1
|
Xu Y, Bassi A. Non-thermal plasma decontamination of microbes: a state of the art. Biotechnol Prog 2025; 41:e3511. [PMID: 39462867 PMCID: PMC12000644 DOI: 10.1002/btpr.3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024]
Abstract
Microbial decontamination is a critical concern in various sectors, from healthcare to food processing. Traditional decontamination methods, while effective to a degree, present limitations in terms of environmental impact, efficiency, and potential harm to the target material. This review investigates the emerging realm of non-thermal plasma (NTP) as a promising alternative for microbial decontamination, emphasizing its mechanisms, reactor designs and applications. The mechanism decomposed into physical, chemical and biological effects of plasma, are elaborated upon to provide a foundational understanding of the intrinsic principles of plasma decontamination. Except for the generation type of NTP, reactors and other parameters by which NTP achieves microbial decontamination, emphasizing the design considerations and parameters that influence its efficacy. Moreover, the latest applications of NTP in decontaminating air, water, and surfaces, supported by the latest research findings in each domain are explored. Additionally, the perspectives on the future research tendencies of NTP decontamination and disinfection are highlighted with potential avenues for exploration and innovation. Through this comprehensive review, the aim is to underscore the potential of NTP, particularly DBD plasma, as a versatile, efficient, and environmentally friendly method for microbial decontamination.
Collapse
Affiliation(s)
- Yiyi Xu
- Chemical and Biochemical EngineeringWestern UniversityLondonOntarioCanada
| | - Amarjeet Bassi
- Chemical and Biochemical EngineeringWestern UniversityLondonOntarioCanada
| |
Collapse
|
2
|
Crnčević D, Krce L, Brkljača Z, Cvitković M, Babić Brčić S, Čož-Rakovac R, Odžak R, Šprung M. A dual antibacterial action of soft quaternary ammonium compounds: bacteriostatic effects, membrane integrity, and reduced in vitro and in vivo toxicity. RSC Adv 2025; 15:1490-1506. [PMID: 39822568 PMCID: PMC11737066 DOI: 10.1039/d4ra07975b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025] Open
Abstract
Quaternary ammonium compounds (QACs) have served as essential antimicrobial agents for nearly a century due to their rapid membrane-disrupting action. However, the emergence of bacterial resistance and environmental concerns have driven interest in alternative designs, such as "soft QACs", which are designed for enhanced biodegradability and reduced resistance potential. In this study, we explored the antibacterial properties and mechanisms of action of our newly synthesized soft QACs containing a labile amide bond within a quinuclidine scaffold. Our findings revealed that these compounds primarily exhibit a bacteriostatic mode of action, effectively suppressing bacterial growth even at concentrations exceeding their minimum inhibitory concentrations (MICs). Unlike traditional QACs, fluorescence spectroscopy and microscopy demonstrated membrane preservation during treatment, with reduced membrane integration compared to cetylpyridinium chloride (CPC), as corroborated by parallel artificial membrane permeability assays. Additionally, molecular dynamics simulations revealed "hook-like" conformations that limit lipid bilayer penetration and promote the formation of larger aggregates, reducing their effective concentration and minimizing cytotoxic effects. Interestingly, secondary antibacterial mechanisms, including inhibition of protein synthesis, were observed, further enhancing their activity. Zebrafish embryotoxicity and in vitro cytotoxicity studies confirmed significantly lower toxicity compared to CPC. By addressing limitations associated with conventional QACs, including toxicity, resistance, and environmental persistence, these soft QACs provide a promising foundation for next-generation antimicrobials. This work advances the understanding of QAC mechanisms while paving the way for safer, eco-friendly applications in healthcare, agriculture, and industrial settings.
