand U, Adelodun B, Pivato A, Suresh S, Indari O, Jakhmola S, Jha HC, Jha PK, Tripathi V, Di Maria F. A review of the presence of SARS-CoV-2 RNA in wastewater and airborne particulates and its use for virus spreading surveillance. ENVIRONMENTAL RESEARCH 2021; 196:110929. [PMID: 33640498 PMCID: PMC7906514 DOI: 10.1016/j.envres.2021.110929] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 05/08/2023]
Abstract
According to the WHO, on October 16, 2020, the spreading of the SARS-CoV-2, responsible for the COVID-19 pandemic, reached 235 countries and territories, and resulting in more than 39 million confirmed cases and 1.09 million deaths globally. Monitoring of the virus outbreak is one of the main activities pursued to limiting the number of infected people and decreasing the number of deaths that have caused high pressure on the health care, social, and economic systems of different countries. Wastewater based epidemiology (WBE), already adopted for the surveillance of life style and health conditions of communities, shows interesting features for the monitoring of the COVID-19 diffusion. Together with wastewater, the analysis of airborne particles has been recently suggested as another useful tool for detecting the presence of SARS-CoV-2 in given areas. The present review reports the status of research currently performed concerning the monitoring of SARS-CoV-2 spreading by WBE and airborne particles. The former have been more investigated, whereas the latter is still at a very early stage, with a limited number of very recent studies. Nevertheless, the main results highlights in both cases necessitate more research activity for better understating and defining the biomarkers and the related sampling and analysis procedures to be used for this important aim.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Bashir Adelodun
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria; Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Alberto Pivato
- DICEA - Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462 003, Madhya Pradesh, India
| | - Omkar Indari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, Indore, Madhya Pradesh, India
| | - Shweta Jakhmola
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, Indore, Madhya Pradesh, India
| | - Hem Chandra Jha
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, Indore, Madhya Pradesh, India
| | - Pawan Kumar Jha
- Centre for Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India.
| | - Francesco Di Maria
- LAR(5) Laboratory - Dipartimento di Ingegneria - University of Perugia, via G. Duranti 93, 06125, Perugia, Italy.
| |
Collapse
|
5
|
Wang Y, Duan L, Deng Z, Liao J. Electrically Transduced Gas Sensors Based on Semiconducting Metal Oxide Nanowires. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6781. [PMID: 33260973 PMCID: PMC7729516 DOI: 10.3390/s20236781] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Semiconducting metal oxide-based nanowires (SMO-NWs) for gas sensors have been extensively studied for their extraordinary surface-to-volume ratio, high chemical and thermal stabilities, high sensitivity, and unique electronic, photonic and mechanical properties. In addition to improving the sensor response, vast developments have recently focused on the fundamental sensing mechanism, low power consumption, as well as novel applications. Herein, this review provides a state-of-art overview of electrically transduced gas sensors based on SMO-NWs. We first discuss the advanced synthesis and assembly techniques for high-quality SMO-NWs, the detailed sensor architectures, as well as the important gas-sensing performance. Relationships between the NWs structure and gas sensing performance are established by understanding general sensitization models related to size and shape, crystal defect, doped and loaded additive, and contact parameters. Moreover, major strategies for low-power gas sensors are proposed, including integrating NWs into microhotplates, self-heating operation, and designing room-temperature gas sensors. Emerging application areas of SMO-NWs-based gas sensors in disease diagnosis, environmental engineering, safety and security, flexible and wearable technology have also been studied. In the end, some insights into new challenges and future prospects for commercialization are highlighted.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Luminescence & Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China;
| | - Li Duan
- Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing 100044, China;
| | - Zhen Deng
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianhui Liao
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China;
| |
Collapse
|
6
|
Rufino de Sousa N, Shen L, Silcott D, Call CJ, Rothfuchs AG. Operative and Technical Modifications to the Coriolis® µ Air Sampler That Improve Sample Recovery and Biosafety During Microbiological Air Sampling. Ann Work Expo Health 2020; 64:852-865. [PMID: 32469054 PMCID: PMC7544001 DOI: 10.1093/annweh/wxaa053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Detecting infectious aerosols is central for gauging and countering airborne threats. In this regard, the Coriolis® µ cyclonic air sampler is a practical, commercial collector that can be used with various analysis methods to monitor pathogens in air. However, information on how to operate this unit under optimal sampling and biosafety conditions is limited. We investigated Coriolis performance in aerosol dispersal experiments with polystyrene microspheres and Bacillus globigii spores. We report inconsistent sample recovery from the collector cone due to loss of material when sampling continuously for more than 30 min. Introducing a new collector cone every 10 min improved this shortcoming. Moreover, we found that several surfaces on the device become contaminated during sampling. Adapting a high efficiency particulate air-filter system to the Coriolis prevented contamination without altering collection efficiency or tactical deployment. A Coriolis modified with these operative and technical improvements was used to collect aerosols carrying microspheres released inside a Biosafety Level-3 laboratory during simulations of microbiological spills and aerosol dispersals. In summary, we provide operative and technical solutions to the Coriolis that optimize microbiological air sampling and improve biosafety.
