1
|
Sharma A, Jasrotia S, Kumar A. Effects of Chemotherapy on the Immune System: Implications for Cancer Treatment and Patient Outcomes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2551-2566. [PMID: 37906273 DOI: 10.1007/s00210-023-02781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Chemotherapy is a cornerstone of cancer treatment, but it can also induce immune suppression, which can have significant implications for patient outcomes. This review paper aims to give a general overview of how chemotherapy affects the immune system and how it affects cancer treatment. Chemotherapy can directly affect immune cells, leading to cytotoxic effects, cell differentiation and function alterations, and cell communication and signaling pathways disruptions. Such immune suppression can weaken the anti-tumor immune response and increase the risk of immune-related toxicities. Understanding the mechanisms of chemotherapy-induced immune suppression is crucial for optimizing treatment strategies. Strategies to mitigate immune suppression include immunomodulatory agents as adjuvants to chemotherapy, combination therapies to enhance immune function, and supportive care measures of the immune system. Additionally, identifying potential biomarkers to predict immune suppression and guide treatment decisions holds promise for personalized cancer medicine. Future directions in this field involve further elucidating underlying mechanisms, exploring novel combination therapies, and developing targeted interventions to minimize immune suppression. By understanding and addressing chemotherapy-induced immune suppression, we can optimize cancer treatment strategies, enhance the anti-tumor immune response, and improve patient outcomes.
Collapse
Affiliation(s)
- Anirudh Sharma
- Department of Biosciences (UIBT), Chandigarh University, Mohali, Punjab, 140413, India
| | - Shivam Jasrotia
- Department of Biosciences (UIBT), Chandigarh University, Mohali, Punjab, 140413, India.
| | - Ajay Kumar
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
2
|
Jin Z, Zhou Q, Cheng JN, Jia Q, Zhu B. Heterogeneity of the tumor immune microenvironment and clinical interventions. Front Med 2023; 17:617-648. [PMID: 37728825 DOI: 10.1007/s11684-023-1015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/24/2023] [Indexed: 09/21/2023]
Abstract
The tumor immune microenvironment (TIME) is broadly composed of various immune cells, and its heterogeneity is characterized by both immune cells and stromal cells. During the course of tumor formation and progression and anti-tumor treatment, the composition of the TIME becomes heterogeneous. Such immunological heterogeneity is not only present between populations but also exists on temporal and spatial scales. Owing to the existence of TIME, clinical outcomes can differ when a similar treatment strategy is provided to patients. Therefore, a comprehensive assessment of TIME heterogeneity is essential for developing precise and effective therapies. Facilitated by advanced technologies, it is possible to understand the complexity and diversity of the TIME and its influence on therapy responses. In this review, we discuss the potential reasons for TIME heterogeneity and the current approaches used to explore it. We also summarize clinical intervention strategies based on associated mechanisms or targets to control immunological heterogeneity.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co. Ltd., Shanghai, 201318, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Zhou
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
3
|
Yeo M, Masuda Y, Calvo MP, Di Martino M, Ielpo B, Ye-Xin K. Surgery for liver metastases from primary melanoma: a systematic review and meta-analysis. Langenbecks Arch Surg 2022; 407:3235-3247. [PMID: 36201022 DOI: 10.1007/s00423-022-02658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/12/2022] [Indexed: 10/10/2022]
Abstract
BACKGROUND Historically , liver metastases due to melanoma have been associated with dismal prognosis. Moreover, the actual survival benefit from the treatment of melanoma liver metastases is still controversial. Hence, this study aims to evaluate the difference in surgical versus non-surgical options for melanoma liver metastases. METHODS Four databases (PubMed, EMBASE, Scopus, and Cochrane Library) were searched from inception to July 17, 2022. Studies were included if they compared outcomes between surgical and non-surgical treatment for patients with liver metastases from resectable melanoma. Meta-analyses were performed for the outcomes of 1-year, 2-year, 3-year and 5-year OS. Sensitivity analyses were performed for outcomes with substantial statistical heterogeneity. To account for possible moderators that might contribute to statistical heterogeneity, univariate meta-regression with mixed-effects models and subgroup analyses were conducted for the outcome of 2-year OS. RESULTS The search yielded 6610 articles; 13 studies were included in our analysis. Meta-analyses showed that survival outcomes were in favour of patients undergoing surgery as compared to non-surgery: 1-year OS (HR = 0.29, 95%CI 0.19-0.44, p < 0.00001), 2-year OS (HR = 0.19, 95%CI 0.09-0.38, p < 0.00001), 3-year OS (HR = 0.07, 95%CI 0.03-0.19, p < 0.00001) and 5-year OS (HR = 0.07, 95%CI 0.02-0.22, p < 0.00001). All included studies were of high quality. There was moderate-to-high statistical heterogeneity. Findings were robust to sensitivity analyses. Subgroup analyses and univariate meta-regression revealed neoadjuvant therapy and age as statistically significant subgroup and moderator respectively. CONCLUSIONS This study suggests that surgical treatment of melanoma liver metastases could offer better OS outcomes compared with non-surgical treatment.