Collapse
Affiliation(s)
- Doris Crnčević
- University of Split, Faculty of Science, Department of Chemistry R. Bošković 33 Split Croatia
- University of Split, Faculty of Science, Doctoral Study in Biophysics R. Bošković 33 Split Croatia
| | - Lucija Krce
- University of Split, Faculty of Science, Department of Physics R. Bošković 33 Split Croatia
| | | | - Mislav Cvitković
- University of Split, Faculty of Science, Department of Physics R. Bošković 33 Split Croatia
| | - Sanja Babić Brčić
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry Bijenička 54 Zagreb Croatia
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute Bijenička 54 Zagreb Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry Bijenička 54 Zagreb Croatia
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute Bijenička 54 Zagreb Croatia
| | - Renata Odžak
- University of Split, Faculty of Science, Department of Chemistry R. Bošković 33 Split Croatia
| | - Matilda Šprung
- University of Split, Faculty of Science, Department of Chemistry R. Bošković 33 Split Croatia
| |
Collapse
|
3
|
Bakun P, Wysocki M, Stachowiak M, Musielak M, Dlugaszewska J, Mlynarczyk DT, Sobotta L, Suchorska WM, Goslinski T. Quaternized Curcumin Derivative-Synthesis, Physicochemical Characteristics, and Photocytotoxicity, Including Antibacterial Activity after Irradiation with Blue Light. Molecules 2024; 29:4536. [PMID: 39407467 PMCID: PMC11478334 DOI: 10.3390/molecules29194536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Over the past few years, numerous bacterial strains have become resistant to selected drugs from various therapeutic groups. A potential tool in the fight against these strains is antimicrobial photodynamic therapy (APDT). APDT acts in a non-specific manner by generating reactive oxygen species and radicals, thereby inducing multidimensional intracellular effects. Importantly, the chance that bacteria will develop defense mechanisms against APDT is considered to be low. In our research, we performed the synthesis and physicochemical characterization of curcumin derivatives enriched with morpholine motifs. The obtained compounds were assessed regarding photostability, singlet oxygen generation, aggregation, and acute toxicity toward prokaryotic Aliivibrio fischeri cells in the Microtox® test. The impact of the compounds on the survival of eukaryotic cells in the MTT assay was also tested (WM266-4, WM115-melanoma, MRC-5-lung fibroblasts, and PHDF-primary human dermal fibroblasts). Initial studies determining the photocytotoxicity, and thus the potential APDT usability, were conducted with the following microbial strains: Candida albicans, Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Pseudomonas aeruginosa. It was noted that the exposure of bacteria to LED light at 470 nm (fluence: 30 J/cm2) in the presence of quaternized curcumin derivatives at the conc. of 10 µM led to a reduction in Staphylococcus aureus survival of over 5.4 log.
Collapse
Affiliation(s)
- Pawel Bakun
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
| | - Marcin Wysocki
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Magdalena Stachowiak
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| | - Marika Musielak
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; (M.W.); (M.M.)
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Wiktoria M. Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.S.); (D.T.M.)
| |
Collapse
|
4
|
Dong H, Qiu L, Zhu C, Fan W, Liu L, Deng Q, Zhang H, Yang W, Cai K. Preparation of calcium phosphate ion clusters through atomization method for biomimetic mineralization of enamel. J Biomed Mater Res A 2024; 112:1412-1423. [PMID: 38461494 DOI: 10.1002/jbm.a.37706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Dental enamel is a mineralized extracellular matrix, and enamel defect is a common oral disease. However, the self-repair capacity of enamel is limited due to the absence of cellular components and organic matter. Efficacy of biomimetic enamel mineralization using calcium phosphate ion clusters (CPICs), is an effective method to compensate for the limited self-healing ability of fully developed enamel. Preparing and stabilizing CPICs presents a significant challenge, as the addition of certain stabilizers can diminish the mechanical properties or biosafety of mineralized enamel. To efficiently and safely repair enamel damage, this study quickly prepared CPICs without stabilizers using the atomization method. The formed CPICs were evenly distributed on the enamel surface, prompting directional growth and transformation of hydroxyapatite (HA) crystals. The study revealed that the mended enamel displayed comparable morphology, chemical composition, hardness, and mechanical properties to those of the original enamel. The approach of repairing dental enamel by utilizing ultrasonic nebulization of CPICs is highly efficient and safe, therefore indicating great promise.
