1
|
Wilkerson GB, Wynn KR, Dill PW, Acocello S, Carlson LM, Hogg J. Concussion history and virtual reality metrics predict core or lower extremity injury occurrence among high school athletes. Front Sports Act Living 2024; 6:1374772. [PMID: 38600904 PMCID: PMC11004318 DOI: 10.3389/fspor.2024.1374772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction A history of concussion is recognized as a risk factor for musculoskeletal injury, which is likely associated with physiological effects that warrant better understanding. This study aimed to assess the potential of measurements obtained from an immersive virtual reality (VR) test to identify a subtle perceptual-motor impairment that may be prospectively associated with the occurrence of a core or lower extremity sprain or strain. Methods A cohort of 68 high school athletes (41 female soccer players and 27 male football players) provided survey responses and completed an immersive VR test several days prior to the initiation of preseason practice sessions. Measurements of eye, neck, arm, and whole-body displacements were obtained during 40 successive lunging/reaching responses to visual stimuli moving horizontally across the VR headset display. Injury occurrences were electronically documented from the initial preseason practice session to the final game of the season. Results A statistically significant and intrinsically credible two-factor prediction model for core or lower extremity injury occurrence included an interaction between female sex and a self-reported history of two or more concussions, along with slow response time (RT) for arm reach (OR = 4.67; 95% CI, 1.51-14.43). Follow-up analyses identified sex-specific cut points for arm reach RT associated with elevated injury risk, which were ≥1.385 s for females and ≥1.257 s for males. Discussion High school female soccer players who have sustained more than one concussion appear to be highly vulnerable to core or lower extremity sprain or strain, with the risk of injury compounded by a slow arm reach RT. Male football players as a group demonstrated significantly faster arm reach RT than that of female soccer players, but slow perceptual-motor RT for arm reach was also identified as a potentially important injury risk factor for male players. Immersive VR appears to provide precise measurements of behavioral performance characteristics that depend on brain processing efficiency. Given that the speed, accuracy, and consistency of perceptual-motor responses may be modifiable, future research should explore the potential benefits of VR training for reducing the risk of sport-related injuries.
Collapse
Affiliation(s)
- Gary B. Wilkerson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Kimberly R. Wynn
- Department of Intercollegiate Athletics, Mercer University, Macon, GA, United States
| | - Paige W. Dill
- Sports Medicine Outreach Program, Optim Health System, Mount Vernon, GA, United States
| | - Shellie Acocello
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Lynette M. Carlson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Jennifer Hogg
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| |
Collapse
|
2
|
Wilkerson GB, Colston MA, Acocello SN, Hogg JA, Carlson LM. Subtle impairments of perceptual-motor function and well-being are detectable among military cadets and college athletes with self-reported history of concussion. Front Sports Act Living 2023; 5:1046572. [PMID: 36761780 PMCID: PMC9905443 DOI: 10.3389/fspor.2023.1046572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction A lack of obvious long-term effects of concussion on standard clinical measures of behavioral performance capabilities does not preclude the existence of subtle neural processing impairments that appear to be linked to elevated risk for subsequent concussion occurrence, and which may be associated with greater susceptibility to progressive neurodegenerative processes. The purpose of this observational cohort study was to assess virtual reality motor response variability and survey responses as possible indicators of suboptimal brain function among military cadets and college athletes with self-reported history of concussion (HxC). Methods The cohort comprised 75 college students (20.7 ± 2.1 years): 39 Reserve Officer Training Corp (ROTC) military cadets (10 female), 16 football players, and 20 wrestlers; HxC self-reported by 20 (29.2 ± 27.1 months prior, range: 3-96). A virtual reality (VR) test involving 40 lunging/reaching responses to horizontally moving dots (filled/congruent: same direction; open/incongruent: opposite direction) was administered, along with the Sport Fitness and Wellness Index (SFWI) survey. VR Dispersion (standard deviation of 12 T-scores for neck, upper extremity, and lower extremity responses to congruent vs. incongruent stimuli originating from central vs. peripheral locations) and SFWI response patterns were the primary outcomes of interest. Results Logistic regression modeling of VR Dispersion (range: 1.5-21.8), SFWI (range: 44-100), and an interaction between them provided 81% HxC classification accuracy (Model χ 2[2] = 26.03, p < .001; Hosmer & Lemeshow χ 2[8] = 1.86, p = .967; Nagelkerke R 2 = .427; Area Under Curve = .841, 95% CI: .734, .948). Binary modeling that included VR Dispersion ≥3.2 and SFWI ≤86 demonstrated 75% sensitivity and 86% specificity with both factors positive (Odds Ratio = 17.6, 95% CI: 5.0, 62.1). Discussion/Conclusion Detection of subtle indicators of altered brain processes that might otherwise remain unrecognized is clearly important for both short-term and long-term clinical management of concussion. Inconsistency among neck, upper extremity, and lower extremity responses to different types of moving visual stimuli, along with survey responses suggesting suboptimal well-being, merit further investigation as possible clinical indicators of persisting effects of concussion that might prove to be modifiable.