Collapse
Affiliation(s)
- Mark Yeo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yoshio Masuda
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mikel-Prieto Calvo
- Hepatobiliary Surgery and Liver Transplantation Unit, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Bilbao, Spain
| | - Marcello Di Martino
- Department of Hepatobiliary and Liver Transplant Surgery, A.O.R.N. Cardarelli, Naples, Italy
| | - Benedetto Ielpo
- Hepatopancreatobiliary Unit, Parc Salut Mar University Hospital, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
| | - Koh Ye-Xin
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, 1 Outram Road, Singapore, 169608, Singapore.
- Duke-National University of Singapore Medical School, Singapore, Singapore.
| |
Collapse
|
4
|
Hosseinalizadeh H, Mahmoodpour M, Samadani AA, Roudkenar MH. The immunosuppressive role of indoleamine 2, 3-dioxygenase in glioblastoma: mechanism of action and immunotherapeutic strategies. Med Oncol 2022; 39:130. [PMID: 35716323 PMCID: PMC9206138 DOI: 10.1007/s12032-022-01724-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is a fatal brain tumor in adults with a bleak diagnosis. Expansion of immunosuppressive and malignant CD4 + FoxP3 + GITR + regulatory T cells is one of the hallmarks of GBM. Importantly, most of the patients with GBM expresses the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO). While IDO1 is generally not expressed at appreciable levels in the adult central nervous system, it is rapidly stimulated and highly expressed in response to ongoing immune surveillance in cancer. Increased levels of immune surveillance in cancer are thus related to higher intratumoral IDO expression levels and, as a result, a worse OS in GBM patients. Conversion of the important amino acid tryptophan into downstream catabolite known as kynurenines is the major function of IDO. Decreasing tryptophan and increasing the concentration of immunomodulatory tryptophan metabolites has been shown to induce T-cell apoptosis, increase immunosuppressive programming, and death of tumor antigen-presenting dendritic cells. This observation supported the immunotherapeutic strategy, and the targeted molecular therapy that suppresses IDO1 activity. We review the current understanding of the role of IDO1 in tumor immunological escape in brain tumors, the immunomodulatory effects of its primary catabolites, preclinical research targeting this enzymatic pathway, and various issues that need to be overcome to increase the prospective immunotherapeutic relevance in the treatment of GBM malignancy.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehrdad Mahmoodpour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Parastar St., 41887-94755, Rasht, Iran.
| |
Collapse
|
5
|
Ehsanullah S, Muhammad A, Hasan S, Richart JM. Immunotherapy-Induced Auto-Splenectomy in a Patient of Malignant Melanoma. Cureus 2022; 14:e25067. [PMID: 35600068 PMCID: PMC9117826 DOI: 10.7759/cureus.25067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/05/2022] Open
Abstract
Immune checkpoint inhibitors like programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are biological agents that help in boosting the immune system of the body to fight against cancer cells. These checkpoint inhibitors are now being approved by the Food and Drug Administration (FDA) to treat various malignancies due to remarkable response. Here, we present a rare immune-related adverse event in a 77-year-old female with metastatic melanoma treated with ipilimumab and nivolumab, later presented with auto-splenectomy.