Collapse
Affiliation(s)
- Haide Dong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Lin Qiu
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Chen Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Wuzhe Fan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Li Liu
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Quanfu Deng
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Huan Zhang
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, People's Republic of China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
5
|
Dumitrel SI, Matichescu A, Dinu S, Buzatu R, Popovici R, Dinu DC, Bratu DC. New Insights Regarding the Use of Relevant Synthetic Compounds in Dentistry. Molecules 2024; 29:3802. [PMID: 39202881 PMCID: PMC11357206 DOI: 10.3390/molecules29163802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Worldwide, synthetic compounds are used for both in-office and at-home dental care. They are a valuable resource for both prophylactic and curative treatments for various dental problems, such as tooth decay, periodontal diseases, and many more. They are typically preferred due to their broad range of actions and ability to produce targeted, rapid, and long-lasting effects. Using a 0.12% chlorhexidine mouthwash is capable of reducing the plaque index from 47.69% to 2.37% and the bleeding index from 32.93% to 6.28% after just 2 weeks. Mouthwash with 0.1% OCT is also highly effective, as it significantly lowered the median plaque index and salivary bacterial counts in 152 patients in 5 days compared to a control group (p < 0.0001), while also reducing the gingival index (p < 0.001). When povidone-iodine was used as an irrigant during the surgical removal of mandibular third molars in 105 patients, it resulted in notably lower pain scores after 2 days compared to a control group (4.57 ± 0.60 vs. 5.71 ± 0.45). Sodium hypochlorite is excellent for root canal disinfection, as irrigating with 1% NaOCl completely eliminated the bacteria from canals in 65% patients. A 0.05% CPC mouthwash proved effective for perioperative patient care, significantly decreasing gingival bleeding (p < 0.001) and suppressing Streptococcus levels even one week post-surgery. Lastly, a 6% H2O2 paint-on varnish and 6% H2O2 tray formulations successfully bleached the teeth of 40 patients, maintaining a noticeably whiter appearance up to the 6-month follow-up, with significant color differences from the baseline (p < 0.005). Synthetic compounds have a large research base, which also provides a greater awareness of their mechanism of action and potential adverse effects. For a better understanding of how they work, several methods and assays are performed. These are protocolary techniques through which a compound's efficacy and toxicity are established.
Collapse
Affiliation(s)
- Stefania-Irina Dumitrel
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Anamaria Matichescu
- Department of Preventive, Community Dentistry and Oral Health, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 14A Tudor Vladimirescu Ave., 300173 Timisoara, Romania
- Translational and Experimental Clinical Research Centre in Oral Health, Victor Babes University of Medicine and Pharmacy, 14A Tudor Vladimirescu Ave., 300173 Timisoara, Romania
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania
| | - Roxana Buzatu
- Department of Dental Aesthetics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania;
| | - Ramona Popovici
- Department of Management, Legislation and Communication in Dentistry, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania;
| | - Dorin Cristian Dinu
- Family Dental Clinic, Private Practice, 24 Budapesta Street, 307160 Dumbravita, Romania;
| | - Dana Cristina Bratu
- Department of Orthodontics II, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei 1989 Bv., 300041 Timisoara, Romania;
| |
Collapse
|
6
|
Nițescu V, Lescaie A, Boghițoiu D, Ulmeanu C. Benzalkonium Chloride Poisoning in Pediatric Patients: Report of Case with a Severe Clinical Course and Literature Review. TOXICS 2024; 12:139. [PMID: 38393234 PMCID: PMC10893421 DOI: 10.3390/toxics12020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
The use of disinfectants, particularly those containing quaternary ammonium compounds (QUACs), has dramatically escalated globally since the coronavirus disease 2019 pandemic. We report a case that highlights the risks associated with ingesting low-concentration QUAC solutions and emphasize the importance of effective management in resolving severe lesions without sequelae. A 17-month-old boy experienced severe respiratory failure after ingesting a disinfectant containing benzalkonium chloride (BAC). The child was initially treated at a local emergency department and was subsequently transferred to a pediatric poison center. Upon evaluation, the child was found to have grade III-A corrosive esophageal lesions and chemical pneumonitis. Several complications, including massive pneumothorax and candidemia, occurred during the clinical course of the disease. However, with timely medical intervention and appropriate supportive care, the patient completely recovered without any long-term sequelae. The properties of BAC and the comprehensive management approach may have been responsible for the patient's full recovery, despite the potentially life-threatening effects of ingesting disinfectants.