Collapse
Affiliation(s)
- Gary B Wilkerson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Marisa A Colston
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Shellie N Acocello
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Jennifer A Hogg
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Lynette M Carlson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| |
Collapse
|
3
|
Hogg JA, Riehm CD, Wilkerson GB, Tudini F, Peyer KL, Acocello SN, Carlson LM, Le T, Sessions R, Diekfuss JA, Myer GD. Changes in dual-task cognitive performance elicited by physical exertion vary with motor task. Front Sports Act Living 2022; 4:989799. [PMID: 36385777 PMCID: PMC9650128 DOI: 10.3389/fspor.2022.989799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Background Integrated movement and cognitive load paradigms are used to expose impairments associated with concussion and musculoskeletal injury. There is currently little information on the discriminatory nature of dual-task complexity and the relative influence of physical exertion on cognitive outcomes. Purpose Assess cognitive performance while under motor conditions of increasing complexity before and after a standardized exercise protocol. Methods 34 participants were recruited (17 male and 17 female; 24 ± 1.4 yrs). A modified Eriksen flanker test was used to assess cognitive performance under four conditions (seated, single-leg stance, walking, and lateral stepping) before and after a 20-min moderate-to vigorous intensity treadmill protocol. The flanker test consisted of 20 sets of 5-arrow configurations, appearing in random order. To complete the response to cognitive stimulus, participants held a smartphone horizontally and were instructed to respond as quickly and as accurately as possible by tilting the device in the direction corresponding to the orientation of the middle arrow. The metrics used for analysis included average reaction time (ms), inverse efficiency index (average reaction time penalized for incorrect responses), and conflict effect (the average time cost of responding to an incongruent repetition vs. a congruent repetition). Mixed effects (condition by time) RMANOVAs were conducted to examine the effects of motor task complexity and physical exertion on cognitive performance. Results There was a condition by time interaction for inverse efficiency index (p < 0.001), in which participants displayed higher cognitive efficiency for the pre-activity lateral stepping condition compared to the other three conditions (Cohen's d = 1.3–1.6). For reaction time and conflict effect, there were main effects for condition (p = 0.004 and 0.006, respectively), in which performance during lateral stepping was improved in relation to the seated condition (reaction time Cohen's d = 0.68; conflict effect Cohen's d = 0.64). Conclusion Participants tended to display better dual-task cognitive performance under more stimulating or complex motor tasks before physical exertion, likely associated with the inverted-U arousal-performance relationship. When using dual-task assessments, clinicians should be mindful of the accompanying motor task and baseline exertion levels and their potential to disrupt or optimize cognitive performance.
Collapse
Affiliation(s)
- Jennifer A. Hogg
- Department of Health and Human Performance, The University of Tennessee at Chattanooga, Chattanooga, TN, United States
- *Correspondence: Jennifer A. Hogg
| | - Christopher D. Riehm
- Emory Sports Performance And Research Center, Flowery Branch, GA, United States
- Emory Sports Medicine Center, Atlanta, GA, United States
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
| | - Gary B. Wilkerson
- Department of Health and Human Performance, The University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Frank Tudini
- Department of Physical Therapy, The University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Karissa L. Peyer
- Department of Health and Human Performance, The University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Shellie N. Acocello
- Department of Health and Human Performance, The University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Lynette M. Carlson
- Department of Health and Human Performance, The University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Tan Le
- Upstream Rehabilitation, Raymond, MS, United States
| | - Ross Sessions
- Cornerstone Rehabilitation, Southaven, MS, United States
| | - Jed A. Diekfuss
- Emory Sports Performance And Research Center, Flowery Branch, GA, United States
- Emory Sports Medicine Center, Atlanta, GA, United States
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
| | - Gregory D. Myer
- Emory Sports Performance And Research Center, Flowery Branch, GA, United States
- Emory Sports Medicine Center, Atlanta, GA, United States
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, United States
- The Micheli Center for Sports Injury Prevention, Waltham, MA, United States
| |
Collapse
|
4
|