Collapse
|
6
|
Tuli HS, Sak K, Iqubal A, Choudhary R, Adhikary S, Kaur G, Kumar P, Garg VK. Recent Advances in Immunotherapy for the Treatment of Malignant Melanoma. Curr Pharm Des 2022; 28:2363-2374. [PMID: 35894458 DOI: 10.2174/1381612828666220727124639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/04/2022] [Indexed: 11/22/2022]
Abstract
Malignant melanoma is one of the most worrisome malignancies due to its fast dissemination and early formation of metastases in multiple sites throughout the body. Despite the intensive efforts made in the last decades, the use of standard therapeutic strategies, including chemotherapy and radiotherapy, has not led to a substantial improvement in clinical outcomes, mainly because of the intrinsic resistance of melanomas to these treatment modalities. Therefore, in recent years, numerous studies have focused on the possibility of boosting the clinical responses of melanoma patients by using novel immunotherapeutic agents. In this review article, a comprehensive survey is presented about the approved immunotherapeutic drugs and their action mechanisms, besides describing the agents that are currently still in clinical trials. Moreover, the combination of immunotherapeutic drugs with conventional approaches, i.e., radiotherapy, chemotherapy, and targeted therapy, is another focal point of this review, providing valuable input for further elaboration of the best treatment regimens to prolong survival and improve the quality of life of melanoma patients.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | | | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Shubham Adhikary
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | - Pawan Kumar
- Institute of Plant Sciences, Agricultural Research Organisation (ARO), 7505101, Rishon LeZion, Israel
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India
| |
Collapse
|
7
|
Varrone F, Mandrich L, Caputo E. Melanoma Immunotherapy and Precision Medicine in the Era of Tumor Micro-Tissue Engineering: Where Are We Now and Where Are We Going? Cancers (Basel) 2021; 13:5788. [PMID: 34830940 PMCID: PMC8616100 DOI: 10.3390/cancers13225788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Malignant melanoma still remains a cancer with very poor survival rates, although it is at the forefront of personalized medicine. Most patients show partial responses and disease progressed due to adaptative resistance mechanisms, preventing long-lasting clinical benefits to the current treatments. The response to therapies can be shaped by not only taking into account cancer cell heterogeneity and plasticity, but also by its structural context as well as the cellular component of the tumor microenvironment (TME). Here, we review the recent development in the field of immunotherapy and target-based therapy and how, in the era of tumor micro-tissue engineering, ex-vivo assays could help to enhance our melanoma biology knowledge in its complexity, translating it in the development of successful therapeutic strategies, as well as in the prediction of therapeutic benefits.
Collapse
Affiliation(s)
| | - Luigi Mandrich
- Research Institute on Terrestrial Ecosystem—IRET-CNR Via Pietro Castellino 111, I-80131 Naples, Italy;
| | - Emilia Caputo
- Institute of Genetics and Biophysics—IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, I-80131 Naples, Italy
| |
Collapse
|
8
|
Humeau J, Le Naour J, Galluzzi L, Kroemer G, Pol JG. Trial watch: intratumoral immunotherapy. Oncoimmunology 2021; 10:1984677. [PMID: 34676147 PMCID: PMC8526014 DOI: 10.1080/2162402x.2021.1984677] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
While chemotherapy and radiotherapy remain the first-line approaches for the management of most unresectable tumors, immunotherapy has emerged in the past two decades as a game-changing treatment, notably with the clinical success of immune checkpoint inhibitors. Immunotherapies aim at (re)activating anticancer immune responses which occur in two main steps: (1) the activation and expansion of tumor-specific T cells following cross-presentation of tumor antigens by specialized myeloid cells (priming phase); and (2) the immunological clearance of malignant cells by these antitumor T lymphocytes (effector phase). Therapeutic vaccines, adjuvants, monoclonal antibodies, cytokines, immunogenic cell death-inducing agents including oncolytic viruses, anthracycline-based chemotherapy and radiotherapy, as well as adoptive cell transfer, all act at different levels of this cascade to (re)instate cancer immunosurveillance. Intratumoral delivery of these immunotherapeutics is being tested in clinical trials to promote superior antitumor immune activity in the context of limited systemic toxicity.
