1
|
Chen H, Lu D, Xiao Z, Li S, Zhang W, Luan X, Zhang W, Zheng G. Comprehensive applications of the artificial intelligence technology in new drug research and development. Health Inf Sci Syst 2024; 12:41. [PMID: 39130617 PMCID: PMC11310389 DOI: 10.1007/s13755-024-00300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/27/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose Target-based strategy is a prevalent means of drug research and development (R&D), since targets provide effector molecules of drug action and offer the foundation of pharmacological investigation. Recently, the artificial intelligence (AI) technology has been utilized in various stages of drug R&D, where AI-assisted experimental methods show higher efficiency than sole experimental ones. It is a critical need to give a comprehensive review of AI applications in drug R &D for biopharmaceutical field. Methods Relevant literatures about AI-assisted drug R&D were collected from the public databases (Including Google Scholar, Web of Science, PubMed, IEEE Xplore Digital Library, Springer, and ScienceDirect) through a keyword searching strategy with the following terms [("Artificial Intelligence" OR "Knowledge Graph" OR "Machine Learning") AND ("Drug Target Identification" OR "New Drug Development")]. Results In this review, we first introduced common strategies and novel trends of drug R&D, followed by characteristic description of AI algorithms widely used in drug R&D. Subsequently, we depicted detailed applications of AI algorithms in target identification, lead compound identification and optimization, drug repurposing, and drug analytical platform construction. Finally, we discussed the challenges and prospects of AI-assisted methods for drug discovery. Conclusion Collectively, this review provides comprehensive overview of AI applications in drug R&D and presents future perspectives for biopharmaceutical field, which may promote the development of drug industry.
Collapse
Affiliation(s)
- Hongyu Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyi Xiao
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Shensuo Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangyong Zheng
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Hashemi S, Vosough P, Taghizadeh S, Savardashtaki A. Therapeutic peptide development revolutionized: Harnessing the power of artificial intelligence for drug discovery. Heliyon 2024; 10:e40265. [PMID: 39605829 PMCID: PMC11600032 DOI: 10.1016/j.heliyon.2024.e40265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Due to the spread of antibiotic resistance, global attention is focused on its inhibition and the expansion of effective medicinal compounds. The novel functional properties of peptides have opened up new horizons in personalized medicine. With artificial intelligence methods combined with therapeutic peptide products, pharmaceuticals and biotechnology advance drug development rapidly and reduce costs. Short-chain peptides inhibit a wide range of pathogens and have great potential for targeting diseases. To address the challenges of synthesis and sustainability, artificial intelligence methods, namely machine learning, must be integrated into their production. Learning methods can use complicated computations to select the active and toxic compounds of the drug and its metabolic activity. Through this comprehensive review, we investigated the artificial intelligence method as a potential tool for finding peptide-based drugs and providing a more accurate analysis of peptides through the introduction of predictable databases for effective selection and development.
Collapse
Affiliation(s)
- Samaneh Hashemi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Nene L, Flepisi BT, Brand SJ, Basson C, Balmith M. Evolution of Drug Development and Regulatory Affairs: The Demonstrated Power of Artificial Intelligence. Clin Ther 2024; 46:e6-e14. [PMID: 38981791 DOI: 10.1016/j.clinthera.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE Artificial intelligence (AI) refers to technology capable of mimicking human cognitive functions and has important applications across all sectors and industries, including drug development. This has considerable implications for the regulation of drug development processes, as it is expected to transform both the way drugs are brought to market and the systems through which this process is controlled. There is currently insufficient evidence in published literature of the real-world applications of AI. Therefore, this narrative review investigated, collated, and elucidated the applications of AI in drug development and its regulatory processes. METHODS A narrative review was conducted to ascertain the role of AI in streamlining drug development and regulatory processes. FINDINGS The findings of this review revealed that machine learning or deep learning, natural language processing, and robotic process automation were favored applications of AI. Each of them had considerable implications on the operations they were intended to support. Overall, the AI tools facilitated access and provided manageability of information for decision-making across the drug development lifecycle. However, the findings also indicate that additional work is required by regulatory authorities to set out appropriate guidance on applications of the technology, which has critical implications for safety, regulatory process workflow and product development costs. IMPLICATIONS AI has adequately proven its utility in drug development, prompting further investigations into the translational value of its utility based on cost and time saved for the delivery of essential drugs.
