1
|
Martinez R, Finocchiaro C, Delhaye L, Gysens F, Anckaert J, Trypsteen W, Versteven M, Lion E, Van Lint S, Vermaelen K, de Bony EJ, Mestdagh P. A co-culture model to study modulators of tumor immune evasion through scalable arrayed CRISPR-interference screens. Front Immunol 2024; 15:1444886. [PMID: 39497819 PMCID: PMC11532180 DOI: 10.3389/fimmu.2024.1444886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Cancer cells effectively evade immune surveillance, not only through the well-known PD-1/PD-L1 pathway but also via alternative mechanisms that impair patient response to immune checkpoint inhibitors. We present a novel co-culture model that pairs a reporter T-cell line with different melanoma cell lines that have varying immune evasion characteristics. We developed a scalable high-throughput lentiviral arrayed CRISPR interference (CRISPRi) screening protocol to conduct gene perturbations in both T-cells and melanoma cells, enabling the identification of genes that modulate tumor immune evasion. Our study functionally validates the co-culture model system and demonstrates the performance of the CRISPRi-screening protocol by modulating the expression of known regulators of tumor immunity. Together, our work provides a robust framework for future research aimed at systematically exploring mechanisms of tumor immune evasion.
Collapse
Affiliation(s)
- Ramiro Martinez
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Chiara Finocchiaro
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
| | - Louis Delhaye
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, Flanders Institute for Biotechnology – UGENT (VIB-UGENT), Ghent, Belgium
| | - Fien Gysens
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Wim Trypsteen
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Maarten Versteven
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sandra Van Lint
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University, Ghent, Belgium
| | - Karim Vermaelen
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University, Ghent, Belgium
| | - Eric James de Bony
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Tardito S, MacKay C. Rethinking our approach to cancer metabolism to deliver patient benefit. Br J Cancer 2023; 129:406-415. [PMID: 37340094 PMCID: PMC10403540 DOI: 10.1038/s41416-023-02324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Altered cellular metabolism is a major mechanism by which tumours support nutrient consumption associated with increased cellular proliferation. Selective dependency on specific metabolic pathways provides a therapeutic vulnerability that can be targeted in cancer therapy. Anti-metabolites have been used clinically since the 1940s and several agents targeting nucleotide metabolism are now well established as standard of care treatment in a range of indications. However, despite great progress in our understanding of the metabolic requirements of cancer and non-cancer cells within the tumour microenvironment, there has been limited clinical success for novel agents targeting pathways outside of nucleotide metabolism. We believe that there is significant therapeutic potential in targeting metabolic processes within cancer that is yet to be fully realised. However, current approaches to identify novel targets, test novel therapies and select patient populations most likely to benefit are sub-optimal. We highlight recent advances in technologies and understanding that will support the identification and validation of novel targets, re-evaluation of existing targets and design of optimal clinical positioning strategies to deliver patient benefit.
Collapse
Affiliation(s)
- Saverio Tardito
- The Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Craig MacKay
- Cancer Research Horizons, The Cancer Research UK Beatson Institute, Glasgow, UK.
| |
Collapse
|
3
|
Abstract
Over the past decade, CRISPR has become as much a verb as it is an acronym, transforming biomedical research and providing entirely new approaches for dissecting all facets of cell biology. In cancer research, CRISPR and related tools have offered a window into previously intractable problems in our understanding of cancer genetics, the noncoding genome and tumour heterogeneity, and provided new insights into therapeutic vulnerabilities. Here, we review the progress made in the development of CRISPR systems as a tool to study cancer, and the emerging adaptation of these technologies to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Alyna Katti
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Bianca J Diaz
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, NY, USA
| | - Christina M Caragine
- Department of Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Neville E Sanjana
- Department of Biology, New York University, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | - Lukas E Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Chabanon RM, Rouanne M, Lord CJ, Soria JC, Pasero P, Postel-Vinay S. Targeting the DNA damage response in immuno-oncology: developments and opportunities. Nat Rev Cancer 2021; 21:701-717. [PMID: 34376827 DOI: 10.1038/s41568-021-00386-6] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Immunotherapy has revolutionized cancer treatment and substantially improved patient outcome with regard to multiple tumour types. However, most patients still do not benefit from such therapies, notably because of the absence of pre-existing T cell infiltration. DNA damage response (DDR) deficiency has recently emerged as an important determinant of tumour immunogenicity. A growing body of evidence now supports the concept that DDR-targeted therapies can increase the antitumour immune response by (1) promoting antigenicity through increased mutability and genomic instability, (2) enhancing adjuvanticity through the activation of cytosolic immunity and immunogenic cell death and (3) favouring reactogenicity through the modulation of factors that control the tumour-immune cell synapse. In this Review, we discuss the interplay between the DDR and anticancer immunity and highlight how this dynamic interaction contributes to shaping tumour immunogenicity. We also review the most innovative preclinical approaches that could be used to investigate such effects, including recently developed ex vivo systems. Finally, we highlight the therapeutic opportunities presented by the exploitation of the DDR-anticancer immunity interplay, with a focus on those in early-phase clinical development.
Collapse
Affiliation(s)
- Roman M Chabanon
- ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Mathieu Rouanne
- Equipe Labellisée Ligue Nationale contre le Cancer, Inserm Unit U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Département d'Urologie, Hôpital Foch, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, Suresnes, France
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Jean-Charles Soria
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médicine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Philippe Pasero
- Equipe Labellisée Ligue contre le Cancer, Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Sophie Postel-Vinay
- ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
- Faculté de Médicine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.
| |
Collapse
|