Collapse
Affiliation(s)
- Juliette Humeau
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Institut Universitaire de France, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Jonathan G. Pol
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| |
Collapse
|
9
|
Xu H, Schmidt R, Hamm CA, Schobert IT, He Y, Böning G, Jonczyk M, Hamm B, Gebauer B, Savic LJ. Comparison of intrahepatic progression patterns of hepatocellular carcinoma and colorectal liver metastases following CT-guided high dose-rate brachytherapy. Ther Adv Med Oncol 2021; 13:17588359211042304. [PMID: 34539817 PMCID: PMC8442486 DOI: 10.1177/17588359211042304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction: Given the metachronous and multifocal occurrence of hepatocellular carcinoma
(HCC) and colorectal cancer metastases in the liver (CRLM), this study aimed
to compare intrahepatic progression patterns after computed tomography
(CT)-guided high dose-rate brachytherapy. Patients and methods: This retrospective analysis included 164 patients (114 HCC, 50 CRLM) treated
with brachytherapy between January 2016 and January 2018. Patients received
multiparametric magnetic resonance imaging (MRI) before, and about 8 weeks
after brachytherapy, then every 3 months for the first, and every 6 months
for the following years, until progression or death. MRI scans were assessed
for local or distant intrahepatic tumor progression according to RECIST 1.1
and electronic medical records were reviewed prior to therapy. The primary
endpoint was progression-free survival (PFS). Specifically, local and
distant intra-hepatic PFS were assessed to determine differences between the
intrahepatic progression patterns of HCC and CRLM. Secondary endpoints
included the identification of predictors of PFS, time to progression (TTP),
and overall survival (OS). Statistics included Kaplan–Meier analysis and
univariate and multivariate Cox regression modeling. Results: PFS was longer in HCC [11.30 (1.33–35.37) months] than in CRLM patients [8.03
(0.73–19.80) months, p = 0.048], respectively.
Specifically, local recurrence occurred later in HCC [PFS: 36.83
(1.33–40.27) months] than CRLM patients [PFS: 12.43 (0.73–21.90) months,
p = 0.001]. In contrast, distant intrahepatic
progression occurred earlier in HCC [PFS: 13.50 (1.33–27.80) months] than in
CRLM patients [PFS: 19.80 (1.43–19.80) months, p = 0.456]
but without statistical significance. Multivariate Cox regression confirmed
tumor type and patient age as independent predictors for PFS. Conclusion: Brachytherapy proved to achieve better local tumor control and overall PFS in
patients with unresectable HCC as compared to those with CRLM. However,
distant progression preceded local recurrence in HCC. As a result, these
findings may help design disease-specific surveillance strategies and
personalized treatment planning that highlights the strengths of
brachytherapy. They may also help elucidate the potential benefits of
combinations with other loco-regional or systemic therapies.