Collapse
Affiliation(s)
- Linda Nene
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Brian Thabile Flepisi
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sarel Jacobus Brand
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - Charlise Basson
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marissa Balmith
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
4
|
Yoo S, Kim J. Adapt-cMolGPT: A Conditional Generative Pre-Trained Transformer with Adapter-Based Fine-Tuning for Target-Specific Molecular Generation. Int J Mol Sci 2024; 25:6641. [PMID: 38928346 PMCID: PMC11203498 DOI: 10.3390/ijms25126641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Small-molecule drug design aims to generate compounds that target specific proteins, playing a crucial role in the early stages of drug discovery. Recently, research has emerged that utilizes the GPT model, which has achieved significant success in various fields to generate molecular compounds. However, due to the persistent challenge of small datasets in the pharmaceutical field, there has been some degradation in the performance of generating target-specific compounds. To address this issue, we propose an enhanced target-specific drug generation model, Adapt-cMolGPT, which modifies molecular representation and optimizes the fine-tuning process. In particular, we introduce a new fine-tuning method that incorporates an adapter module into a pre-trained base model and alternates weight updates by sections. We evaluated the proposed model through multiple experiments and demonstrated performance improvements compared to previous models. In the experimental results, Adapt-cMolGPT generated a greater number of novel and valid compounds compared to other models, with these generated compounds exhibiting properties similar to those of real molecular data. These results indicate that our proposed method is highly effective in designing drugs targeting specific proteins.
Collapse
Affiliation(s)
- Soyoung Yoo
- Department of Artificial Intelligence, Sejong University, Seoul 05006, Republic of Korea;
| | - Junghyun Kim
- Department of Artificial Intelligence, Sejong University, Seoul 05006, Republic of Korea;
- Deep Learning Architecture Research Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
5
|
Dortaj H, Azarpira N, Pakbaz S. Insight to Biofabrication of Liver Microtissues for Disease Modeling: Challenges and Opportunities. Curr Stem Cell Res Ther 2024; 19:1303-1311. [PMID: 37846577 DOI: 10.2174/011574888x257744231009071810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/26/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
In the last decade, liver diseases with high mortality rates have become one of the most important health problems in the world. Organ transplantation is currently considered the most effective treatment for compensatory liver failure. An increasing number of patients and shortage of donors has led to the attention of reconstructive medicine methods researchers. The biggest challenge in the development of drugs effective in chronic liver disease is the lack of a suitable preclinical model that can mimic the microenvironment of liver problems. Organoid technology is a rapidly evolving field that enables researchers to reconstruct, evaluate, and manipulate intricate biological processes in vitro. These systems provide a biomimetic model for studying the intercellular interactions necessary for proper organ function and architecture in vivo. Liver organoids, formed by the self-assembly of hepatocytes, are microtissues and can exhibit specific liver characteristics for a long time in vitro. Hepatic organoids are identified as an impressive tool for evaluating potential cures and modeling liver diseases. Modeling various liver diseases, including tumors, fibrosis, non-alcoholic fatty liver, etc., allows the study of the effects of various drugs on these diseases in personalized medicine. Here, we summarize the literature relating to the hepatic stem cell microenvironment and the formation of liver Organoids.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Thng DKH, Toh TB, Pigini P, Hooi L, Dan YY, Chow PK, Bonney GK, Rashid MBMA, Guccione E, Wee DKB, Chow EK. Splice-switch oligonucleotide-based combinatorial platform prioritizes synthetic lethal targets CHK1 and BRD4 against MYC-driven hepatocellular carcinoma. Bioeng Transl Med 2023; 8:e10363. [PMID: 36684069 PMCID: PMC9842033 DOI: 10.1002/btm2.10363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/29/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023] Open
Abstract
Deregulation of MYC is among the most frequent oncogenic drivers in hepatocellular carcinoma (HCC). Unfortunately, the clinical success of MYC-targeted therapies is limited. Synthetic lethality offers an alternative therapeutic strategy by leveraging on vulnerabilities in tumors with MYC deregulation. While several synthetic lethal targets of MYC have been identified in HCC, the need to prioritize targets with the greatest therapeutic potential has been unmet. Here, we demonstrate that by pairing splice-switch oligonucleotide (SSO) technologies with our phenotypic-analytical hybrid multidrug interrogation platform, quadratic phenotypic optimization platform (QPOP), we can disrupt the functional expression of these targets in specific combinatorial tests to rapidly determine target-target interactions and rank synthetic lethality targets. Our SSO-QPOP analyses revealed that simultaneous attenuation of CHK1 and BRD4 function is an effective combination specific in MYC-deregulated HCC, successfully suppressing HCC progression in vitro. Pharmacological inhibitors of CHK1 and BRD4 further demonstrated its translational value by exhibiting synergistic interactions in patient-derived xenograft organoid models of HCC harboring high levels of MYC deregulation. Collectively, our work demonstrates the capacity of SSO-QPOP as a target prioritization tool in the drug development pipeline, as well as the therapeutic potential of CHK1 and BRD4 in MYC-driven HCC.
