1
|
Rodriguez-Mateos P, Ngamsom B, Iles A, Pamme N. Microscale immiscible phase magnetic processing for bioanalytical applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
2
|
Nelson DJ, Leelawong M, Pask ME, Wester CW, Aliyu MH, Haselton FR. Magnetic Bead Processing Enables Sensitive Ligation-Based Detection of HIV Drug Resistance Mutations. Anal Chem 2022; 94:2625-2632. [PMID: 35077642 PMCID: PMC11127743 DOI: 10.1021/acs.analchem.1c05040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV develops single nucleotide polymorphisms (SNPs), some of which lead to drug resistance mutations (DRMs) that prevent therapeutic viral suppression. Genomic sequencing enables healthcare professionals to select effective combination antiretroviral therapy (ART) to achieve and maintain viral suppression. However, sequencing technologies, which are resource-intensive, are limited in their availability. This report describes the first step toward a highly specific ligation-based SNP discrimination method with endpoint PCR detection, which is more suitable for resource-limited clinics. The approach is based on magnetic bead processing to maximize reaction product transfer and minimize the carryover of incompatible buffer for three consecutive enzymatic reactions─reverse transcription (RT), oligonucleotide ligation assay (OLA), and PCR. The method improved PCR detection following RT → OLA by 8.06 cycles (∼250-fold) compared to direct pipette processing and detected between 103 and 104 RNA copies per reaction. In studies with synthesized nucleic acids based on the well-studied HIV mutation, K103N, the assay successfully differentiated between wild-type and mutant for RNA targets with high specificity. With further development, this design provides a pathway for SNP detection with more accessible PCR instrumentation and is a step toward a self-contained processing approach that incorporates the SNP specificity of the ligation reaction for more effective clinical management of DRMs in resource-constrained settings.
Collapse
Affiliation(s)
- Dalton J Nelson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Mindy Leelawong
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Megan E Pask
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - C William Wester
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Muktar H Aliyu
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Frederick R Haselton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
3
|
Development of an Automated, Non-Enzymatic Nucleic Acid Amplification Test. MICROMACHINES 2021; 12:mi12101204. [PMID: 34683255 PMCID: PMC8538085 DOI: 10.3390/mi12101204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Among nucleic acid diagnostic strategies, non-enzymatic tests are the most promising for application at the point of care in low-resource settings. They remain relatively under-utilized, however, due to inadequate sensitivity. Inspired by a recent demonstration of a highly-sensitive dumbbell DNA amplification strategy, we developed an automated, self-contained assay for detection of target DNA. In this new diagnostic platform, called the automated Pi-powered looping oligonucleotide transporter, magnetic beads capture the target DNA and are then loaded into a microfluidic reaction cassette along with the other reaction solutions. A stepper motor controls the motion of the cassette relative to an external magnetic field, which moves the magnetic beads through the reaction solutions automatically. Real-time fluorescence is used to measure the accumulation of dumbbells on the magnetic bead surface. Left-handed DNA dumbbells produce a distinct signal which reflects the level of non-specific amplification, acting as an internal control. The autoPiLOT assay detected as little as 5 fM target DNA, and was also successfully applied to the detection of S. mansoni DNA. The autoPiLOT design is a novel step forward in the development of a sensitive, user-friendly, low-resource, non-enzymatic diagnostic test.
Collapse
|
4
|
Pearlman S, Leelawong M, Richardson KA, Adams NM, Russ PK, Pask ME, Wolfe AE, Wessely C, Haselton FR. Low-Resource Nucleic Acid Extraction Method Enabled by High-Gradient Magnetic Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12457-12467. [PMID: 32039572 PMCID: PMC7082792 DOI: 10.1021/acsami.9b21564] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/10/2020] [Indexed: 05/26/2023]
Abstract
Nucleic acid-based diagnostic tests often require isolation and concentration of nucleic acids from biological samples. Commercial purification kits are difficult to use in low-resource settings because of their cost and insufficient laboratory infrastructure. Several recent approaches based on the use of magnetic beads offer a potential solution but remain limited to small volume samples. We have developed a simple and low-cost nucleic acid extraction method suitable for isolation and concentration of nucleic acids from small or large sample volumes. The method uses magnetic beads, a transfer pipette, steel wool, and an external magnet to implement high-gradient magnetic separation (HGMS) to retain nucleic acid-magnetic bead complexes within the device's steel wool matrix for subsequent processing steps. We demonstrate the method's utility by extracting tuberculosis DNA from both sputum and urine, two typical large volume sample matrices (5-200 mL), using guanidine-based extraction chemistry. Our HGMS-enabled extraction method is statistically indistinguishable from commercial extraction kits when detecting a spiked 123-base DNA sequence. For our HGMS-enabled extraction method, we obtained extraction efficiencies for sputum and urine of approximately 10 and 90%, whereas commercial kits obtained 10-17 and 70-96%, respectively. We also used this method previously in a blinded sample preparation comparison study published by Beall et al., 2019. Our manual extraction method is insensitive to high flow rates and sample viscosity, with capture of ∼100% for flow rates up to 45 mL/min and viscosities up to 55 cP, possibly making it suitable for a wide variety of sample volumes and types and point-of-care users. This HGMS-enabled extraction method provides a robust instrument-free method for magnetic bead-based nucleic acid extraction, potentially suitable for field implementation of nucleic acid testing.