Collapse
Affiliation(s)
- Viorela Nițescu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.L.); (D.B.); (C.U.)
- “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 017443 Bucharest, Romania
| | - Andreea Lescaie
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.L.); (D.B.); (C.U.)
- “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 017443 Bucharest, Romania
| | - Dora Boghițoiu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.L.); (D.B.); (C.U.)
- “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 017443 Bucharest, Romania
| | - Coriolan Ulmeanu
- “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.L.); (D.B.); (C.U.)
- “Grigore Alexandrescu” Clinical Emergency Hospital for Children, 017443 Bucharest, Romania
| |
Collapse
|
7
|
Okeke CAV, Khanna R, Ehrlich A. Quaternary Ammonium Compounds and Contact Dermatitis: A Review and Considerations During the COVID-19 Pandemic. Clin Cosmet Investig Dermatol 2023; 16:1721-1728. [PMID: 37409071 PMCID: PMC10319159 DOI: 10.2147/ccid.s410910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
The recent global pandemic has resulted in increased use of quaternary ammonium compounds (QACs). Currently, QACs are active ingredients in 292 disinfectants recommended by the US EPA for use against SARS-CoV-2. Among QACs, benzalkonium chloride (BAK), cetrimonium bromide (CTAB), cetrimonium chloride (CTAC), didecyldimethylammonium chloride (DDAC), cetrimide, quaternium-15, cetylpyridinium chloride (CPC), and benzethonium chloride (BEC) were all identified as potential culprits of skin sensitivity. Given their widespread utilization, additional research is needed to better classify their dermal effects and identify other cross-reactors. In this review, we aimed to expand our knowledge about these QACs to further dissect its potential allergic and irritant dermal effects on healthcare workers during COVID-19.
Collapse
Affiliation(s)
- Chidubem A V Okeke
- Department of Dermatology, Howard University College of Medicine, Washington, DC, USA
| | - Ramona Khanna
- Georgetown University School of Medicine, Washington, DC, USA
| | | |
Collapse
|
8
|
Frantz AL. Chronic quaternary ammonium compound exposure during the COVID-19 pandemic and the impact on human health. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2023; 15:199-206. [PMCID: PMC10252167 DOI: 10.1007/s13530-023-00173-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 03/27/2024]
Abstract
Objective This review examines a relevant, and underacknowledged, emerging global public health concern—the widespread exposure to quaternary ammonium compounds (QACs) during the COVID-19 pandemic. QACs are a widely used class of cationic surfactants with broad spectrum antimicrobial activity that serve as the active ingredients in antimicrobial products. While these compounds have been used for decades, the production and consumer use of QAC-containing products have steeply risen during the COVID-19 pandemic to control and prevent the spread of the SARS-Cov-2 virus. As a result, human exposure to QACs has also drastically increased. Methods This critical review was conducted by searching the key terms “quaternary ammonium compounds,” “disinfectants,” “COVID-19,” “SARS-Cov-2,” “human health,” and “human exposure” in the major search engines, including Google Scholar, PubMed and Science Direct. Results QACs are generally considered safe and effective, yet the magnitude of QAC exposure and the subsequent health effects have not been adequately investigated. Recent studies have revealed the potential for bioaccumulation of QACs in blood and tissue. Inhalation and dermal absorption of QACs are identified as the most significant exposure routes for adults, while children and infants may be significantly more vulnerable to QAC exposure and potential adverse health effects. Conclusions QACs are an important tool to protect individual and public health, but understanding the impact of widespread QAC exposure is vital to guide best practices for QAC use and minimize the associated health risks. These pandemic era results warrant further investigation and raise additional questions about the short-term and long-term health effects of chronic QAC exposure. Clinical trial registration Not applicable.