Collapse
Affiliation(s)
- Dexter Kai Hao Thng
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
| | - Tan Boon Toh
- The N.1 Institute for Health, National University of SingaporeSingaporeSingapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Paolo Pigini
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Yock Young Dan
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- Division of Gastroenterology and HepatologyNational University Health SystemSingaporeSingapore
- Department of Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Pierce Kah‐Hoe Chow
- Division of Surgical OncologyNational Cancer Centre SingaporeSingaporeSingapore
- Department of Hepato‐Pancreato‐Biliary and Transplant SurgerySingapore General HospitalSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Glenn Kunnath Bonney
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Division of Hepatobiliary and Liver Transplantation SurgeryNational University Health SystemSingaporeSingapore
| | | | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Department of Oncological SciencesTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological and Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Dave Keng Boon Wee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Edward Kai‐Hua Chow
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- The N.1 Institute for Health, National University of SingaporeSingaporeSingapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of SingaporeSingapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Biomedical Engineering, College of Design and EngineeringNational University of SingaporeSingaporeSingapore
| |
Collapse
|
7
|
Abbasi M, Santos BP, Pereira TC, Sofia R, Monteiro NRC, Simões CJV, Brito R, Ribeiro B, Oliveira JL, Arrais JP. Designing optimized drug candidates with Generative Adversarial Network. J Cheminform 2022; 14:40. [PMID: 35754029 PMCID: PMC9233801 DOI: 10.1186/s13321-022-00623-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
Drug design is an important area of study for pharmaceutical businesses. However, low efficacy, off-target delivery, time consumption, and high cost are challenges and can create barriers that impact this process. Deep Learning models are emerging as a promising solution to perform de novo drug design, i.e., to generate drug-like molecules tailored to specific needs. However, stereochemistry was not explicitly considered in the generated molecules, which is inevitable in targeted-oriented molecules. This paper proposes a framework based on Feedback Generative Adversarial Network (GAN) that includes optimization strategy by incorporating Encoder-Decoder, GAN, and Predictor deep models interconnected with a feedback loop. The Encoder-Decoder converts the string notations of molecules into latent space vectors, effectively creating a new type of molecular representation. At the same time, the GAN can learn and replicate the training data distribution and, therefore, generate new compounds. The feedback loop is designed to incorporate and evaluate the generated molecules according to the multiobjective desired property at every epoch of training to ensure a steady shift of the generated distribution towards the space of the targeted properties. Moreover, to develop a more precise set of molecules, we also incorporate a multiobjective optimization selection technique based on a non-dominated sorting genetic algorithm. The results demonstrate that the proposed framework can generate realistic, novel molecules that span the chemical space. The proposed Encoder-Decoder model correctly reconstructs 99% of the datasets, including stereochemical information. The model's ability to find uncharted regions of the chemical space was successfully shown by optimizing the unbiased GAN to generate molecules with a high binding affinity to the Kappa Opioid and Adenosine [Formula: see text] receptor. Furthermore, the generated compounds exhibit high internal and external diversity levels 0.88 and 0.94, respectively, and uniqueness.
Collapse
Affiliation(s)
- Maryam Abbasi
- Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal
| | - Beatriz P. Santos
- Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal
| | - Tiago C. Pereira
- IEETA, Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal
| | - Raul Sofia
- Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal
| | - Nelson R. C. Monteiro
- Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal
| | | | - Rui Brito
- BSIM Therapeutics, Instituto Pedro Nunes, Coimbra, Portugal
| | - Bernardete Ribeiro
- Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal
| | - José L. Oliveira
- IEETA, Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal
| | - Joel P. Arrais
- Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal
| |
Collapse
|
8
|
The 2022 SLAS technology ten: Translating life sciences innovation. SLAS Technol 2022; 27:1-3. [DOI: 10.1016/j.slast.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Jia P, Pei J, Wang G, Pan X, Zhu Y, Wu Y, Ouyang L. The roles of computer-aided drug synthesis in drug development. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
10
|
Affiliation(s)
- Cenk Undey
- Digital Integration and Predictive Technologies, Process Development, Amgen, Thousand Oaks, CA, USA
| |
Collapse
|