Collapse
Affiliation(s)
- Han Xu
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Robin Schmidt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Charlie Alexander Hamm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Isabel Theresa Schobert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Yubei He
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Georg Böning
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Martin Jonczyk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Bernd Hamm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Bernhard Gebauer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Lynn Jeanette Savic
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
10
|
Giacobino C, Canta M, Fornaguera C, Borrós S, Cauda V. Extracellular Vesicles and Their Current Role in Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13092280. [PMID: 34068657 PMCID: PMC8126043 DOI: 10.3390/cancers13092280] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In recent years, immunotherapy has shown great advancement, becoming a powerful tool to combat cancer. In this context, the use of biologically derived vesicles has also acquired importance for cancer immunotherapy. Extracellular vesicles are thus proposed to transport molecules able to trigger an immune response and thus fight cancer cells. As a particular immunotherapeutic approach, a new technique also consists in the exploitation of extracellular vesicles as new cancer vaccines. The present review provides basic notions on cancer immunotherapy and describes several clinical trials in which therapeutic anticancer vaccines are tested. In particular, the potential of extracellular vesicles-based therapeutic vaccines in the treatment of cancer patients is highlighted, even with advanced stage-cancer. A focus on the clinical studies, already completed or still in progress, is offered and a systematic collection and reorganization of the present literature on this topic is proposed to the reader. Abstract Extracellular vesicles (EVs) are natural particles formed by the lipid bilayer and released from almost all cell types to the extracellular environment both under physiological conditions and in presence of a disease. EVs are involved in many biological processes including intercellular communication, acting as natural carriers in the transfer of various biomolecules such as DNA, various RNA types, proteins and different phospholipids. Thanks to their transfer and targeting abilities, they can be employed in drug and gene delivery and have been proposed for the treatment of different diseases, including cancer. Recently, the use of EVs as biological carriers has also been extended to cancer immunotherapy. This new technique of cancer treatment involves the use of EVs to transport molecules capable of triggering an immune response to damage cancer cells. Several studies have analyzed the possibility of using EVs in new cancer vaccines, which represent a particular form of immunotherapy. In the literature there are only few publications that systematically group and collectively discuss these studies. Therefore, the purpose of this review is to illustrate and give a partial reorganization to what has been produced in the literature so far. We provide basic notions on cancer immunotherapy and describe some clinical trials in which therapeutic cancer vaccines are tested. We thus focus attention on the potential of EV-based therapeutic vaccines in the treatment of cancer patients, overviewing the clinically relevant trials, completed or still in progress, which open up new perspectives in the fight against cancer.
Collapse
Affiliation(s)
- Carla Giacobino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (C.G.); (M.C.)
| | - Marta Canta
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (C.G.); (M.C.)
| | - Cristina Fornaguera
- Grup d’Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain; (C.F.); (S.B.)
| | - Salvador Borrós
- Grup d’Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain; (C.F.); (S.B.)
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (C.G.); (M.C.)
- Correspondence:
| |
Collapse
|
11
|
Nanomaterials for Protein Delivery in Anticancer Applications. Pharmaceutics 2021; 13:pharmaceutics13020155. [PMID: 33503889 PMCID: PMC7910976 DOI: 10.3390/pharmaceutics13020155] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology platforms, such as nanoparticles, liposomes, dendrimers, and micelles have been studied extensively for various drug deliveries, to treat or prevent diseases by modulating physiological or pathological processes. The delivery drug molecules range from traditional small molecules to recently developed biologics, such as proteins, peptides, and nucleic acids. Among them, proteins have shown a series of advantages and potential in various therapeutic applications, such as introducing therapeutic proteins due to genetic defects, or used as nanocarriers for anticancer agents to decelerate tumor growth or control metastasis. This review discusses the existing nanoparticle delivery systems, introducing design strategies, advantages of using each system, and possible limitations. Moreover, we will examine the intracellular delivery of different protein therapeutics, such as antibodies, antigens, and gene editing proteins into the host cells to achieve anticancer effects and cancer vaccines. Finally, we explore the current applications of protein delivery in anticancer treatments.