Buckley TA, Browne S, Hunzinger KJ, Kaminski TW, Swanik CB. Concussion is not associated with elevated rates of lower-extremity musculoskeletal injuries in National Football League Players. PHYSICIAN SPORTSMED 2022:1-6. [PMID: 35591786 DOI: 10.1080/00913847.2022.2080515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Emerging evidence has identified an ~2x elevated risk of musculoskeletal (MSK) injury in the year following a concussion. Most of these studies have examined a single college/university athletic department and may lack generalizability to professional sports. Therefore, the purpose of this study was to assess the odds of post-concussion MSK injury utilizing publicly available National Football League (NFL) injury reports. METHODS Concussions were identified through a review of published NFL injury reports during the 2015, 2016, and 2017 regular seasons. Concussed players were matched by team and position, and injuries were tracked for both groups for the remainder of the season. A chi-square analysis compared the frequency of MSK injury in both groups and a Cox Proportional Hazard model calculated the risk of sustaining a subsequent MSK injury. RESULTS There were 322 concussed NFL players who met inclusion criteria and were successfully matched. From the time of concussion through the remainder of the season, 21.4% of the concussed players were injured and 26.4% of control participants were injured. There was no difference in MSK injury rates (p = 0.166), and the relative risk ratio was 0.90 for subsequent injury in the concussion group. There was no difference in the time to event for subsequent MSK between the two groups (p = 0.123). CONCLUSION The primary finding of this study was no elevated risk of post-concussion MSK in NFL football players.
Collapse
Affiliation(s)
- Thomas A Buckley
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.,Interdisciplinary Program in Biomechanics and Movement Science, University of Delaware, Newark, DE, USA
| | - Steven Browne
- Department of Intercollegiate Athletics, University of Delaware, Newark, DE, USA
| | - Katherine J Hunzinger
- Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Thomas W Kaminski
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.,Interdisciplinary Program in Biomechanics and Movement Science, University of Delaware, Newark, DE, USA
| | - Charles Buz Swanik
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.,Interdisciplinary Program in Biomechanics and Movement Science, University of Delaware, Newark, DE, USA
| |
Collapse
|
5
|
Hogg JA, Avedesian JM, Diekfuss JA, Acocello SN, Shimmin RD, Kelley EA, Kostrub DA, Myer GD, Wilkerson GB. Sex Moderates the Relationship between Perceptual-Motor Function and Single-Leg Squatting Mechanics. J Sports Sci Med 2022; 21:104-111. [PMID: 35250339 PMCID: PMC8851119 DOI: 10.52082/jssm.2022.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
To examine the isolated and combined effects of sex and perceptual-motor function on single-leg squatting mechanics in males and females. We employed a cross-sectional design in a research laboratory. Fifty-eight females (22.2 ± 3.5 yrs, 1.60 ± .07 m, 64.1 ± 13.0 kg) and 35 males (23.5 ± 5.0 yrs, 1.80 ± .06m, 84.7 ± 15.3 kg) free from time-loss injury in the six months prior, vertigo, and vestibular conditions participated in this study. Independent variables were sex, perceptual-motor metrics (reaction time, efficiency index, conflict discrepancy), and interaction effects. Dependent variables were peak frontal plane angles of knee projection, ipsilateral trunk flexion, and contralateral pelvic drop during single-leg squatting. After accounting for the sex-specific variance and perceptual-motor function effects on frontal plane squatting kinematics, female sex amplified the associations of: higher reaction time, lower efficiency index, and higher conflict discrepancy with greater right ipsilateral peak trunk lean (R2 = .13; p = .05); higher reaction time, lower efficiency index, and higher conflict discrepancy with decreased right contralateral pelvic drop (R2 = .22; p < .001); higher reaction time and lower conflict discrepancy with greater right frontal plane knee projection angle (R2 = .12; p = .03); and higher reaction time with greater left frontal plane knee projection angle (R2 = .22; p < .001). Female sex amplified the relationship between perceptual-motor function and two-dimensional frontal plane squatting kinematics. Future work should determine the extent to which perceptual-motor improvements translate to safer movement strategies.
Collapse
Affiliation(s)
- Jennifer A Hogg
- Department of Health and Human Performance, The University of Tennessee Chattanooga, Chattanooga, TN, USA
| | | | - Jed A Diekfuss
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shellie N Acocello
- Department of Health and Human Performance, The University of Tennessee Chattanooga, Chattanooga, TN, USA
| | | | | | | | - Gregory D Myer
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
| | - Gary B Wilkerson
- Department of Health and Human Performance, The University of Tennessee Chattanooga, Chattanooga, TN, USA
| |
Collapse
|