Collapse
Affiliation(s)
- Aubrey L. Frantz
- Department of Natural Sciences, University of North Texas at Dallas, 7400 University Hills Blvd, Dallas, TX 75241 USA
| |
Collapse
|
9
|
Mohapatra S, Yutao L, Goh SG, Ng C, Luhua Y, Tran NH, Gin KYH. Quaternary ammonium compounds of emerging concern: Classification, occurrence, fate, toxicity and antimicrobial resistance. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130393. [PMID: 36455328 PMCID: PMC9663149 DOI: 10.1016/j.jhazmat.2022.130393] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 05/25/2023]
Abstract
Amplified hygiene and precautionary measures are of utmost importance to control the spread of COVID-19 and future infection; however, these changes in practice are projected to trigger a rise in the purchase, utilisation and hence, discharge of many disinfectants into the environment. While alcohol-based, hydrogen peroxide-based, and chlorine-based compounds have been used widely, quaternary ammonium compounds (QACs) based disinfectants are of significant concern due to their overuse during this pandemic. This review presents the classification of disinfectants and their mechanism of action, focusing on QACs. Most importantly, the occurrence, fate, toxicity and antimicrobial resistance due to QACs are covered in this paper. Here we collated evidence from multiple studies and found rising trends of concern, including an increase in the mass load of QACs at a wastewater treatment plant (WWTP) by 331% compared to before the COVID-19 pandemic, as well as an increases in the concentration of 62% in residential dust, resulting in high concentrations of QACs in human blood and breast milk and suggesting that these could be potential sources of persistent QACs in infants. In addition to increased toxicity to human and aquatic life, increased use of QACs and accelerated use of antibiotics and antimicrobials during the COVID-19 pandemic could multiply the threat to antimicrobial resistance.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Lin Yutao
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Shin Giek Goh
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Charmaine Ng
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - You Luhua
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Ngoc Han Tran
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
10
|
Heithoff DM, Mahan SP, Barnes V L, Leyn SA, George CX, Zlamal JE, Limwongyut J, Bazan GC, Fried JC, Fitzgibbons LN, House JK, Samuel CE, Osterman AL, Low DA, Mahan MJ. A broad-spectrum synthetic antibiotic that does not evoke bacterial resistance. EBioMedicine 2023; 89:104461. [PMID: 36801104 PMCID: PMC10025758 DOI: 10.1016/j.ebiom.2023.104461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) poses a critical threat to public health and disproportionately affects the health and well-being of persons in low-income and middle-income countries. Our aim was to identify synthetic antimicrobials termed conjugated oligoelectrolytes (COEs) that effectively treated AMR infections and whose structures could be readily modified to address current and anticipated patient needs. METHODS Fifteen chemical variants were synthesized that contain specific alterations to the COE modular structure, and each variant was evaluated for broad-spectrum antibacterial activity and for in vitro cytotoxicity in cultured mammalian cells. Antibiotic efficacy was analyzed in murine models of sepsis; in vivo toxicity was evaluated via a blinded study of mouse clinical signs as an outcome of drug treatment. FINDINGS We identified a compound, COE2-2hexyl, that displayed broad-spectrum antibacterial activity. This compound cured mice infected with clinical bacterial isolates derived from patients with refractory bacteremia and did not evoke bacterial resistance. COE2-2hexyl has specific effects on multiple membrane-associated functions (e.g., septation, motility, ATP synthesis, respiration, membrane permeability to small molecules) that may act together to negate bacterial cell viability and the evolution of drug-resistance. Disruption of these bacterial properties may occur through alteration of critical protein-protein or protein-lipid membrane interfaces-a mechanism of action distinct from many membrane disrupting antimicrobials or detergents that destabilize membranes to induce bacterial cell lysis. INTERPRETATION The ease of molecular design, synthesis and modular nature of COEs offer many advantages over conventional antimicrobials, making synthesis simple, scalable and affordable. These COE features enable the construction of a spectrum of compounds with the potential for development as a new versatile therapy for an imminent global health crisis. FUNDING U.S. Army Research Office, National Institute of Allergy and Infectious Diseases, and National Heart, Lung, and Blood Institute.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Lucien Barnes V
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Semen A Leyn
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Cyril X George
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Jaime E Zlamal
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jakkarin Limwongyut
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Guillermo C Bazan
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA; Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA; Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Jeffrey C Fried
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA; Department of Pulmonary and Critical Care Medicine, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA
| | - Lynn N Fitzgibbons
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA; Division of Infectious Diseases, Santa Barbara Cottage Hospital, Santa Barbara, CA, 93105, USA
| | - John K House
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales, 2570, Australia
| | - Charles E Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Diseases Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - David A Low
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA.