Collapse
|
12
|
Shemesh CS, Hsu JC, Hosseini I, Shen BQ, Rotte A, Twomey P, Girish S, Wu B. Personalized Cancer Vaccines: Clinical Landscape, Challenges, and Opportunities. Mol Ther 2020; 29:555-570. [PMID: 33038322 DOI: 10.1016/j.ymthe.2020.09.038] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 12/21/2022] Open
Abstract
Tremendous innovation is underway among a rapidly expanding repertoire of promising personalized immune-based treatments. Therapeutic cancer vaccines (TCVs) are attractive systemic immunotherapies that activate and expand antigen-specific CD8+ and CD4+ T cells to enhance anti-tumor immunity. Our review highlights key issues impacting TCVs in clinical practice and reports on progress in development. We review the mechanism of action, immune-monitoring, dosing strategies, combinations, obstacles, and regulation of cancer vaccines. Most trials of personalized TCVs are ongoing and represent diverse platforms with predominantly early investigations of mRNA, DNA, or peptide-based targeting strategies against neoantigens in solid tumors, with many in combination immunotherapies. Multiple delivery systems, routes of administration, and dosing strategies are used. Intravenous or intramuscular administration is common, including delivery by lipid nanoparticles. Absorption and biodistribution impact antigen uptake, expression, and presentation, affecting the strength, speed, and duration of immune response. The emerging trials illustrate the complexity of developing this class of innovative immunotherapies. Methodical testing of the multiple potential factors influencing immune responses, as well as refined quantitative methodologies to facilitate optimal dosing strategies, could help resolve uncertainty of therapeutic approaches. To increase the likelihood of success in bringing these medicines to patients, several unique development challenges must be overcome.
Collapse
Affiliation(s)
- Colby S Shemesh
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Joy C Hsu
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Iraj Hosseini
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ben-Quan Shen
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Anand Rotte
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick Twomey
- Department of Product Development Safety, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Sandhya Girish
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Benjamin Wu
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
13
|
Immunotherapy in the Treatment of Metastatic Melanoma: Current Knowledge and Future Directions. J Immunol Res 2020; 2020:9235638. [PMID: 32671117 PMCID: PMC7338969 DOI: 10.1155/2020/9235638] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/24/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Melanoma is one of the most immunologic malignancies based on its higher prevalence in immune-compromised patients, the evidence of brisk lymphocytic infiltrates in both primary tumors and metastases, the documented recognition of melanoma antigens by tumor-infiltrating T lymphocytes and, most important, evidence that melanoma responds to immunotherapy. The use of immunotherapy in the treatment of metastatic melanoma is a relatively late discovery for this malignancy. Recent studies have shown a significantly higher success rate with combination of immunotherapy and chemotherapy, radiotherapy, or targeted molecular therapy. Immunotherapy is associated to a panel of dysimmune toxicities called immune-related adverse events that can affect one or more organs and may limit its use. Future directions in the treatment of metastatic melanoma include immunotherapy with anti-PD1 antibodies or targeted therapy with BRAF and MEK inhibitors.
Collapse
|
14
|
Podaza E, Carri I, Aris M, von Euw E, Bravo AI, Blanco P, Ortiz Wilczyñski JM, Koile D, Yankilevich P, Nielsen M, Mordoh J, Barrio MM. Evaluation of T-Cell Responses Against Shared Melanoma Associated Antigens and Predicted Neoantigens in Cutaneous Melanoma Patients Treated With the CSF-470 Allogeneic Cell Vaccine Plus BCG and GM-CSF. Front Immunol 2020; 11:1147. [PMID: 32582212 PMCID: PMC7290006 DOI: 10.3389/fimmu.2020.01147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/11/2020] [Indexed: 01/30/2023] Open
Abstract