Collapse
Affiliation(s)
- Nuno Rufino de Sousa
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solnavägen, SE-171 77 Stockholm, Sweden
| | - Lei Shen
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solnavägen, SE-171 77 Stockholm, Sweden
| | | | | | - Antonio Gigliotti Rothfuchs
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solnavägen, SE-171 77 Stockholm, Sweden
| |
Collapse
|
7
|
Ryu B, Chen J, Kurabayashi K, Liang X, Park Y. Integrated on-site collection and detection of airborne microparticles for smartphone-based micro-climate quality control. Analyst 2020; 145:6283-6290. [PMID: 32945327 DOI: 10.1039/d0an01147a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid emergence of air-mediated diseases in a micro-climate demands on-site monitoring of airborne microparticles. The on-site detection of airborne microparticles becomes more challenging as the particles are highly localized and change dynamically over time. However, most existing monitoring systems rely on time-consuming sample collection and centralized off-site analysis. Here, we report a smartphone-based integrated microsystem for on-site collection and detection that enables real-time detection of indoor airborne microparticles with high sensitivity. The collection device, inspired by the Venturi effect, was designed to collect airborne microparticles without requiring an additional power supply. Our systematic analysis showed that the collection device was able to collect microparticles with consistent negative pressure, regardless of the particle concentration in the air sample. By incorporating a microfluidic-biochip based on inertial force to trap particles and an optoelectronic photodetector into a miniaturized device with a smartphone, we demonstrate real-time and sensitive detection of the collected airborne microparticles, such as Escherichia coli, Bacillus subtilis, Micrococcus luteus, and Staphylococcus with a particle-density dynamic range of 103-108 CFU mL-1. Because of its capabilities of minimal-power sample collection, high sensitivity, and rapid detection of airborne microparticles, this integrated platform can be readily adopted by the government and industrial sectors to monitor indoor air contamination and improve human healthcare.
Collapse
Affiliation(s)
- Byunghoon Ryu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
8
|
The Emergence of Insect Odorant Receptor-Based Biosensors. BIOSENSORS-BASEL 2020; 10:bios10030026. [PMID: 32192133 PMCID: PMC7146604 DOI: 10.3390/bios10030026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/28/2022]
Abstract
The olfactory receptor neurons of insects and vertebrates are gated by odorant receptor (OR) proteins of which several members have been shown to exhibit remarkable sensitivity and selectivity towards volatile organic compounds of significant importance in the fields of medicine, agriculture and public health. Insect ORs offer intrinsic amplification where a single binding event is transduced into a measurable ionic current. Consequently, insect ORs have great potential as biorecognition elements in many sensor configurations. However, integrating these sensing components onto electronic transducers for the development of biosensors has been marginal due to several drawbacks, including their lipophilic nature, signal transduction mechanism and the limited number of known cognate receptor-ligand pairs. We review the current state of research in this emerging field and highlight the use of a group of indole-sensitive ORs (indolORs) from unexpected sources for the development of biosensors.
Collapse
|
9
|
Mbareche H, Morawska L, Duchaine C. On the interpretation of bioaerosol exposure measurements and impacts on health. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:789-804. [PMID: 30821643 DOI: 10.1080/10962247.2019.1587552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bioaerosols are recognized as one of the main transmission routes for infectious diseases and are responsible for other various types of health effects through inhalation and potential ingestion. Associating exposure with bioaerosol and health problems is challenging, and adequate exposure monitoring is a top priority for aerosol scientists. The multiple factors affecting bioaerosol content, the variability in the focus of each bioaerosol exposure study, and the variations in experimental design and the standardization of methods make bioaerosol exposure studies very difficult. Therefore, the health impacts of bioaerosol exposure are still poorly understood. This paper presents a brief description of a state-of-the-art development in bioaerosol exposure studies supported by studies on several related subjects. The main objective of this paper is to propose new considerations for bioaerosol exposure guidelines and the development of tools and study designs to better interpret bioaerosol data. The principal observations and findings are the discrepancy of the applicable methods in bioaerosol studies that makes result comparison impossible. Furthermore, the silo mentality helps in creating a bigger gap in the knowledge accumulated about bioaerosol exposure. Innovative and original ideas are presented for aerosol scientists and health scientists to consider and discuss. Although many examples cited herein are from occupational exposure, the discussion has relevance to any human environment. This work gives concrete suggestions for how to design a full bioaerosol study that includes all of the key elements necessary to help understand the real impacts of bioaerosol exposure in the short term. The creation of the proposed bioaerosol public database could give crucial information to control the public health. Implications: How can we move toward a bioaerosol exposure guidelines? The creation of the bioaerosol public database will help accumulate information for long-term association studies and help determine specific exposure biomarkers to bioaerosols. The implementation of such work will lead to a deeper understanding and more efficient utilization of bioaerosol studies to prevent public health hazards.