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
11
|
Sakač N, Madunić-Čačić D, Marković D, Jozanović M. Study of Cationic Surfactants Raw Materials for COVID-19 Disinfecting Formulations by Potentiometric Surfactant Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:2126. [PMID: 36850724 PMCID: PMC9964672 DOI: 10.3390/s23042126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The behavior of a new 1,3-dioctadecyl-1H-imidazol-3-ium tetraphenylborate (DODI-TPB) surfactant sensor was studied in single and complex mixtures of technical grade QACs-benzalkonium chloride (BAC), N,N-didecyl-N,N-dimethylammonium chloride (DDAC), and N,N-dioctyl-N,N-dimethylammonium chloride (DOAC) usually used in COVID-19 disinfecting agents formulations. The results obtained with the new DODI-TPB sensor were in good agreement with data measured by a 1,3-dihexadecyl-1H-benzo[d]imidazol-3-ium-tetraphenylborate (DMI-TPB) surfactant sensor, as well as two-phase titration used as a reference method. The quantitative titrations of a two-component mixture of the cationic homologs (a) DDAC and DOAC; and (b) BAC and DOAC showed that the new DODI-TPB surfactant sensor can clearly distinguish two separate mixture components in a single potentiometric titration curve with two characteristic inflexion points. The consumption of SDS (used as a titrant) in the end-point 1 (EP 1) corresponded to the content of DDAC (or BAC), whereas the consumption in the end-point 2 (EP 2) corresponded to the total content of both cationic surfactants in the mixture. DOAC content in both mixtures can be calculated from the difference of the titrant used to achieve EP1 and EP2. The addition of nonionic surfactants resulted in the signal change decrease from 333.2 mV (1:0; no nonionic surfactant added) to 243.0 mV (1:10, w/w). The sensor was successfully tested in ten two-component COVID-19 disinfecting formulations.
Collapse
Affiliation(s)
- Nikola Sakač
- Faculty of Geotechnical Engineering, University of Zagreb, 42000 Varaždin, Croatia
| | | | - Dean Marković
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Marija Jozanović
- Department of Chemistry, University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
12
|
Bogdanov AV, Bukharov SV, Garifullina RA, Voloshina AD, Lyubina AP, Amerkhanova SK, Bezsonova MS, Khaptsev ZY, Tsivileva OM. Synthesis and Antimicrobial Activity Evaluation of Ammonium Acylhydrazones Based on 4,6-Di-tert-butyl-2,3-dihydroxybenzaldehyde. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Quispe LT, Mamani LGL, Baldárrago-Alcántara AA, Félix LL, Goya GF, Fuentes-García JA, Pacheco-Salazar DG, Coaquira JAH. Synthesis and characterization of α-Fe 2O 3nanoparticles showing potential applications for sensing quaternary ammonium vapor at room temperature. NANOTECHNOLOGY 2022; 33:335704. [PMID: 35508085 DOI: 10.1088/1361-6528/ac6c93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
P-type and n-type metal oxide semiconductors are widely used in the manufacture of gas sensing materials, due to their excellent electronic, electrical and electrocatalytic properties. Hematite (α-Fe2O3) compound has been reported as a promising material for sensing broad types of gases, due to its affordability, good stability and semiconducting properties. In the present work, the efficient and easy-to-implement sol-gel method has been used to synthesizeα-Fe2O3nanoparticles (NPs). The TGA-DSC characterizations of the precursor gel provided information about the phase transformation temperature and the mass percentage of the hematite NPs. X-ray diffraction, transmission electron microscopy and x-ray photoelectron spectroscopy data analyses indicated the formation of two iron oxide phases (hematite and magnetite) when the NPs are subjected to thermal treatment at 400 °C. Meanwhile, only the hematite phase was determined for thermal annealing above 500 °C up to 800 °C. Besides, the crystallite size shows an increasing trend with the thermal annealing and no defined morphology. A clear reduction of surface defects, associated with oxygen vacancies was also evidenced when the annealing temperature was increased, resulting in changes on the electrical properties of hematite NPs. Resistive gas-sensing tests were carried out using hematite NPs + glycerin paste, to detect quaternary ammonium compounds. Room-temperature high sensitivity values (Sr ∼ 4) have been obtained during the detection of ∼1 mM quaternary ammonium compounds vapor. The dependence of the sensitivity on the particle size, the mass ratio of NPs with respect to the organic ligand, changes in the dielectric properties, and the electrical conduction mechanism of gas sensing was discussed.