The CSF-470 vaccine consists of lethally-irradiated allogeneic cells derived from four cutaneous melanoma cell lines administered plus BCG and GM-CSF as adjuvants. In an adjuvant phase II study vs. IFN-α2b, the vaccine significantly prolonged the distant metastasis-free survival (DMFS) of stages IIB-IIC-III melanoma patients with evidence of the induction of immune responses against vaccine cells. Purpose: The aim of this study was to analyze the antigens against which the immune response was induced, as well as the T-helper profile and lytic ability of immune cells after CSF-470 treatment. Methods: HLA-restricted peptides from tumor-associated antigens (TAAs) were selected from TANTIGEN database for 13 evaluable vaccinated patients. In addition, for patient #006 (pt#006), tumor somatic variants were identified by NGS and candidate neoAgs were selected by predicted HLA binding affinity and similarity between wild type (wt) and mutant peptides. The patient's PBMC reactivity against selected peptides was detected by IFNγ-ELISPOT. T-helper transcriptional profile was determined by quantifying GATA-3, T-bet, and FOXP3 mRNA by RT-PCR, and intracellular cytokines were analyzed by flow cytometry. Autologous tumor cell lysis by PBMC was assessed in an in vitro calcein release assay. Results: Vaccinated patient's PBMC reactivity against selected TAAs derived peptides showed a progressive increase in the number of IFNγ-producing cells throughout the 2-yr vaccination protocol. ELISPOT response correlated with delayed type hypersensitivity (DTH) reaction to CSF-470 vaccine cells. Early upregulation of GATA-3 and Foxp3 mRNA, as well as an increase in CD4+IL4+cells, was associated with a low DMFS. Also, IFNγ response against 9/73 predicted neoAgs was evidenced in the case of pt#006; 7/9 emerged after vaccination. We verified in pt# 006 that post-vaccination PBMC boosted in vitro with the vaccine lysate were able to lyse autologous tumor cells. Conclusions: A progressive increase in the immune response against TAAs expressed in the vaccine and in the patient's tumor was induced by CSF-470 vaccination. In pt#006, we demonstrated immune recognition of patient's specific neoAgs, which emerged after vaccination. These results suggest that an initial response against shared TAAs could further stimulate an immune response against autologous tumor neoAgs.
Collapse
Affiliation(s)
- Enrique Podaza
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Buenos Aires, Argentina
| | - Ibel Carri
- IIBIO, UNSAM, San Martín, Buenos Aires, Argentina
| | - Mariana Aris
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Buenos Aires, Argentina
| | - Erika von Euw
- UCLA JCCC-Translational Oncology Research Labs, Los Angeles, CA, United States
- T-Cure Bioscience Inc., Los Angeles, CA, United States
| | - Alicia Inés Bravo
- Centro de Excelencia en Medicina Translacional, Hospital El Cruce, Buenos Aires, Argentina
| | - Paula Blanco
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Buenos Aires, Argentina
| | | | - Daniel Koile
- Plataforma Bioinformática, INBioBA-MPSP, Buenos Aires, Argentina
| | | | - Morten Nielsen
- IIBIO, UNSAM, San Martín, Buenos Aires, Argentina
- Department of Health Technology, The Technical University of Denmark, Lyngby, Denmark
| | - José Mordoh
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Buenos Aires, Argentina
- IIBBA-CONICET, Fundación Instituto Leloir, Buenos Aires, Argentina
- Instituto Alexander Fleming, Buenos Aires, Argentina
| | - María Marcela Barrio
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Buenos Aires, Argentina
| |
Collapse
|
15
|
Characterization of a Complex Mixture of Immunomodulator Peptides Obtained from Autologous Urine. J Immunol Res 2020; 2020:3683782. [PMID: 32322594 PMCID: PMC7154977 DOI: 10.1155/2020/3683782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/01/2020] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
A complex mixture of peptides plays a key role in the regulation of the immune system; different sources as raw materials mainly from animals and vegetables have been reported to provide these extracts. The batch-to-batch product consistency depends on in-process controls established. However, when an immunomodulator is a customized product obtained from the same volunteer who will receive the product to personalize the treatment, the criteria to establish the consistency between volunteers are different. In this sense, it is expected to have the same molecular weight range although the profile of peptide abundance is different. Here, we characterized the peptide profile of three extracts of an immunomodulator obtained from the urine of different volunteers suffering from three different diseases (i.e., allergic rhinitis, rheumatoid arthritis, and chronic rhinopharyngitis), using size exclusion chromatography (SEC) and mass spectrometry (MS). The peptides contained in the immunomodulators were stable after six months, stored in a refrigerator. Our results showed a chromatographic profile with the same range of low molecular weight (less than 17 kDa) in all analyzed samples by SEC; these results were also confirmed by MS showing an exact mass spectrum from 3 to 13 kDa. The fact that the peptide profiles were conserved during a six-month period at refrigeration conditions (2 to 8°C) maintaining the quality and stability of the immunomodulator supports the notion that it might be an alternative in the treatment of chronic hypersensibility disorders.