Collapse
Affiliation(s)
- Hamza Mbareche
- a Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec , Quebec City , Quebec , Canada
- b Département de biochimie, de microbiologie et de bio-informatique , Faculté des sciences et de génie, Université Laval , Quebec City , Quebec , Canada
| | - Lidia Morawska
- c School of Chemistry, Physics, and Mechanical Engineering, Department of Environmental Technologies , Queensland University of Technology , Brisbane , Queensland , Australia
| | - Caroline Duchaine
- a Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec , Quebec City , Quebec , Canada
- b Département de biochimie, de microbiologie et de bio-informatique , Faculté des sciences et de génie, Université Laval , Quebec City , Quebec , Canada
| |
Collapse
|
10
|
Mbareche H, Veillette M, Pilote J, Létourneau V, Duchaine C. Bioaerosols Play a Major Role in the Nasopharyngeal Microbiota Content in Agricultural Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16081375. [PMID: 30995814 PMCID: PMC6518280 DOI: 10.3390/ijerph16081375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/09/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
Abstract
Background: Bioaerosols are a major concern for public health and sampling for exposure assessment purposes is challenging. The nasopharyngeal region could be a potent carrier of long-term bioaerosol exposure agents. This study aimed to evaluate the correlation between nasopharyngeal bacterial flora of swine workers and the swine barns bioaerosol biodiversity. Methods: Air samples from eight swine barns as well as nasopharyngeal swabs from pig workers (n = 25) and from a non-exposed control group (n = 29) were sequenced using 16S rRNA gene high-throughput sequencing. Wastewater treatment plants were used as the industrial, low-dust, non-agricultural environment control to validate the microbial link between the bioaerosol content (air) and the nasopharynxes of workers. Results: A multivariate analysis showed air samples and nasopharyngeal flora of pig workers cluster together, compared to the non-exposed control group. The significance was confirmed with the PERMANOVA statistical test (p-value of 0.0001). Unlike the farm environment, nasopharynx samples from wastewater workers did not cluster with air samples from wastewater treatment plants. The difference in the microbial community of nasopharynx of swine workers and a control group suggest that swine workers are carriers of germs found in bioaerosols. Conclusion: Nasopharynx sampling and microbiota could be used as a proxy of air sampling for exposure assessment studies or for the determination of exposure markers in highly contaminated agricultural environments.
Collapse
Affiliation(s)
- Hamza Mbareche
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec G1V 0A6, Canada.
| | - Marc Veillette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
| | - Jonathan Pilote
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec G1V 0A6, Canada.
| | - Valérie Létourneau
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
| | - Caroline Duchaine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec G1V 4G5, Canada.
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|
11
|
Potyrailo RA. Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet. Chem Rev 2016; 116:11877-11923. [DOI: 10.1021/acs.chemrev.6b00187] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Pereira J, Porto-Figueira P, Cavaco C, Taunk K, Rapole S, Dhakne R, Nagarajaram H, Câmara JS. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Metabolites 2015; 5:3-55. [PMID: 25584743 PMCID: PMC4381289 DOI: 10.3390/metabo5010003] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/12/2014] [Indexed: 02/06/2023] Open
Abstract
Currently, a small number of diseases, particularly cardiovascular (CVDs), oncologic (ODs), neurodegenerative (NDDs), chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB) that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction) coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc.) allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases.
Collapse
Affiliation(s)
- Jorge Pereira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Priscilla Porto-Figueira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Carina Cavaco
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Rahul Dhakne
- Laboratory of Computational Biology, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, Andhra Pradesh 500 001, India.
| | - Hampapathalu Nagarajaram
- Laboratory of Computational Biology, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, Andhra Pradesh 500 001, India.
| | - José S Câmara
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| |
Collapse
|
13
|
|