Collapse
Affiliation(s)
- Stephanie
I. Pearlman
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Mindy Leelawong
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kelly A. Richardson
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nicholas M. Adams
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Patricia K. Russ
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Megan E. Pask
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Anna E. Wolfe
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Cassandra Wessely
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Frederick R. Haselton
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Wang X, Gu M, Toh TB, Abdullah NLB, Chow EKH. Stimuli-Responsive Nanodiamond-Based Biosensor for Enhanced Metastatic Tumor Site Detection. SLAS Technol 2017; 23:44-56. [PMID: 29020497 DOI: 10.1177/2472630317735497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metastasis is often critical to cancer progression and linked to poor survival and drug resistance. Early detection of metastasis, as well as identification of metastatic tumor sites, can improve cancer patient survival. Thus, developing technology to improve the detection of cancer metastasis biomarkers can improve both diagnosis and treatment. In this study, we investigated the use of nanodiamonds to develop a stimuli-responsive metastasis detection complex that utilizes matrix metalloproteinase 9 (MMP9) as a metastasis biomarker, as MMP9 increased expression has been shown to be indicative of metastasis. The nanodiamond-MMP9 biosensor complex consists of nanodiamonds functionalized with MMP9-specific fluorescent-labeled substrate peptides. Using this design, protease activity of MMP9 can be accurately measured and correlated to MMP9 expression. The nanodiamond-MMP9 biosensor also demonstrated an enhanced ability to protect the base sensor peptide from nonspecific serum protease cleavage. This enhanced peptide stability, combined with a quantitative stimuli-responsive output function, provides strong evidence for the further development of a nanodiamond-MMP9 biosensor for metastasis site detection. More importantly, this work provides the foundation for use of nanodiamonds as a platform for stimuli-responsive biosensors and theranostic complexes that can be implemented across a wide range of biomedical applications.
Collapse
Affiliation(s)
- Xin Wang
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mengjie Gu
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tan Boon Toh
- 2 Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nurrul Lissa Binti Abdullah
- 2 Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Edward Kai-Hua Chow
- 1 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,2 Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
6
|
Adams NM, Gabella WE, Hardcastle AN, Haselton FR. Adaptive PCR Based on Hybridization Sensing of Mirror-Image l-DNA. Anal Chem 2016; 89:728-735. [PMID: 28105843 DOI: 10.1021/acs.analchem.6b03291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polymerase chain reaction (PCR) is dependent on two key hybridization events during each cycle of amplification, primer annealing and product melting. To ensure that these hybridization events occur, current PCR approaches rely on temperature set points and reaction contents that are optimized and maintained using rigid thermal cycling programs and stringent sample preparation procedures. This report describes a fundamentally simpler and more robust PCR design that dynamically controls thermal cycling by more directly monitoring the two key hybridization events during the reaction. This is achieved by optically sensing the annealing and melting of mirror-image l-DNA analogs of the reaction's primers and targets. Because the properties of l-DNA enantiomers parallel those of natural d-DNAs, the l-DNA reagents indicate the cycling conditions required for effective primer annealing and product melting during each cycle without interfering with the reaction. This hybridization-sensing approach adapts in real time to variations in reaction contents and conditions that impact primer annealing and product melting and eliminates the requirement for thermal calibrations and cycling programs. Adaptive PCR is demonstrated to amplify DNA targets with high efficiency and specificity under both controlled conditions and conditions that are known to cause traditional PCR to fail. The advantages of this approach promise to make PCR-based nucleic acid analysis simpler, more robust, and more accessible outside of well-controlled laboratory settings.
Collapse
Affiliation(s)
- Nicholas M Adams
- Department of Biomedical Engineering, ‡Department of Physics and Astronomy, and §Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - William E Gabella
- Department of Biomedical Engineering, ‡Department of Physics and Astronomy, and §Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Austin N Hardcastle
- Department of Biomedical Engineering, ‡Department of Physics and Astronomy, and §Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Frederick R Haselton
- Department of Biomedical Engineering, ‡Department of Physics and Astronomy, and §Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|