1
|
Wang J, Gao S, Cui Y, Liu XZ, Chen XX, Hang CH, Li W. Remote Organ Damage Induced by Stroke: Molecular Mechanisms and Comprehensive Interventions. Antioxid Redox Signal 2025. [PMID: 40170638 DOI: 10.1089/ars.2024.0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Significance: Damage after stroke is not only limited to the brain but also often occurs in remote organs, including the heart, lung, liver, kidney, digestive tract, and spleen, which are frequently affected by complex pathophysiological changes. The organs in the human body are closely connected, and signals transmitted through various molecular substances could regulate the pathophysiological changes of remote organs. Recent Advances: The latest studies have shown that inflammatory response plays an important role in remote organ damage after stroke, and can aggravate remote organ damage by activating oxidative stress, sympathetic axis, and hypothalamic axis, and disturbing immunological homeostasis. Remote organ damage can also cause damage to the brain, aggravating inflammatory response and oxidative damage. Critical Issues: Therefore, an in-depth exploration of inflammatory and oxidative mechanisms and adopting corresponding comprehensive intervention strategies have become necessary to reduce damage to remote organs and promote brain protection. Future Directions: The comprehensive intervention strategy involves multifaceted treatment methods such as inflammation regulation, antioxidants, and neural stem cell differentiation. It provides a promising treatment alternative for the comprehensive recovery of stroke patients and an inspiration for future research and treatment. The various organs of the human body are interconnected at the molecular level. Only through comprehensive intervention at the molecular and organ levels can we save remote organ damage and protect the brain after stroke to the greatest extent. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Yue Cui
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Xu L, Zhou B, Xu Y. Addressing biases: Evaluating the Cox proportional hazards model and alternative approaches for major adverse cardiovascular events research. Eur Stroke J 2025; 10:298-299. [PMID: 39297474 PMCID: PMC11556671 DOI: 10.1177/23969873241286984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Affiliation(s)
- Lingyu Xu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhou
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Xu
- Department of Nephrology, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Buckley BJR, Lip GYH. Response to Xu et al: Time-to-event analysis, data variability, and consideration of model selection: Considerations in relation to stroke-heart syndrome. Eur Stroke J 2025; 10:300-301. [PMID: 39340235 PMCID: PMC11556552 DOI: 10.1177/23969873241287131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Affiliation(s)
- Benjamin JR Buckley
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, and Liverpool Heart and Chest Hospital, Liverpool, UK
- Cardiovascular Health Sciences, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Gregory YH Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, and Liverpool Heart and Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|