1
|
Pareek A, Ro DH, Karlsson J, Martin RK. Machine learning/artificial intelligence in sports medicine: state of the art and future directions. J ISAKOS 2024; 9:635-644. [PMID: 38336099 DOI: 10.1016/j.jisako.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/30/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Machine learning (ML) is changing the way health care is practiced and recent applications of these novel statistical techniques have started to impact orthopaedic sports medicine. Machine learning enables the analysis of large volumes of data to establish complex relationships between "input" and "output" variables. These relationships may be more complex than could be established through traditional statistical analysis and can lead to the ability to predict the "output" with high levels of accuracy. Supervised learning is the most common ML approach for healthcare data and recent studies have developed algorithms to predict patient-specific outcome after surgical procedures such as hip arthroscopy and anterior cruciate ligament reconstruction. Deep learning is a higher-level ML approach that facilitates the processing and interpretation of complex datasets through artificial neural networks that are inspired by the way the human brain processes information. In orthopaedic sports medicine, deep learning has primarily been used for automatic image (computer vision) and text (natural language processing) interpretation. While applications in orthopaedic sports medicine have been increasing exponentially, one significant barrier to widespread adoption of ML remains clinician unfamiliarity with the associated methods and concepts. The goal of this review is to introduce these concepts, review current machine learning models in orthopaedic sport medicine, and discuss future opportunities for innovation within the specialty.
Collapse
Affiliation(s)
- Ayoosh Pareek
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, 10021, USA; Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, 43180, Sweden.
| | - Du Hyun Ro
- Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, 03080, South Korea; CONNECTEVE Co., Ltd, Seoul, 03080, South Korea
| | - Jón Karlsson
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, 43180, Sweden
| | - R Kyle Martin
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, 55454, USA; Department of Orthopedic Surgery, CentraCare, Saint Cloud, MN, 56303, USA; Oslo Sports Trauma Research Center, Norwegian School of Sport Sciences, Oslo, 0806, Norway
| |
Collapse
|
2
|
Martin RK, Wastvedt S, Pareek A, Persson A, Visnes H, Fenstad AM, Moatshe G, Wolfson J, Lind M, Engebretsen L. Unsupervised Machine Learning of the Combined Danish and Norwegian Knee Ligament Registers: Identification of 5 Distinct Patient Groups With Differing ACL Revision Rates. Am J Sports Med 2024; 52:881-891. [PMID: 38343270 DOI: 10.1177/03635465231225215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
BACKGROUND Most clinical machine learning applications use a supervised learning approach using labeled variables. In contrast, unsupervised learning enables pattern detection without a prespecified outcome. PURPOSE/HYPOTHESIS The purpose of this study was to apply unsupervised learning to the combined Danish and Norwegian knee ligament register (KLR) with the goal of detecting distinct subgroups. It was hypothesized that resulting groups would have differing rates of subsequent anterior cruciate ligament reconstruction (ACLR) revision. STUDY DESIGN Cohort study; Level of evidence, 3. METHODS K-prototypes clustering was performed on the complete case KLR data. After performing the unsupervised learning analysis, the authors defined clinically relevant characteristics of each cluster using variable summaries, surgeons' domain knowledge, and Shapley Additive exPlanations analysis. RESULTS Five clusters were identified. Cluster 1 (revision rate, 9.9%) patients were young (mean age, 22 years; SD, 6 years), received hamstring tendon (HT) autograft (91%), and had lower baseline Knee injury and Osteoarthritis Outcome Score (KOOS) Sport and Recreation (Sports) scores (mean, 25.0; SD, 15.6). Cluster 2 (revision rate, 6.9%) patients received HT autograft (89%) and had higher baseline KOOS Sports scores (mean, 67.2; SD, 16.5). Cluster 3 (revision rate, 4.7%) patients received bone-patellar tendon-bone (BPTB) or quadriceps tendon (QT) autograft (94%) and had higher baseline KOOS Sports scores (mean, 65.8; SD, 16.4). Cluster 4 (revision rate, 4.1%) patients received BPTB or QT autograft (88%) and had low baseline KOOS Sports scores (mean, 20.5; SD, 14.0). Cluster 5 (revision rate, 3.1%) patients were older (mean age, 42 years; SD, 7 years), received HT autograft (89%), and had low baseline KOOS Sports scores (mean, 23.4; SD, 17.6). CONCLUSION Unsupervised learning identified 5 distinct KLR patient subgroups and each grouping was associated with a unique ACLR revision rate. Patients can be approximately classified into 1 of the 5 clusters based on only 3 variables: age, graft choice (HT, BPTB, or QT autograft), and preoperative KOOS Sports subscale score. If externally validated, the resulting groupings may enable quick risk stratification for future patients undergoing ACLR in the clinical setting. Patients in cluster 1 are considered high risk (9.9%), cluster 2 patients medium risk (6.9%), and patients in clusters 3 to 5 low risk (3.1%-4.7%) for revision ACLR.
Collapse
Affiliation(s)
- R Kyle Martin
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Orthopedic Surgery, CentraCare, Saint Cloud, Minnesota, USA
- Oslo Sport Trauma Research Center, Norwegian School of Sports Science, Oslo, Norway
| | - Solvejg Wastvedt
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ayoosh Pareek
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Andreas Persson
- Oslo Sport Trauma Research Center, Norwegian School of Sports Science, Oslo, Norway
- Orthopaedic Clinic, Oslo University Hospital Ullevål, Oslo, Norway
- Norwegian Knee Ligament Register, Haukeland University Hospital, Bergen, Norway
| | - Håvard Visnes
- Oslo Sport Trauma Research Center, Norwegian School of Sports Science, Oslo, Norway
- Norwegian Knee Ligament Register, Haukeland University Hospital, Bergen, Norway
- Department of Orthopedics, Sorlandet Hospital, Kristiansand, Norway
| | - Anne Marie Fenstad
- Norwegian Knee Ligament Register, Haukeland University Hospital, Bergen, Norway
| | - Gilbert Moatshe
- Oslo Sport Trauma Research Center, Norwegian School of Sports Science, Oslo, Norway
- Orthopaedic Clinic, Oslo University Hospital Ullevål, Oslo, Norway
| | - Julian Wolfson
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Lars Engebretsen
- Oslo Sport Trauma Research Center, Norwegian School of Sports Science, Oslo, Norway
- Orthopaedic Clinic, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|