Collapse
Affiliation(s)
- Luis T Quispe
- Laboratorio de Películas Delgadas, Escuela Profesional de Física, Universidad Nacional de San Agustín de Arequipa, Av. Independencia s/n, Arequipa, Perú
| | - L G Luza Mamani
- Laboratorio de Películas Delgadas, Escuela Profesional de Física, Universidad Nacional de San Agustín de Arequipa, Av. Independencia s/n, Arequipa, Perú
| | - A A Baldárrago-Alcántara
- Laboratorio de Películas Delgadas, Escuela Profesional de Física, Universidad Nacional de San Agustín de Arequipa, Av. Independencia s/n, Arequipa, Perú
| | - L León Félix
- Laboratorio de Películas Delgadas, Escuela Profesional de Física, Universidad Nacional de San Agustín de Arequipa, Av. Independencia s/n, Arequipa, Perú
| | - Gerardo F Goya
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50018 Zaragoza, Spain & Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - J A Fuentes-García
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50018 Zaragoza, Spain & Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - D G Pacheco-Salazar
- Laboratorio de Películas Delgadas, Escuela Profesional de Física, Universidad Nacional de San Agustín de Arequipa, Av. Independencia s/n, Arequipa, Perú
| | - J A H Coaquira
- Laboratory of Magnetic Characterization, Instituto de Física, Universidade de Brasília, DF 70910-900, Brasília, Brazil
| |
Collapse
|
14
|
Boles C, Maier A, Vincent M, Stewart C, Attar S, Yeomans D. Multi-route exposure sampling of quaternary ammonium compounds and ethanol surface disinfectants in a K-8 school. INDOOR AIR 2022; 32:e13036. [PMID: 35622716 DOI: 10.1111/ina.13036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
The frequency of surface disinfectant use has increased over the last several years in public settings such as schools, especially during the COVID-19 pandemic. Although these products are important for infection control and prevention, their increased use may intensify the exposure to both persons applying the disinfection product as well as bystanders. Safety assessments have demonstrated that these products, when used as intended, are considered safe for use and effective; however, point-of-contact effects (such as respiratory or dermal irritation) may still occur. Additionally, relative exposures may vary significantly due to the wide variation in disinfectant formulation and application methods. Quantitative estimations of exposures to two commonly used active ingredients, quaternary ammonium compounds (QACs) and ethanol, are not well characterized during product use and application scenarios. To assess the potential for health risks attributable to increased use in classroom settings, as well as to quantitatively evaluate the potential exposure to both ethanol and QACs, student and adult bystander surface and air measurements were collected in a K-8 school setting in Ohio, United States, over a three-day period. Direct-reading instruments were utilized to collect real-time air samples that characterized mass fraction concentrations following the use of the QAC- and ethanol-based disinfectants. Furthermore, surface and air sampling of microbial species were conducted to establish the overall bioburden and effectiveness of each disinfectant to inform the comparative risk and health effect impacts from the tested products use scenario. Both tested products were approximately equally effective at reducing bioburdens on desk surfaces. In some classrooms, concentrations of QAC congeners were significantly increased on desk surfaces following the application of the disinfectant spray; however, the magnitude of the change in concentration was small. Ethanol was not measured on surfaces due to its volatility. Airborne concentrations increased immediately following spray of each disinfectant product but rapidly returned to baseline. Each of the QAC congeners listed in the product safety data sheets were detected and measurable on desk surfaces; however, air concentrations were generally below the limit of detection. The 15-min time-weighted averages (TWAs) of both QACs and ethanol in the air were below respective health effects benchmarks, and therefore, the negative impact on health outcomes is considered to be minimal from short-term, repeated use of ethanol- or QAC-based spray products in a school setting when the products are used as directed.
Collapse
|