Collapse
|
16
|
Węgierek K, Pajtasz-Piasecka E. Perspectives for the application of interleukin 15 in anti-cancer therapy. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.7194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL-) 15 plays a crucial role in the preservation of lymphoid cell homeostasis including maintaining a broad repertoire of naïve T, B and NK cells, eliminating effector cells and long-term survival of memory cells. It is an essential causative factor in generating CD8+ T cells of memory. In addition, it selectively promotes not only survival and proliferation, but also the effector function of antigen-specific cytotoxic T lymphocytes, even in the presence of regulatory T cells. Interleukin 15 can thus modulate immune suppression as well as promote an immune activation. All obtained data on the biology and function of IL-15 provide information essential to design the manners of its application in the fight against the solid cancers and myeloproliferative neoplasms and make it a promising therapeutic option provided that its potential is consciously used. In this paper we reviewed on the relationship between the biological properties of IL-15 and its IL-15/IL-15Rα complex and their antitumor potential in the light of recent reports about the possibilities of using these molecules in cancer therapy have been assessed.
Collapse
Affiliation(s)
- Katarzyna Węgierek
- Laboratorium Doświadczalnej Terapii Przeciwnowotworowej, Instytut Immunologii i Terapii Doświadczalnej Polskiej Akademii Nauk im. L. Hirszfelda we Wrocławiu
| | - Elżbieta Pajtasz-Piasecka
- Laboratorium Doświadczalnej Terapii Przeciwnowotworowej, Instytut Immunologii i Terapii Doświadczalnej Polskiej Akademii Nauk im. L. Hirszfelda we Wrocławiu
| |
Collapse
|
17
|
Filipić B, Stojić-Vukanić Z. Active immunotherapy of cancer: An overview of therapeutic vaccines. ARHIV ZA FARMACIJU 2019. [DOI: 10.5937/arhfarm1906490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
18
|
Abstract
This review explores the incessant evolutionary interaction and co-development between immune system evolution and somatic evolution, to put it into context with the short, over 60-year, detailed human study of this extraordinary protective system. Over millions of years, the evolutionary development of the immune system in most species has been continuously shaped by environmental interactions between microbes, and aberrant somatic cells, including malignant cells. Not only has evolution occurred in somatic cells to adapt to environmental pressures for survival purposes, but the immune system and its function has been successively shaped by those same evolving somatic cells and microorganisms through continuous adaptive symbiotic processes of progressive simultaneous immunological and somatic change to provide what we observe today. Indeed, the immune system as an environmental influence has also shaped somatic and microbial evolution. Although the immune system is tuned to primarily controlling microbiological challenges for combatting infection, it can also remove damaged and aberrant cells, including cancer cells to induce long-term cures. Our knowledge of how this occurs is just emerging. Here we consider the connections between immunity, infection and cancer, by searching back in time hundreds of millions of years to when multi-cellular organisms first began. We are gradually appreciating that the immune system has evolved into a truly brilliant and efficient protective mechanism, the importance of which we are just beginning to now comprehend. Understanding these aspects will likely lead to more effective cancer and other therapies.
Collapse
Affiliation(s)
- Brendon J Coventry
- Discipline of Surgery, Royal Adelaide Hospital, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Unit, University of Adelaide, Adelaide, South Australia, 5005, Australia.,Institute of Evolutionary Medicine, The University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|